BOUNDS AND CONSTRUCTIONS FOR N-E.C. TOURNAMENTS

ANTHONY BONATO, PRZEMYSŁAW GORDINOWICZ, AND PAWEŁ PRALAT

Abstract. Few families of tournaments satisfying the n-e.c. adjacency property are known. We supply a new random construction for generating infinite families of vertex-transitive n-e.c. tournaments by considering circulant tournaments. Switching is used to generate exponentially many n-e.c. tournaments of certain orders. With aid of a computer search, we demonstrate that there is a unique minimum order 3-e.c. tournament of order 19, and there are no 3-e.c. tournaments of orders 20, 21, and 22.

1. Introduction

Adjacency properties of graphs and digraphs were discovered by Erdős and Rényi [8] in their pioneering work on random graphs. We focus here on the n-e.c. adjacency property of tournaments. For a positive integer n, a tournament is n-existentially closed or n-e.c. if for all disjoint sets of vertices A and B with |A ∪ B| = n (one of A or B may be empty), there is a vertex z not in A ∪ B such that there is an arc from z to each vertex of A and there is an arc from each vertex of B to z. We say that z is correctly joined or c.j. to A and B. Hence, for all n-subsets S of vertices, there exist 2^n vertices joined to S in all possible ways. For example, the tournament in Figure 1 is the unique minimum order 2-e.c. tournament.

![Figure 1. The smallest order 2-e.c. tournament.](image)

Although the n-e.c. property is straightforward to define, it is not obvious from the definition that tournaments with the property exist. Let $T(m, p)$ be a random tournament on the vertex set $[m] = \{1, 2, \ldots, m\}$, where for each ordered pair of vertices (i, j), $i < j$ a directed edge from i to j occurs independently with probability p. Note that $p = p(m)$ may tend to zero with m. The probability space $T(m, p)$ may be viewed as a result of $\binom{m}{2}$

1991 Mathematics Subject Classification. 05C75, 05C85, 05C80.

Key words and phrases. tournaments, adjacency property, n-e.c. tournaments, vertex-transitive, switching, random tournament.
independent coin flips, one for each pair of vertices, where the probability of success is equal to p. The probability that a random tournament $T(m, 1/2)$ is not n-e.c. is bounded from above by

$$\binom{m}{n} 2^n \left(1 - \frac{1}{2^n}\right)^{m-n},$$

which is smaller than one for m sufficiently large. Hence, n-e.c. tournaments exist for all n. Graham and Spencer [10] were the first to give explicit examples of tournaments satisfying adjacency properties. The Paley tournament of order q, for a prime power $q \equiv 3 \pmod{4}$, written T_q, has vertices the elements of the finite field $\text{GF}(q)$, where vertices x and y are joined if and only if $x - y$ is a non-zero quadratic residue in $\text{GF}(q)$. In fact, T_7 is the unique isomorphism type of 2-e.c. tournament of order 7, and is the minimum order 2-e.c. tournament; see Figure 1 and [4]. By [1, 2, 10], if $q > n^22^{2n-2}$, then T_q is n-e.c. See [3] for more background on n-e.c. tournaments and graphs.

In this article, we give a new construction of n-e.c. tournaments satisfying certain properties. While our construction is randomized, it always generates regular tournaments; in fact, the tournaments are vertex-transitive; see Theorem 2.1. We demonstrate how switching in tournaments generates an exponential number of non-isomorphic n-e.c. tournaments in Theorem 2.3. We investigate the function $t_{ec}(n)$, which is defined as the minimum order of an n-e.c. tournament. From [4], $t_{ec}(1) = 3$ and $t_{ec}(2) = 7$ (realized by the directed 3-cycle and T_7, respectively), but before this article no other values of this function were known. We show in Section 3 that $t_{ec}(3) = 19$, and using a computer search we found that there is a unique 3-e.c. tournament of order 19.

All tournaments we consider are finite unless otherwise stated. For a tournament T, if $x \in V(T)$, then let $\deg_T^+(x)$ and $\deg_T^-(x)$ be the out- and in-degrees of x, respectively. Let $N^+(x)$ and $N^-(x)$ be the out- and in-neighbourhoods of x, respectively. For a subset S of $V(T)$, define $T[S]$ to be the subtournament induced by S. We abbreviate isomorphism type by isotype. We denote the natural numbers (including 0) by \mathbb{N}, and the integers by \mathbb{Z}.

2. New Constructions of N-e.c. Tournaments

We give a new construction of n-e.c. tournaments. The family we construct in Subsection 2.1 is not only regular, but vertex-transitive. In Subsection 2.2, we explain how switching provides a structural approach to generate an exponential number of non-isomorphic n-e.c. tournaments, using our vertex-transitive n-e.c. tournaments as building blocks.

2.1. N-e.c. Circulant Tournaments. Fix an integer $m \geq 1$. In the remainder of the subsection, all arithmetic is modulo $2m + 1$. Fix

$$J \subseteq [2m] = \{1, 2, \ldots, 2m\} = \{-m, -m + 1, \ldots, -2, -1, 1, 2, \ldots, m - 1, m\}$$

with the property that $|J \cap \{j, -j\}| = 1$ for all $j \in [m]$. Hence, $|J| = m$, and $j \in J$ if and only if $-j \notin J$. A circulant tournament $G(J)$ has vertices \mathbb{Z}_{2m+1} (for simplicity, we identify the elements (or residues) of the ring \mathbb{Z}_{2m+1} with $0, 1, \ldots, 2m$) and directed edges (i, j) if $i - j \in J$. We call J the connection set of $G(J)$. The tournament $G(J)$ is vertex-transitive and so is regular.

For a fixed $0 < p \leq 1/2$, the random circulant tournament $\text{CT}(m, p)$ consists of $G(J)$ where the connection set J has each element of the set $[m]$ chosen with probability p. More precisely, for each $1 \leq i \leq m$, independently with probability p add i to J; otherwise add...
the element \(-i\) to \(J\). Without loss of generality, we can assume that \(p \leq 1/2\), since in order to construct \(CT(m, p)\) with \(p > 1/2\) one can take the dual of \(CT(m, 1-p)\), which is \(n\)-\(e.c\). if and only if \(CT(m, 1-p)\) is. Note that the two events “\(i \in J\)” and “\(-i \in J\)” are dependent.

We now state the main result of this section, which generates a family of vertex-transitive \(n\)-\(e.c\.) tournaments. We say that an event \(A\) holds \textit{asymptotically almost surely} (a.a.s.) in \(CT(m, p)\) if \(A\) holds with probability tending to 1 as \(m \to \infty\). The probability of \(A\) is denoted by \(\mathbb{P}(A)\).

Theorem 2.1. Let \(p \in (0, 1/2]\). A.a.s. \(CT(m, p)\) is \(n\)-\(e.c\). with

\[
n = \log_{1/p} m - 4 \log_{1/p} \log m - O(1).
\]

Proof of Theorem 2.1. Let \(n = \log_{1/p} m - 4 \log_{1/p} \log m - C\), where \(C\) will be determined later. Fix \(X = \{x_1, x_2, \ldots, x_n\}\) an \(n\)-set in \(G = CT(m, p)\), and fix \(z \notin X\). Define the \textit{projection} \(\pi_X(z)\) to be the set of elements of \([m]\) of the form \(z - i\) or \(i - z\), where \(i \in X\). Observe that \(|\pi_X(z)| \leq n\) (it may happen that \(|\pi_X(z)| < n\); for example, in the case \(z = (i_1 + i_2)/2\) for some \(i_1, i_2 \in X\)). We would like to form a \textit{template set} \(U\) disjoint from \(X\) such that for all distinct \(z, z' \in U\),

\[
\pi_X(z) \cap \pi_X(z') = \emptyset \quad \text{and} \quad |\pi_X(z)| = n.
\]

These properties ensure that edges between \(X\) and \(U\) are generated independently. Further, we would like to choose \(|U| = r = \lfloor m/n^2 \rfloor\). We construct \(U\) as a union of a chain of sets \(U_k\) of vertices, where for all \(k \geq 1\) exactly one vertex is added to \(U_k\) to form \(U_{k+1}\). In particular, the set \(U = U_r\). The sets \(U_k\) are constructed by induction on \(k \geq 1\), with the induction stopping at \(k = r\).

In the base step of the induction, we require that \(U_1 \subseteq \{0, 1, \ldots, 2m\} \setminus X\). Remove all vertices \(z\) with \(|\pi_X(z)| < n\) from \(\{0, 1, \ldots, 2m\} \setminus X\). Since each pair of vertices from \(X\) can eliminate at most one vertex, there are at least

\[
2m + 1 - n - \binom{n}{2}
\]

vertices remaining, which is positive if \(m\) is sufficiently large and by the choice of \(n\). Choose an arbitrary remaining vertex \(z_1\) to form \(U_1\).

Suppose that for a fixed \(k \geq 1\) with \(r > k\), the set \(U_k\) has been constructed with \(|U_k| = k\). To form \(U_{k+1}\), some vertices from \(\{0, 1, \ldots, 2m\} \setminus (X \cup U_k)\) must be removed. As in the base step, by considering all the pairs of vertices from \(X\), \(\binom{n}{2}\) vertices are eliminated. Each vertex \(z\) in \(U_k\) satisfies \(|\pi_X(z)| = n\). To ensure that \(\pi_X(z) \cap \pi_X(z') = \emptyset\) for \(z, z' \in U_k\) and \(z' \in U_{k+1}\), we must eliminate another \(2kn\) vertices. Hence, there are at least

\[
2m + 1 - n - \binom{n}{2} - 2kn
\]

remaining vertices, which is positive for large \(m\) and by the choice of \(n\) and \(r\). Add an arbitrary remaining vertex \(z_{k+1}\) to \(U_k\) to form \(U_{k+1}\).

Now, suppose we use a template set \(U = U_r\) with \(|U| = r\). For a fixed \(z\) in \(U\) and \(x_i\) in \(X\),

\[
\mathbb{P}(z \text{ is c.i. to } x_i) \geq p.
\]

The events “\((z, x_i) \in E\)” and “\((z, x_j) \in E\)” are independent (since \(|\pi_X(z)| = n\)). Since \(U\) is a template set, for \(z, z'\) distinct elements of \(U\), the events “\((z, x_i) \in E\)” and “\((z', x_i) \in E\)”
are independent as well. Hence,
\[P(\text{z is not c.j. to } X) \leq 1 - p^n, \]
and
\[P(\text{No z in } V(T) \text{ is c.j. to } X) \leq (1 - p^n)^r. \]
We therefore have that the probability \(P \) of the event that \(G \) is not \(n \)-e.c. satisfies
\[
P \leq m^n 2^n (1 - p^n)^r
= \exp\left(n(\log m + \log 2) - (1 + o(1))\frac{p^n m}{n^2}\right)
= \exp\left(O(\log_2 m) - (1 + o(1))\frac{p^n m}{n^2}\right)
= \exp\left(-\Omega(\log_2 m)\right) = o(1),
\]
for \(C \) sufficiently large. □

Another adjacency property related to \(n \)-e.c. property was introduced by Schütte in [7]. Given a positive integer \(n \), a tournament \(T \) satisfies property \(P_n \) if for any set \(S \) of \(n \) vertices of a tournament \(T \), there is a vertex \(z \) which dominates all elements of \(S \). Define \(t_{P_n}(n) \) to be the minimum order of a tournament with property \(P_n \). Note that \(t_{P_n}(n) \leq t_{\text{ec}}(n) \) for any \(n \geq 1 \). In [12], Szekeres and Szekeres showed that \(t_{P_n}(n) \geq (n + 2)2^n - 1 \), so the same lower bound holds for \(t_{\text{ec}}(n) \). On the other hand, from Theorem 2.1 with \(p = 1/2 \), it follows that \(t_{\text{ec}}(n) = O(n^4 2^n) \). Using random tournaments we have that \(t_{\text{ec}}(n) = O(n^2 2^n) \). It follows that
\[
\lim_{n \to \infty} t_{\text{ec}}(n)^{1/n} = 2.
\]
However, the asymptotic order of \(t_{\text{ec}}(n) \) is not known. An open problem is to determine whether the limits
\[
\lim_{n \to \infty} \frac{t_{\text{ec}}(n)}{n^{2n}}, \quad \lim_{n \to \infty} \frac{t_{\text{ec}}(n)}{t_{P_n}(n)}
\]
exist, and if so to find their values.

Theorem 2.1 naturally extends to the infinite case. The connection set \(J \) is chosen with defining properties similar to the finite case, but \(J \subseteq \mathbb{Z} \setminus \{0\} \), and we work in ordinary, non-modular arithmetic. With probability 1, a random choice of \(J \) gives rise to a countably infinite circulant tournament \(G(J) \) which is \(n \)-e.c. for all \(n \geq 1 \) (that is, it is e.c.). There is a unique isotype, written \(T_\infty \), of countable tournament that is e.c. (see [5]). An analogous construction was given in [6] for circulant graphs, and was used in [13] to examine the cycle structure of the automorphisms of the infinite random graph. For an explicit construction of an e.c. \(G(J) \), consider all finite binary sequences under the lexicographic order (according to increasing length), and form an infinite binary sequence \(Z \) by concatenating all of these sequences. Hence,
\[
Z = 0100011011000001010\ldots.
\]
Let \(Y = \{y_i\}_{i=1}^{\infty} \) be an enumeration of the terms of \(Z \). Hence, \(y_1 = 0, y_2 = 1, y_3 = 0, y_4 = 0, \) and so on. Now, include \(i \in J \) if and only if \(y_i = 1 \) (otherwise, \(-i \in J\)). It is not hard to see that \(G(J) \) is e.c.

2.2. Switching and exponentially many examples. If \(T \) is a tournament and \(A \subseteq V(T) \), then the tournament \(T_A \) is formed by reversing the arcs between \(A \) and \(V(T) \setminus A \), and leaving all other arcs unaltered. We say that \(T_A \) is the tournament formed from \(T \) by switching on \(A \). If \(H \) is an induced subtournament of \(T \), then we will abuse notation and write \(T_H \) for \(T_{V(H)} \). Using switching, we develop a method for explicitly constructing exponentially many n-e.c. tournaments from our circulant examples.

An n-e.c. problem is a pair \((B, \sigma)\), where \(B \) is an ordered \(n \)-subset of vertices and \(\sigma \) is binary \(n \)-sequence; if \(B = (x_1, \ldots, x_n) \) and \(\sigma = (i_1 \ldots i_n) \), then a solution to \((B, \sigma)\) is a vertex \(z \) not in \(B \) so that there is a directed edge from \(z \) to \(x_j \) if and only if \(i_j = 1 \). If \((B, \sigma)\) is an n-e.c. problem, then the \((B, \sigma)\)-solution set is the set of all solutions to the n-e.c. problem \((B, \sigma)\). If \(B \) and \(\sigma \) are clear from context, then we will just say solution set.

For simplicity, if \(B \) is clear from context, we will identify \(\sigma \) with the \((B, \sigma)\)-solution set. For example, if \(B \) consists of 3 vertices \(x, y, \) and \(z \), then \((101)\) consists of \(N^-(x) \cap N^+(y) \cap N^-(z) \).

For a positive integer \(n \), we say that \(T \) is \(n \)-good if:

(i) \(T \) is odd order and regular,

(ii) For all n-e.c. problems \((B, \sigma)\), the solution set determined by \(B \) and \(\sigma \) has cardinality at least \(n + 1 \).

We note that an \(n \)-good tournament is n-e.c. A.a.s. random circulant tournaments are \(n \)-good. In particular, if \(m = \Omega(n^{4/2}) \), then with positive probability \(CT(m, 1/2) \) is \(n \)-good.

By [1, 2, 10], a Paley tournament with sufficiently many vertices is \(n \)-good.

Theorem 2.2. Let \(n \geq 2 \) be an integer, and let \(T \) be an \(n \)-good tournament. Then for all \(n \)-vertex induced subtournaments \(H \) of \(T \), we have that \(T_H \) is n-e.c.

Proof. Fix an \(n \)-subset \(A \) of \(V(T) \). Let \(0' = 1 \) and \(1' = 0 \). Consider the n-e.c. problem \((A, \sigma)\).

Write \(A = B \cup C \), where \(B = A \cap V(H) \) and \(C = A \setminus B \) (note that \(A \) or \(B \) may be empty). Let \(\sigma_B = (i_1 \ldots i_k) \) be the subsequence of \(\sigma \) that corresponds to the elements of \(B \), and let \(\sigma_C \) be the subsequence of \(\sigma \) that corresponds to the elements of \(C \). Define \(\sigma_B' = (i_1' \ldots i_{\ell_k}') \).

Consider the n-e.c. problem \((A = B \cup C, \sigma_B' \sigma_C)\) with a solution \(z \) in \(T \) chosen outside \(H \) (which is permissible since \(G \) is \(n \)-good (see property (ii))). Then \(z \) solves \((A, \sigma)\) in \(T_H \). \(\Box \)

If \(T \) is a tournament with \(n \) vertices and out-degrees \(d_1 \leq \ldots \leq d_n \), then the \(n \)-tuple \((d_1, \ldots, d_n)\) is called the out-degree sequence of \(T \). Note that two distinct length \(n \) out-degree sequences must correspond to non-isomorphic tournaments (but the converse may fail).

Let \(ods(n) \) be the number of distinct out-degree sequences of order \(n \). We now apply Theorem 2.2 to give many non-isomorphic examples of n-e.c. tournaments.

Theorem 2.3. Let \(n \geq 2 \) be any integer and let \(T \) be an \(n \)-good tournament. Then there are at least \(ods(n) \)-many non-isomorphic n-e.c. tournaments of order \(|V(T)|\).

Proof. Say that \(T \) has constant in-degree \(r \) (and so has constant out-degree \(r \)). Fix \(H \) an \(n \)-vertex tournament. Since an n-e.c. tournament is \((n+1)\)-universal (that is, includes an isomorphic copy of each tournament of order at most \(n+1 \) as an induced subournament), there is an isomorphic copy of \(H \) that is an induced subournament of \(T \). Let \(J = T_H \); by Theorem 2.2, \(J \) is n-e.c. and has order \(|V(T)|\).
Fix a vertex \(x \) in \(H \), and suppose that \(\deg^+_H(x) = k_x \geq 0 \) (so \(\deg^-_H(x) = n - 1 - k_x \)). Then \(x \) is joined to \((r - n + k_x + 1)\)-many vertices outside of \(H \) in \(J \). Therefore,

\[
\deg^+_J(x) = r - n + 2k_x + 1.
\]

Now consider all the \(2^n \) distinct solution sets \((i_1 \ldots i_n)\), where \(i \in \{0, 1\} \), in \(T \) determined by the \(n \) vertices of \(H \) (each of which is nonempty since \(T \) is \(n\)-e.c.). These solution sets partition \(V(T)\setminus V(H) \) into \(2^n \) sets. The out-degree of a vertex in \((1 \cdots 1)\) in \(J \) is \(r - n \); the out-degree of a vertex in \((01 \cdots 1)\) in \(J \) is \(r - n + 2 \); the out-degree of a vertex in \((0 \ldots 0)\) is \(r + n = r - n + 2n \). In general, the out-degrees of vertices \(y \) in \(V(T)\setminus V(H) \) in \(J \) are always one of the integers \(r - n + 2j \),

\[
r - n + 2j,
\]

where \(0 \leq j \leq n \).

For all \(x \in V(H), y \in V(T)\setminus V(H), \) we have that

\[
\deg^+_J(x) \neq \deg^+_J(y).
\]

This follows since by (2) \(\deg^+_J(x) \) is of the form \(r - n + m_1 \), where \(m_1 \) is odd, and by (3) \(\deg^+_J(y) \) is of the form \(r - n + m_2 \), where \(m_2 \) is even.

Suppose that \(H \) has out-degree sequence \(\alpha = (d_1, \ldots, d_n) \), with \(d_1 \leq \ldots \leq d_n \). If \(s \) is a sequence of positive integers, let \(\langle s \rangle \) be the sequence with the same elements but sorted in non-decreasing order. By the above discussion, \(T_H \) has out-degree sequence \(\langle (\hat{\alpha}, \sigma) \rangle \), where \(\hat{\alpha} = (r - n + 2d_1 + 1, \ldots, r - n + 2d_n + 1) \) is a subsequence consisting of out-degrees from vertices \(V(H) \) in \(T_H \), and \(\sigma \) is a subsequence containing the out-degrees \(r - n, r - n + 2, \ldots, r + n \) from the solution sets

\[
(1 \cdots 1), (01 \cdots 1), \ldots, (0 \cdots 0),
\]

respectively. Note that the elements of \(\sigma \) depend only on \(n \) and \(r \), and not on the degrees in \(H \). Furthermore, for any tournament \(H \), by previous discussion, none of the terms of \(\hat{\alpha} \) can equal a term in \(\sigma \). Suppose that \(H \) and \(H' \) have distinct out-degree sequences \(\alpha \) and \(\beta \), respectively. Therefore, by the above discussion, \(T_H \) and \(T_{H'} \) have distinct out-degree sequences \(\langle (\hat{\alpha}, \sigma) \rangle \) and \(\langle (\hat{\beta}, \sigma) \rangle \), respectively. Hence, \(T_H \not\cong T_{H'} \) and the result follows. \(\square \)

A straightforward inductive argument establishes that \(2^{n-1} \leq \text{ods}(n) \). Hence, we obtain the following corollary, which gives an exponential number of non-isomorphic \(n\)-e.c. tournaments. We emphasize that the corollary gives an explicit, non-randomized method for constructing new \(n\)-e.c. tournaments.

Corollary 2.4. If there is an \(n\)-good tournament of order \(r \), then there are at least \(2^{n-1} \) non-isomorphic \(n\)-e.c. tournaments of order \(r \).

3. The Unique Minimum Order 3-E.C. Tournament

By the results of [12] it follows that \(t_p(3) = 19 \), and so \(t_{ec}(3) \geq 19 \). We verified that \(T_{19} \) is 3-e.c., and so \(t_{ec}(3) = 19 \). In this section, we describe our computer search which demonstrated that this is the only isotype of 3-e.c. tournament with 19 vertices. We summarize our search results on small order 2- and 3-e.c. tournaments, respectively, in the following tables.
2-e.c. tournaments	3-e.c. tournaments
order | isotypes | order | isotypes
7 | 1 | 19 | 1
8 | 0 | 20 | 0
9 | 14 | 21 | 0
10 | 1083 | 22 | 0

The theoretical tools and methodology used in our computer search have some similarities to those used in [9], but some substantial adjustments were required.

Before we describe our computer search, we state some results on 3-e.c. tournaments which are of interest in their own right. We start with the following elementary necessary condition for a tournament to be n-e.c. The proof follows directly from the definitions, and so is omitted.

Lemma 3.1. Let \(n \geq m \geq 1 \). If \(G \) is n-e.c., then for all disjoint sets of vertices \(X \) and \(Y \) with \(|X \cup Y| = m \) (one of \(X \) or \(Y \) can be empty), a tournament induced by vertex set \(Z = Z(X,Y) \) defined as

\[
Z = \left(\bigcap_{x \in X} N^-(x) \right) \cap \left(\bigcap_{y \in Y} N^+(y) \right)
\]

is \((n-m)\)-e.c.

While a minimum order 2-e.c. tournament is isomorphic to \(T_7 \), there is no 2-e.c. tournament on 8 vertices (see [4]). By a computer search, there are 14 and 1083 isotypes of 2-e.c. tournaments on 9 and 10 vertices, respectively. The following theorem presents an interesting property of \(T_7 \) which eliminates this tournament as a possible subtournament induced by the neighbourhood (or non-neighbourhood) of any vertex in a 3-e.c. tournament.

Lemma 3.2. If \(S \subseteq \{0, 1, \ldots, 6\} = V(T_7) = V \), then either \(T_7[S] \) is not 1-e.c. or \(T_7[V \setminus S] \) is not.

Proof. For a contradiction, suppose that there is \(S \subseteq \{0, 1, \ldots, 6\} \) such that both \(T_7[S] \) and \(T_7[V \setminus S] \) are 1-e.c. Since \(t_{ec}(1) = 3 \), without loss of generality, we can assume that \(|S| = 3 \). Note that \(S \) induces a directed cycle, the only isotype of 1-e.c. tournament on 3 vertices. Let \(S = \{x, y, z\} \) and suppose that \((x, y), (y, z), (z, x) \in E(T_7)\); that is,

\[
\begin{align*}
x - y & \equiv 1, 2, 4 \pmod{7} \\
y - z & \equiv 1, 2, 4 \pmod{7} \\
z - x & \equiv 1, 2, 4 \pmod{7}.
\end{align*}
\]

Since

\[
(x - y) + (y - z) + (z - x) \equiv 0 \pmod{7},
\]

each value from \{1, 2, 4\} appears exactly once in (4)-(6). Without loss of generality, we can assume that \(x - y \equiv 1 \pmod{7} \). We consider two cases, and both give a contradiction. In the first case, \(y - z = 2 \). We then have that \(z - x = 4 \). Let \(v \in V \setminus S \) be a vertex for which \(x - v \equiv 6 \pmod{7} \). As \(N^+(v) = S \), there is no vertex in \(V \setminus S \) in the out-neighbourhood of \(v \). The tournament \(T_7[V \setminus S] \) is not 1-e.c., which is a contradiction.

In the remaining case, \(y - z = 4 \). Hence, \(z - x = 2 \). Let \(v \in V \setminus S \) be a vertex for which \(x - v \equiv 2 \pmod{7} \). Note that \(N^-(v) = S \) and we obtain a contradiction. \(\square \)
Theorem 3.3. If G is a tournament that is 3-e.c., and $v \in V(G)$, then $\deg^+(v) \geq 9$ and $\deg^-(v) \geq 9$. In particular, $t_{ec}(3) \geq 19$.

Proof. Since T_7 is the only isotype of 2-e.c. tournament on 7 vertices and there is no 2-e.c. tournament on 8 vertices, it is enough to prove that $N^+(v)$ is not isomorphic to T_7. (The condition for $N^-(v)$ can be shown the same way, or by using the fact that the dual of an n-e.c. tournament is n-e.c.) For a contradiction, suppose that $N^+(v)$ is isomorphic to T_7. Let u be any vertex in $N^-(v)$. It follows from Lemma 3.1 that both $A = N^+(v) \cap N^+(u)$ and $B = N^+(v) \cap N^-(u)$ induce a tournament that is 1-e.c. But A and B partition $N^+(v)$ which is not possible by Lemma 3.2. This gives a contradiction. \qed

We now give a high-level description of the computational approach that we used to determine that T_{19} is the only 3-e.c. tournament on 19 vertices. Suppose that G has 19 vertices and is 3-e.c.; each vertex has in- and out-degree 9 by Theorem 3.3. Fix a vertex v_0 and insert a 2-e.c. tournament on 9 vertices on vertex set $X = N^+(v_0)$ (one out of 14 possible ones). It remains to check that we get a tournament isomorphic to T_{19} when edges between X and $Y = N^-(v_0)$ and those within Y are distributed to satisfy the necessary condition stated in Lemma 3.1. In order to do this, we can take any vertex $v_1 \in X$ and assign to this vertex in-neighbours from Y so that both in- and out-neighbourhoods induce a 2-e.c. tournament. This assignment may be done in many different ways. Next, we can take any other vertex v_2 and try to assign in-neighbours to keep the required property. We take v_2 from the set of vertices that are not processed (in this case, not equalling v_0 nor v_1) for which the number of determined incident arcs is maximized; this helps to minimize the number of cases. We repeat this process to discover that there is no chance to create a 3-e.c. tournament different than T_{19}.

Two improvements are crucial. We improve the running time of the algorithm dramatically by checking (at each step) the necessary condition stated in Lemma 3.1. After vertex v_1 is processed, we check the condition with $m = 2$ for the two vertices that are processed at this point, that is, vertices v_0, v_1. All configurations that fail this test are removed. In the next steps, after satisfying a new vertex v_i, the additional test is checked for $m = 2$ and $m = 3$, and for all sets of processed vertices containing vertex v_i we deal with at the current round.

In order to remove unnecessary configurations we use McKay’s nauty software package [11] for computing automorphism groups of graphs and digraphs. We cannot use, however, the package directly since it does not support removing isomorphisms in digraphs. Moreover, we need to keep the information of which vertices are processed (note that this cannot be determined; having all in- and out- arcs determined is only a necessary condition for a vertex to be processed). To overcome this problem we introduce a bijection from our configuration to an undirected graph H on $3|V(G)| + 4$ vertices. Let

$$V(G) = \{v_1, v_2, \ldots, v_n\}$$

and let

$$V(H) = \{x_1, x_2, y, z\} \cup \{u_1, u_2, \ldots, u_n\} \cup \{s_1, s_2, \ldots, s_n\} \cup \{t_1, t_2, \ldots, t_n\}.$$

Now, we construct H as follows: $s_i t_j \in E(H)$ if and only if $(v_i, v_j) \in E(G)$ (this corresponds to the arcs of G), $s_i u_i \in E(H)$ and $u_i t_i \in E(H)$ for $i \in [n]$ (to match s_i's with t_i's), $x_1 x_2 \in E(H)$, $x_i s_j \in E(H)$ and $y t_j \in E(H)$ for $i = 1, 2$, $j \in [n]$ (to distinguish the input from the output). Note that x_1, x_2 are the only vertices of degree $n + 1$ in H, while y has
degree n. All other vertices have degree less than n. Finally, $u_z z \in E(H)$ if v_i is processed. An example of this transformation is depicted in Figure 2; vertex v_1 is processed. It is clear that we can reconstruct the graph G, together with the information of which vertices are processed, from H.

The digraph G

![The digraph G](image1)

The graph $H = H(G, \{v_1\})$

![The graph $H = H(G, \{v_1\})$](image2)

Figure 2. A transformation from G to H.

The operation of removing isomorphisms, together with checking the additional condition, can decrease the number of configurations by up to 90% in each round. The first operation works well during the first few rounds, whereas the second one works better later on.

The same approach can be used to show that there is no isotype of 3-e.c. tournament on 20, 21, or 22 vertices. In order to eliminate 21 and 22 we start by inserting a tournament on at most 10 vertices on $N^+(v_0)$ (one out of $1097 = 14 + 1083$ ones).

The bound (1) gives that $t_{P}(4) \geq 47$ and $t_{P}(5) \geq 111$. We verified that T_{67} is the first Paley tournament that has property P_4, and it is also 4-e.c. Hence,

$$47 \leq t_{ec}(4) \leq 67.$$

We checked that T_{359} is the first Paley tournament that is 5-e.c. which implies that

$$111 \leq t_{ec}(5) \leq 359.$$

We note that T_{331} is the first Paley tournament that has property P_5.

4. Acknowledgements

The authors acknowledge support from NSERC, MITACS, and Ryerson University. Our computational work was made in part possible by the facilities of

(i) the Shared Hierarchical Academic Research Computing Network SHARCNET, Ontario, Canada (www.sharcnet.ca): 8,082 CPUs, and

(ii) the Atlantic Computational Excellence Network ACEnet, Memorial University of Newfoundland, St. John’s, NL, Canada (www.ace-net.ca): 3,324 CPUs.

The programs used to obtain the results of Section 3 may be downloaded from [14].
References