Chapter 5: Predicate Calculus: Formulas, Models, Tableaux

November 3, 2008
Outline

1 5.1 Relations and Predicates
2 5.2 Predicate Formulas
3 5.3 Interpretations
4 5.4 Equivalence and Substitution
5 5.5 Semantic Tableaux
6 5.7 Finite and Infinite Models
7 5.8 Undecidability of the Predicate Logic
5.1 Relations and Predicates

- R: an n-ary relation on a set D

$$R \subseteq D^n = D \times D \times \ldots \times D \quad \text{n times}$$

D: domain of the relation R.

Observation: A unary relation R is simply a subset of D

$$R \subseteq D$$
Examples

(a) Binary relation $<$ on \mathbb{N}:

$x < y$ if x is a positive integer less than y

$\leq \{(0,1), (0,2), \ldots, (1,2), (1,3), \ldots, (2,3), \ldots\}$

(b) Unary relation $\text{Prime}(x)$ on \mathbb{N}:

$\text{Prime} = \{2, 3, 5, 7, 11, \ldots\}$
(c) Given the graph G:

\[r(x, y) \iff \text{vertex } x \text{ is connected by a path to vertex } y \]

\[r = \{(a, a), (b, b), (c, c), (d, d), (e, e), (a, b), (b, a), (a, c), (c, a), (b, c), (c, b), (d, e), (e, d)\} \]
• We can think of an n-ary function

$$(x_1, x_2, \ldots, x_n) \mapsto f(x_1, x_2, \ldots, x_n)$$

as an $(n + 1)$-ary relation R_f containing the $(n + 1)$-tuples

$$(x_1, x_2, \ldots, x_n, f(x_1, x_2, \ldots, x_n))$$

R_f is called the **graph** of the function f.

• Also, we can think of an n-ary relation $R \subseteq D^n$ as a function

$$f : D^n \rightarrow \{T, F\}$$

$$R(d_1, d_2, \ldots, d_n) = T \iff (d_1, d_2, \ldots, d_n) \in R$$
5.2 Predicate Formulas

Predicate (relation) symbols \(\mathcal{P} = \{p, q, r, \ldots\} \)
Constant symbols \(\mathcal{A} = \{a, b, c, \ldots\} \)
Variables \(\mathcal{V} = \{x, y, z, \ldots\} \)
BNF Grammar for Predicate Formulas

\[
\begin{align*}
\text{argument} &::= x, \quad \text{for any } x \in \mathcal{V} \\
\text{argument} &::= a, \quad \text{for any } a \in \mathcal{A} \\
\text{argumentList} &::= \text{argument} \\
\text{argumentList} &::= \text{argument}, \text{argumentList} \\
\text{atomicFormula} &::= p \mid p(\text{argumentList}), \quad \text{for any } p \in \mathcal{P}
\end{align*}
\]
formula ::= atomicFormula
formula ::= ¬formula
formula ::= formula ∧ formula
formula ::= formula ∨ formula
formula ::= formula → formula
formula ::= formula ↔ formula
formula ::= ∀x formula, for all x ∈ V
formula ::= ∃x formula, for all x ∈ V
Examples

1. \(p(x, a) \) (atomic formula)
2. \(p(x, a) \rightarrow q(x) \)
3. \(\exists x \ p(x, a) \rightarrow \forall y \ q(y) \)
4. \(\forall x \ (p(x, a) \rightarrow q(x, y)) \rightarrow (\forall x \ p(x, a) \rightarrow \forall x \ q(x, y)) \)
Bound and Free Variables

Definition
Suppose A is a predicate formula. An occurrence of a variable x in A is a free variable of A if it is not within the scope of any quantifier $\forall x$ or $\exists x$.

Examples

(a) \(\exists y \ p(x, y) \)
 \(x \)-free, \(y \)-not free
(b) \(p(x, y) \)
 \(x, y \)-free
(c) \(\forall x \exists y p(x, y) \)
 neither \(x \) nor \(y \) are free
(d) \(\forall x p(x) \lor q(x) \)
 the first occurrence of \(x \) is not free while the second occurrence is
• A variable which is not free is said to be **bound**.

• If we write

\[A(x_1, x_2, \ldots, x_n), \]

we mean that the free variables of the formula \(A \) are among \(x_1, x_2, \ldots, x_n \).
5.3 Interpretations

- U: a set of formulas
- $\{p_1, p_2, \ldots, p_m\}$: all predicate symbols appearing in U
- $\{a_1, a_2, \ldots, a_k\}$: all constant symbols appearing in U
Definition
An interpretation I of U is a triple

$$I = (D, \{R_1, R_2, \ldots, R_m\}, \{d_1, d_2, \ldots, d_k\})$$

where
- D is a non-empty set (domain of I)
- R_i are n_i-ary relations on D.
- d_i are some fixed elements of D.

\[
\begin{align*}
p_i & \mapsto R_i & i = 1, 2, \ldots, m \\
a_j & \mapsto d_j & j = 1, 2, \ldots, k
\end{align*}
\]
Example
Consider the formula

\[\forall x \ p(a, x) \]

Some of its possible interpretations are:

(1) \(I_1 = (\mathbb{N}, \{\leq\}, \{0\}) \)

“For every natural number \(x \), \(0 \leq x \).”

(2) \(I_2 = (\mathbb{N}, \{|\}, \{1\}) \)

“For every natural number \(x \), \(1 | x \).”
(3) \(I_3 = (\{0, 1\}^*, \{ \text{substring relation} \}, \{\varepsilon\}) \)

“For every string \(x \) over alphabet \(\{0, 1\} \), empty string is a substring of \(x \).”

(4) \(I_4 = (G, E, \{a\}) \)

“For every vertex \(x \) of \(G \), \((a, x)\) is an edge in \(G \).”
Definition
Suppose I is an interpretation for a predicate formula A. An assignment

$$\sigma_I : \mathcal{V} \rightarrow D$$

is a function which assigns a value in the domain D to any variable appearing in the formula A.
Truth Value of a Predicate Formula

Suppose:
- A - formula.
- I - an interpretation for A.
- σ_I - an assignment

We define $v_{\sigma_I}(A)$, the truth value of A under σ_I, inductively:
(a) If $A = p(c_1, c_2, \ldots, c_n)$ is an atomic formula, where each c_i is either a variable x_j or a constant symbol a_j, then

$$v_{\sigma_I}(A) = T \text{ iff } (\sigma_I(c_1), \sigma_I(c_2), \ldots, \sigma_I(c_n)) \in R$$

(b) $v_{\sigma_I}(\neg A) = \neg v_{\sigma_I}(A)$.

(c) $v_{\sigma_I}(A_1 \land A_2) = v_{\sigma_I}(A_1) \land v_{\sigma_I}(A_2)$.

(d) $v_{\sigma_I}(A_1 \lor A_2) = v_{\sigma_I}(A_1) \lor v_{\sigma_I}(A_2)$.

[Similarly for \rightarrow, \leftrightarrow.]
(e) $v_{\sigma_1}(\forall x \ A) = T$ iff $v_{\sigma_1}(A) = T$ for all $x \in D$

(f) $v_{\sigma_1}(\exists x \ A) = T$ iff $v_{\sigma_1}(A) = T$ for some $x \in D$

Theorem

If A is a closed formula, then $v_{\sigma_1}(A)$ does not depend on σ_1. In that case, we write

$v_I(A)$
Theorem
Let $A' = A(x_1, x_2, \ldots, x_n)$ be a non-closed formula and let I be an interpretation. Then:

(a) $v_{\sigma_I}(A') = T$ for assignment σ_I iff

$$v_I(\exists x_1 \exists x_2 \ldots \exists x_n \ A') = T$$

(b) $v_{\sigma_I}(A') = T$ for all assignments σ_I iff

$$v_I(\forall x_1 \forall x_2 \ldots \forall x_n \ A') = T$$

Definition
A closed formula A is true in I, or I is a model for A, if $v_I(A) = T$.

$$I \models A$$
Definition
A closed formula A is **satisfiable** if, for **some** interpretation I,

$$I \models A$$

A is **valid** if, for **all** interpretations I,

$$I \models A$$

We can also define unsatisfiable and falsifiable formulas in the usual way.
Examples

(a) $\forall x \, p(a, x) \rightarrow p(a, a)$ \hspace{1cm} valid
(b) $\forall x \forall y \, (p(x, y) \rightarrow p(y, x))$ \hspace{1cm} not valid, satisfiable
(c) $\forall x \exists y \, p(x, y)$ \hspace{1cm} not valid, satisfiable
(d) $\exists x \exists y \, (p(x) \land \neg p(y))$ \hspace{1cm} not valid, satisfiable
(e) $\forall x \,(p(x) \land q(x)) \leftrightarrow (\forall x \, p(x) \land \forall x \, q(x))$ \hspace{1cm} valid
(f) $\exists x \, (\neg p(x) \land p(x))$ \hspace{1cm} unsatisfiable
5.4 Equivalence and Substitution

- Suppose A_1, A_2 are two closed formulas. If, for all interpretations I

 $$v_I(A_1) = v_I(A_2)$$

 we say that A_1 and A_2 are **equivalent**, and we write

 $$A_1 \equiv A_2$$

- Suppose U is a set of closed formulas, and A a closed formula

 $$U \models A$$

 means that, in all interpretations I in which all formulas from U are true, we also have

 $$v_I(A) = T.$$
Examples

(a) $\forall x \ A(x) \equiv \neg \exists x \ \neg A(x)$

(b) $\exists x \ A(x) \equiv \neg \forall x \ \neg A(x)$

(c) $\forall x \forall y \ A(x, y) \equiv \forall y \forall x \ A(x, y)$

(d) $\exists x \exists y \ A(x, y) \equiv \exists y \exists x \ A(x, y)$

(e) $\exists x \forall y A(x, y) \not\equiv \forall y \exists x A(x, y)$

To see that these two formulas are not equivalent, consider

$I = (\mathbb{Z}, \{\leq\})$.

Clearly,

$I \not\models \exists x \forall y \ x \leq y, \quad I \models \forall y \exists x \ x \leq y$
Theorem
(a) $A \equiv B$ if and only if $\models A \leftrightarrow B$.
(b) Suppose $U = \{A_1, A_2, \ldots, A_n\}$

$U \models A$ if and only if $\models A_1 \land A_2 \land \ldots A_n \rightarrow A$.
Examples

The following are valid formulas

(a) \(\exists x (A(x) \lor B(x)) \leftrightarrow \exists x A(x) \lor \exists x B(x) \)

(b) \(\forall x (A(x) \land B(x)) \leftrightarrow \forall x A(x) \land \forall x B(x) \)

(c) \(\exists x (A(x) \land B) \leftrightarrow \exists x A(x) \land B, \text{ if } x \text{ is not free in } B. \)

(d) \(\forall x (A(x) \lor B) \leftrightarrow \forall x A(x) \lor B, \text{ if } x \text{ is not free in } B. \)

(e) \(\exists x (A(x) \rightarrow B(x)) \leftrightarrow (\forall x A(x) \rightarrow \exists x B(x)) \)

(f) \(\forall x (A(x) \rightarrow B(x)) \leftrightarrow (\exists x A(x) \rightarrow \forall x B(x)) \)

[For more pairs of equivalent formulas, see Fig. 5.2 in Section 5.4]
Proof.

(e)

\[\exists x(A(x) \rightarrow B(x)) \equiv \exists x(\neg A(x) \lor B(x)) \]
\[\equiv \exists x \neg A(x) \lor \exists x B(x) \]
\[\equiv \neg \forall x A(x) \lor \exists x B(x) \]
\[\equiv \forall x A(x) \rightarrow \exists x B(x) \]
Example
Prove that
\[\exists x \forall y \ A(x, y) \rightarrow \forall y \exists x \ A(x, y) \]
is a valid formula, yet its converse is not valid.

Solution:
Let \(I \) be an interpretation. Suppose
\[I \models \exists x \forall y \ A(x, y). \]
Then, for some \(a \in D \)
\[I \models \forall y \ A(a, y) \]
So,
\[I \models \forall y (\exists x \ A(x, y)) \]
which proves that, for every \(I \),
\[I \models \exists x \forall y \ A(x, y) \rightarrow \forall y \exists x \ A(x, y) \]
\(I = (\mathbb{Z}, \{\leq\}) \) shows that the implication cannot be reversed if we want the formula to be valid. \(\Box \)
5.5 Semantic Tableaux

Example
We will try to show that

$$\forall x(p(x) \rightarrow q(x)) \rightarrow (\forall x p(x) \rightarrow \forall x q(x))$$

is a valid formula.

We consider its negation

$$\neg[\forall x(p(x) \rightarrow q(x)) \rightarrow (\forall x p(x) \rightarrow \forall x q(x))]$$

and try to show that it is unsatisfiable.
$\neg [\forall x (p(x) \rightarrow q(x)) \rightarrow (\forall x p(x) \rightarrow \forall x q(x))]$

$\forall x (p(x) \rightarrow q(x)), \neg (\forall x p(x) \rightarrow \forall x q(x))$

$\forall x (p(x) \rightarrow q(x)), \forall x p(x), \neg \forall x q(x)$

$\forall x (p(x) \rightarrow q(x)), \forall x p(x), \neg q(a)$

$\forall x (p(x) \rightarrow q(x)), p(a), \neg q(a)$

$p(a) \rightarrow q(a), p(a), \neg q(a)$

$\neg p(a), p(a), \neg q(a), q(a), p(a), \neg q(a)$

\times \times
Example

Now, we consider the formula

\[\forall x (p(x) \lor q(x)) \rightarrow (\forall x p(x) \lor \forall x q(x)) \]

which is not valid, but is satisfiable.
\[
\neg [\forall x(p(x) \lor q(x)) \rightarrow (\forall x p(x) \lor \forall x q(x))] \\
\forall x(p(x) \lor q(x)), \neg(\forall x p(x) \lor \forall x q(x)) \\
\forall x(p(x) \lor q(x)), \exists x \neg p(x), \exists x \neg q(x) \\
\forall x(p(x) \lor q(x)), \neg p(a), \exists x \neg q(x) \\
p(a) \lor q(a), \neg p(a), \exists x \neg q(x) \\
p(a), \neg p(a), \exists x \neg q(x) q(a), \neg p(a), \exists x \neg q(x) \\
q(a), \neg p(a), \neg q(a) \\
\neg q(a)
\]
Question: What went wrong?

- We used the same constant a twice to eliminate two distinct existential quantifiers.
- We were forced to use the same constant since, once we eliminated the universal quantifier in

$$\forall x(p(x) \lor q(x))$$

we replaced it with a and were forced to work with that constant exclusively from that point on.

Solution: We will not delete universal quantifiers from nodes of the tableau; instead, we introduce some instance of that variable but keep writing the universal quantifier. E.g.

$$\begin{array}{c}
\forall x \ p(x) \\
\ \ \ |
\forall x \ p(x), \ p(a)
\end{array}$$
Using these guidelines, if we construct a correct tableau for the formula from the previous example (exercise!), we notice that one branch ends with the open leaf

\[p(a), \neg q(a), \neg p(b), q(b) \]

In fact, this leaf gives us a model for this satisfiable formula; the domain is

\[D = \{ a, b \} \]

and the unary relations are subsets

\[p = \{ a \}, \quad q = \{ b \} \]

[This is what we will define as an Herbrand model for this formula in Chapter 7.]
Example

Consider the formulas

\[A_1 = \forall x \exists y \ p(x, y) \]
\[A_2 = \forall x \neg p(x, x) \]
\[A_3 = \forall x \forall y \forall z (p(x, y) \land p(y, z) \rightarrow p(x, z)) \]

Check whether

\[A = A_1 \land A_2 \land A_3 \]

is a satisfiable formula and, if so, find one model for \(A \).
Solution: We will first construct a semantic tableau for the formula:

\[\forall x \exists y \, p(x, y), A_2, A_3 \]

\[\forall x \exists y \, p(x, y), \exists y(a_1, y), A_2, A_3 \]

\[\forall x \exists y \, p(x, y), p(a_1, a_2), A_2, A_3 \]

\[\forall x \exists y \, p(x, y), \exists y \, p(a_2, y), p(a_1, a_2), A_2, A_3 \]

\[\forall x \exists y \, p(x, y), p(a_2, a_3), p(a_1, a_2), A_2, A_3 \]

\[\vdots \]
We see that the tableau does not terminate; namely, every time we drop the universal or an existential quantifier, we can introduce a new constant symbol a_i, to get an infinite sequence of constants:

$$a_1, a_2, \ldots, a_n, \ldots$$

The formula does have an obvious infinite model:

$$I = (\mathbb{N}, \{<\})$$

Furthermore, one can prove, using the formulas A_2 and A_3 (see the proof of Theorem 5.24 in the textbook) that every model of

$$A = A_1 \land A_2 \land A_3$$

must be infinite. So, the tableau construction effectively produces a “generic” infinite model for A. □
• One stark difference in comparison with semantic tableaux for propositional logic is (as seen in the previous example) that a tableau of a predicate formula may not terminate.
• The reason for this anomaly is that, in propositional logic, nodes of a tableau simplify in terms of the formula complexity. In predicate logic, this is not the case, since we can never eliminate universal quantifiers.
Algorithm for Semantic Tableaux

- Two new types of rules:

<table>
<thead>
<tr>
<th>(\gamma)</th>
<th>(\gamma(a))</th>
<th>(\delta)</th>
<th>(\delta(a))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\forall x \ A(x))</td>
<td>(A(a))</td>
<td>(\exists x \ A(x))</td>
<td>(A(a))</td>
</tr>
<tr>
<td>(\neg \exists x \ A(x))</td>
<td>(\neg A(a))</td>
<td>(\neg \forall x \ A(x))</td>
<td>(\neg A(a))</td>
</tr>
</tbody>
</table>

- **Literal**: closed atomic formula \(p(a_1, a_2, \ldots, a_n) \) or the negation of such a formula.
Input: A - a predicate formula

Output: Semantic tableau \mathcal{T} for A; all branches are either infinite, or finite with leaves marked \times (closed) or \circ (open).

(1) Initially, \mathcal{T} is a single node, labeled $\{A\}$.

(2) We build the tableau inductively by choosing an unmarked leaf l, labeled $U(l)$, and applying one of the following rules:
• If $U(I)$ is a set of literals and γ-formulas containing a pair of complementary literals
 \[\{p(a_1, a, \ldots, a_n), \neg p(a_1, a_2, \ldots, a_n)\} \], mark it as closed (\times)
• If $U(I)$ is not a set of literals, choose a formula A in $U(I)$ which is not a literal:
 \begin{itemize}
 \item α- and β-rules are applied just as in propositional logic.
 \item If A is a γ-formula, add a new node l', a child of I, and label it
 \[U(l') = U(I) \cup \{\gamma(a)\} \]
 where a is a constant appearing in $U(I)$. If $U(I)$ consists of literals and γ-formulas only, mark it \times or \circ, depending on whether there is a set of complementary literals.
 \item If A is a δ-formula, create a new node l' as a child of I and label it
 \[U(l') = (U(I) - \{A\}) \cup \{\delta(a)\} \]
 where a is some constant that does not appear in $U(I)$.
Definition
A branch in \mathcal{T} is **closed** if it terminates in a leaf marked \times. Otherwise, it is **open**.

Theorem
(Soundness) Suppose A is a predicate formula and \mathcal{T} its semantic tableau. If \mathcal{T} closes, then A is unsatisfiable.

Theorem
(Completeness) Suppose A is a valid formula. Then, the systematic semantic tableau for A terminates and is closed.
• **Systematic tableau:** a tableau in which every node is labeled

\[W(I) = (U(I), C(I)) \]

where \(U(I) \) is a list of formulas and \(C(I) \) is the list of all constant symbols appearing in \(U(I) \).

• In a systematic tableau, if using a \(\gamma \)-rule, we do the following: suppose \(\{\gamma_1, \ldots, \gamma_m\} \) are all \(\gamma \)-formulas in \(U(I) \) and

\[C(I) = \{ a_1, \ldots, a_k \} \]

The new node \(I' \) will be labeled

\[(U(I) \cup \{\gamma_i(a_j)\}, C(I)) \]

In other words, we create all possible instances of formulas \(\gamma_i \) where the variable is replaced by all possible constants \(a_j \).
5.7 Finite and Infinite Models

Theorem
(Löwenheim) If a formula is satisfiable, then it is satisfiable in a countable model.

Theorem
(Löwenheim - Skolem) If a countable set of predicate formulas is satisfiable, then it is satisfiable in a countable model.

Theorem
(Compactness Theorem) Let \(U \) be a countable set of formulas. If all finite subsets of \(U \) are satisfiable, then so is \(U \).
5.8 Undecidability of the Predicate Logic

- Turing machines can be viewed as devices which compute functions on natural numbers; i.e. given a Turing machine T, we can associate to it a function

$$f_T : \mathbb{N} \rightarrow \mathbb{N}$$

so that $f_T(n) = m$ if T halts with the tape consisting of m 1’s when started on the tape with the input of n consecutive 1’s. If T never halts on the input of n consecutive 1’s, then $f_T(n)$ is undefined.

Theorem

(Church) It is undecidable whether a Turing machine, started on a blank tape, will halt.

- In other words, it is undecidable, given a Turing machine T, whether $f_T(0)$ is defined.
Two-Register Machines

Definition
Two-register machine (or, a Minsky machine) M consists of a pair of registers (x, y) which can store natural numbers, and a program $P = \{L_0, L_1, \ldots, L_n\}$, which is a sequential list of instructions. L_n is always the command “halt”, and for $0 \leq i < n$, L_i has one of the two forms

1. $r := r + 1$, for $r \in \{x, y\}$
2. If $r = 0$ then go to L_j else $r := r - 1$, for $r \in \{x, y\}$, $0 \leq j \leq n$.
• **Execution** of M: sequence of states

$$s_k = (L_i, x, y)$$

where L_i is the current instruction during the execution, and x, y are current contents of the two registers.

• **Initial state:**

$$s_0 = (L_0, m, 0), \text{ for some } m$$

• If

$$s_k = (L_n, x, y), \text{ for some } k$$

then M halts and

$$y = f(m)$$

is computed by M.
Theorem
For every Turing machine T that computes $f : \mathbb{N} \to \mathbb{N}$, a two-register machine M can be constructed which computes the same function.

Corollary
It is undecidable whether, given a two-register machine M, whether $f_M(0)$ exists or not.
Theorem
(Church) Validity in predicate calculus is undecidable.

Sketch of the Proof.
To each two-register machine M, we associate a predicate formula S_M such that

M halts started at $(L_0, 0, 0) \iff \models S_M$

We use the language:
- Binary relations: $p_i(x, y) \ (i = 0, 1, \ldots, n)$
- Unary function: $s(x)$
- Constant symbol: a

Intended interpretation:
- $p_i(x, y)$: M is at the state (L_i, x, y)
- $s(x)$: successor function $s(x) = x + 1$
- a: $a = 0$
<table>
<thead>
<tr>
<th>L_i</th>
<th>S_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x := x + 1$</td>
<td>$\forall x \forall y (p_i(x, y) \rightarrow p_{i+1}(s(x), y))$</td>
</tr>
<tr>
<td>$y := y + 1$</td>
<td>$\forall x \forall y (p_i(x, y) \rightarrow p_{i+1}(x, s(y)))$</td>
</tr>
<tr>
<td>if $x = 0$ then goto L_j</td>
<td>$\forall y (p_i(a, y) \rightarrow p_j(a, y))$</td>
</tr>
<tr>
<td>else $x := x - 1$</td>
<td>$\forall x \forall y (p_i(s(x), y) \rightarrow p_{i+1}(x, y))$</td>
</tr>
<tr>
<td>if $y = 0$ then goto L_j</td>
<td>$\forall x (p_i(x, a) \rightarrow p_j(x, a))$</td>
</tr>
<tr>
<td>else $y := y - 1$</td>
<td>$\forall x \forall y (p_i(x, s(y)) \rightarrow p_{i+1}(x, y))$</td>
</tr>
</tbody>
</table>
Finally, define

\[S_M = (S_0 \land S_1 \land \ldots \land S_n \land p_0(a, a)) \rightarrow \exists z_1 \exists z_2 \ p_n(z_1, z_2) \]

\(S_M \) says the following: if a machine with the program

\[P = \{L_0, L_1, \ldots, L_n\} \]

is started at the initial state \((L_0, 0, 0)\), then the computation will halt with the values at the registers being \((z_1, z_2)\), for some natural numbers \(z_1, z_2\).

Since the Halting Problem for two-register machines is undecidable, it is impossible to verify algorithmically whether

\[\models S_M \]

or not. \(\square\)
Church’s Theorem is also true for some restricted classes of predicate logic:

1. Formulas containing only a finite number of binary predicate symbols, one unary function symbol, and one constant symbol.
2. Formulas written as Prolog programs.
3. Formulas with no function symbols.

[Skip ’Solvable Cases of the Decision Problem’ in Section 5.8]