1 Components and Projections

Given two vectors \(u \) and \(v \), we can ask how far we will go in the direction of \(v \) when we travel along \(u \). The distance we travel in the direction of \(v \), while traversing \(u \) is called the component of \(u \ with respect to \ v \) and is denoted \(\text{comp}_v u \). The vector parallel to \(v \), with magnitude \(\text{comp}_v u \), in the direction of \(v \) is called the projection of \(u \ onto \ v \) and is denoted \(\text{proj}_v u \).

\[
\text{So, } \text{comp}_v u = ||\text{proj}_v u||
\]

Note \(\text{proj}_v u \) is a vector and \(\text{comp}_v u \) is a scalar. From the picture \(\text{comp}_v u = ||u|| \cos \theta \)

We wish to find a formula for the projection of \(u \) onto \(v \).

Consider \(u \cdot v = ||u|| ||v|| \cos \theta \)

Thus \(||u|| \cos \theta = \frac{u \cdot v}{||v||} \)

So \(\text{comp}_v u = \frac{u \cdot v}{||v||} \)

The unit vector in the same direction as \(v \) is given by \(\frac{v}{||v||} \). So

\[
\text{proj}_v u = \left(\frac{u \cdot v}{||v||^2} \right) v
\]

Example 1

1. Find the projection of \(u = i + 2j \) onto \(v = i + j \).

\[
u \cdot v = 1 + 2 = 3, \quad ||v||^2 = \left(\sqrt{2} \right)^2 = 2\]

\[
\text{proj}_v u = \left(\frac{u \cdot v}{||v||^2} \right) v = \frac{3}{2}(i + j) = \frac{3}{2}i + \frac{3}{2}j
\]
2. Find $\text{proj}_v u$, where $u = (1, 2, 1)$ and $v = (1, 1, 2)$

$$u \cdot v = 1 + 2 + 2 = 5, \quad ||v||^2 = \left(\sqrt{1^2 + 1^2 + 2^2}\right)^2 = 6$$

So, $\text{proj}_v u = \frac{5}{6}(1, 1, 2)$

3. Find the component of $u = i + j$ in the direction of $v = 3i + 4j$.

$$u \cdot v = 3 + 4 = 7, \quad ||v|| = \sqrt{3^2 + 4^2} = \sqrt{25} = 5$$

$$\text{comp}_v u = \frac{u \cdot v}{||v||} = \frac{7}{5}$$

4. Find the components of $u = i + 3j - 2k$ in the directions i, j and k.

$$u \cdot i = 1, \quad u \cdot j = 3, \quad u \cdot k = -2, \quad ||i|| = ||j|| = ||k|| = 1$$

So

$$\text{comp}_i u = 1, \quad \text{comp}_j u = 3, \quad \text{comp}_k u = -2.$$

So the use of the term *component* is justified in this context.

Indeed, coordinate axes are arbitrarily chosen and are subject to change.

If u is a new coordinate vector given in terms of the old set then $\text{comp}_u w$ gives the component of the vector w in the new coordinate system.

Example 2

If coordinates in the plane are rotated by 45°, the vector i is mapped to $u = \frac{1}{\sqrt{2}} i + \frac{1}{\sqrt{2}} j$, and the vector j is mapped to $v = -\frac{1}{\sqrt{2}} i + \frac{1}{\sqrt{2}} j$. Find the components of $w = 2i - 5j$ with respect to the new coordinate vectors u and v. i.e. Express w in terms of u and v.

$$w \cdot u = \frac{-3}{\sqrt{2}}, \quad w \cdot v = \frac{-7}{\sqrt{2}}, \quad ||u|| = ||v|| = 1$$

So

$$\text{comp}_u w = \frac{-3}{\sqrt{2}}, \quad \text{comp}_v w = \frac{-7}{\sqrt{2}}$$

and

$$w = \frac{-3}{\sqrt{2}} u + \frac{-7}{\sqrt{2}} v$$
2 Orthogonal Projections

Given a non-zero vector \(\mathbf{v} \), we may represent any vector \(\mathbf{u} \) as a sum of a vector, \(\mathbf{u}_\parallel \) parallel to \(\mathbf{v} \) and a vector \(\mathbf{u}_\perp \) perpendicular to \(\mathbf{v} \).

So, \[
\mathbf{u} = \mathbf{u}_\parallel + \mathbf{u}_\perp.
\]

Now, \[
\mathbf{u}_\parallel = \text{proj}_\mathbf{v} \mathbf{u},
\]

and so \[
\mathbf{u}_\perp = \mathbf{u} - \text{proj}_\mathbf{v} \mathbf{u}.
\]

Example 3

Express \(\mathbf{u} = 2\mathbf{i} + 4\mathbf{j} + 2\mathbf{k} \) as a sum of vectors parallel and perpendicular to \(\mathbf{v} = \mathbf{i} + 2\mathbf{j} - \mathbf{k} \).

\[
\mathbf{u} \cdot \mathbf{v} = 2 + 8 - 2 = 8, \quad ||\mathbf{v}||^2 = (\sqrt{1^2 + 2^2 + 1^2})^2 = 6
\]

\[
\mathbf{u}_\parallel = \text{proj}_\mathbf{v} \mathbf{u} = \left(\frac{\mathbf{u} \cdot \mathbf{v}}{||\mathbf{v}||^2} \right) \mathbf{v} = \frac{4}{3}(\mathbf{i} + 2\mathbf{j} - \mathbf{k})
\]

\[
\mathbf{u}_\perp = \mathbf{u} - \text{proj}_\mathbf{v} \mathbf{u} = (2\mathbf{i} + 4\mathbf{j} + 2\mathbf{k}) - \frac{4}{3}(\mathbf{i} + 2\mathbf{j} - \mathbf{k})
\]

\[
= \left(2 - \frac{4}{3} \right) \mathbf{i} + \left(4 - \frac{8}{3} \right) \mathbf{j} + \left(2 + \frac{4}{3} \right) \mathbf{k}
\]

\[
= \frac{2}{3}\mathbf{i} + \frac{4}{3}\mathbf{j} + \frac{10}{3}\mathbf{k}
\]

\[
= \frac{2}{3}(\mathbf{i} + 2\mathbf{j} + 5\mathbf{k})
\]

Check

\[
\mathbf{u}_\parallel \cdot \mathbf{u}_\perp = \left(\frac{2}{3}(\mathbf{i} + 2\mathbf{j} + 5\mathbf{k}) \right) \cdot \left(\frac{2}{3}(\mathbf{i} + 2\mathbf{j} - \mathbf{k}) \right)
\]

\[
= \frac{8}{9} ((\mathbf{i} + 2\mathbf{j} + 5\mathbf{k}) \cdot (\mathbf{i} + 2\mathbf{j} - \mathbf{k}))
\]

\[
= \frac{8}{9} (1 + 4 - 5)
\]

\[
= 0
\]

So \(\mathbf{u}_\parallel \) and \(\mathbf{u}_\perp \) are orthogonal.