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ADAPTIVE ORTHONORMAL BASES FOR VIDEO
COMPRESSION

ARIEL J. BERNAL1 AND SEBASTIAN E. FERRANDO2

Abstract. The paper describes the construction of a vector valued orthonor-
mal basis adapted to an input sequence of video frames. The construction
relies on an optimization step that singles out common discontinuities present
in the input vector. This is achieved by constructing a sequence of partitions
in the common domain of the input sequence. The resulting approximation is
a vector valued martingale that converges pointwise to the given images. Out-
put from a software implementation, based on standard test suites of video
sequences, is described.

1. INTRODUCTION

We introduce an algorithm for the simultaneous approximation of a given collection
of images defined on a common, arbitrary domain Ω. The set of input images is
collected into a single input vector. The algorithm is based on an optimized con-
struction of basis functions adapted to arbitrary geometrical discontinuities of this
input vector. The paper introduces the basic algorithm and concentrates in describ-
ing the application to video compression. Mathematical properties of the algorithm
for the scalar case are described in [1] and further mathematical developments for
the vector case will be described elsewhere.

The algorithm to be introduced will be called Vector Greedy Splitting Algorithm
(VGS for short), it constructs a tree which is associated to a sequence of partitions
of Ω. Elements of a partition of Ω will be called atoms. References [2], [3] and [4]
provide examples of adaptive trees for image compression. In general, the tree con-
struction is associated to a partition of the base domain which in turn is dependent
on a given single input image. It follows that it is critical to keep the storage cost
of the partition low as it adds to the total storage cost of the compressed image.
Therefore, algorithms which partition a given image domain, with the purpose of
compressing an image, need to impose strong geometrical constraints on the par-
tition atoms. In particular, [3] only allows atoms which are polyhedra, further
partitions of these atoms can only be done using line cuts.

As an alternative to the above described situation, the approach introduced in
this paper allows for arbitrary partitioning of a given image domain and, hence, we
deal with arbitrary atoms. In order to offset the relatively high cost of the resulting
adapted partition we consider the case where we have an input set of d images,
defined on a common domain Ω. This creates a trade-off as, on the one hand, the
relative cost of storing the partition diminishes when we increase d and, on the
other hand, the quality of the approximation degrades as d is increased.

The paper is organized as follows, Section 2 provides the basic definitions and
computational setup. Section 2.1 briefly describes the optimization that forms the
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core of the VGS construction. Section 3 describes formally the VGS algorithm
and it describes how it can be used to approximate the input vector. Section 4
describes how to do transform compression with the VGS algorithm. Sections 5
and 6 describe the data structures needed to bit-encode the VGS approximation.
Section 7 illustrates the performance of the algorithm in several standard data sets.
Section 8 summarizes the paper.

2. General Notation and Definitions

Given a set of inputs signals, we consider each such a set as a vector valued random
variable in a Hilbert space L2(Ω, Rd) associated to the probability space (Ω,A, P ).
A is a given σ-algebra. Elements from L2(Ω, Rd) are vector valued random variables
X : Ω → Rd, X(w) = (X1(w), . . . , Xd(w)), the components Xi will be the given
input signals. In order to avoid confusions with the use of subscripts, instead of
using Xi to describe the i-th scalar component of the vector X, we will use X[i].

The inner product in L2(Ω, Rd), for two vector valued random variables X and
Y , is given by

(2.1) [X,Y ] ≡
∫

Ω

〈X(w), Y (w)〉 dP (w),

where 〈 , 〉 is the Euclidean inner product in Rd, defined by,

(2.2) 〈X(w), Y (w)〉 =
d∑

i=1

X[i](w) Y [i](w).

Remark 1. We will write [ , ]1 (instead of simply [ , ]1) whenever we are dealing
with the case of d = 1.

Definition 1. A function ψA : Ω 7→ Rd is called a (vector valued) Haar function
on A if there exists A ∈ A and the following conditions are satisfied

(2.3) ψA(w) = a 1A0(w) + b 1A1(w) ∀w ∈ Ω,

where a, b ∈ Rd and

(2.4) A0, A1 ∈ A, A0 ∩A1 = ∅, A0 ∪A1 = A.

We also require

(2.5)
∫

Ω

ψA(w) dP (w) = 0,

∫

Ω

‖ψA(w)‖2 dP (w) = 1.

Whenever A is understood we will avoid the use of the subscript by writing ψ instead
of ψA. We denote with CA ⊂ L2 the space of all Haar functions on A.

2.1. Inner Product Maximization Using the Bathtub Theorem. The VGS
algorithm introduced in the next section relies en the maximization of the inner
products [X, ψ]. The goal of this section is to setup for computation the quantity
[X,ψ] for the case when ψ ∈ CA. To this end we introduce the following notation
u0 = P (A0), u1 = P (A1). Using (2.5) it follows that

(2.6) a =
−b u1

u0
, ‖b‖ =

√
u0

P (A) u1
.
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For a given set of input signals X and a given A ∈ A we would like to compute
sup

ψ∈CA

[X,ψ]. Replacing the definition of ψ in equation (2.3) we obtain

[X, ψ] = ‖b‖ P (A)(
1

P (A)

∫

A

〈X(w), b′〉 dP (w)−

(2.7)
1
u0

∫

B0

〈X(w), b′〉 dP (w)) where b′ =
b

‖b‖ .

Therefore, b′ ∈ Sd, Sd the d-dimensional sphere,is an independent variable. We
can interpret b′ as the weight of all input components and 〈X(w), b′〉 the weighted
average signal.

Equations (2.7) and (2.6) imply that the inner product depends on the quantities
b′, u0 and A0; notice that u0 ∈ (0, P (A)). It follows that the supremum depends
only on the same list of variables and can be written as iterated suprema as follows

(2.8) sup
ψ∈CA

[X,ψ] = sup
b′

sup
u0

sup
A0∈A,P (A0)=u0

[X, ψ].

It can be proven that we can simplify (2.8) to the following computation

(2.9) sup
ψ∈CA

[X, ψ] = sup
b′

[
sup
y0

[X, ψ̂]
]

,

where y0 is an independent variable belonging to
Range(〈X, b′〉) and ψ̂(b′, y0) = a1Â0

+ b1Â1

(2.10) ψ̂(b′, y0) = a1{〈X(w),b′〉<y0} + b1{〈X(w),b′〉≥y0},

a and b are functions of b′ and u0 given by (2.6).
It can be seen that the suprema in the right hand side of (2.9) is realized for some

b̂′ ∈ Sd and a range value ŷ0 (and corresponding optimal values of a and b) under the
sole asumption that X ∈ L2(Ω, Rd). We will use the notation ψ(0) ≡ ψ̂(b̂′, ŷ0) ∈ CA.
Therefore [X, ψ

(0)
A ] = supψ∈CA

[X,ψ]. Given the above, we will say that A splits into
Â0 and Â1, this splitting is used in the next section to define the VGS algorithm.

Remark 2. For simplicity, we will drop the notationˆused to denote the optimal
values of b′, y0 and A0.

3. Formal Description of the VGS Algorithm

The VGS algorithm, builds a sequence of partitions Πn on Ω indexed by n = 1, 2, ...;
this index will be referred as the n-th iteration of the VGS algorithm. The partitions
are defined recursively:

• Let Π0 = {Ω, ∅}.
• Given Πn, Πn+1 is generated as follows: Consider A∗ ∈ Πn such that it

satisfies

(3.1) |[X, ψ
(0)
A∗ ]| ≥ |[X, ψ

(0)
A ]| for all A ∈ Πn.

Now, if [X, ψ
(0)
A∗ ] = 0, the algorithm VGS terminates and Πp ≡ Πn for all

p ≥ n. Otherwise, i.e. [X, ψA∗ ] 6= 0, we set Πn+1 = Πn\{A∗}
⋃1

i=0{A∗i }.
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The algorithm builds a tree T where its nodes are atoms from the partitions Πn.
The formal definition is given by: Tn ≡

⋃n
i=0 Πi, T ≡ T∞. The parent-children

relationship is given by the split relationship mentioned above.
It will be important to introduce scalar valued Haar functions. If ψA = ψ =

a1A0 + b1A1 is a vector valued VGS function, we will use the following notation for
the associated scalar function ψA,s = ψs = d01A0 + d11A1 , di ∈ R, we also require∫
Ω

ψs(w) dP (w) = 0 and
∫
Ω

ψ2
s(w) dP (w) = 1. This allows us to write the scalar

basis function as follows

ψs = |d1| u1 d′1

(
1A1

u1
− 1A0

u0

)
, d′1 ≡ d1/|d1| ∈ {−1, 1}.

Notice |d1| = ||b||, so:

(3.2) ψ(0)
s = ||b|| u1 d′1

(
1A1

u1
− 1A0

u0

)
.

In short, ψ(0) specifies ψ
(0)
s uniquely. Conditional on given sets A0, A1 (and hence

the value u0 is fixed) one can find the best b̂′ as the vector in Sd that maximizes
(2.7). A simple computation gives:

(3.3) ĉ ≡ 1
u1

∫

A0

X(w) dP (w)− 1
u0

∫

A0

X(w) dP (w),

then, b̂′ ≡ ĉ
||ĉ|| . Using this expression for b̂′ in ψ(0)(b̂′, ŷ0) we can prove the following

result: given any finite index set I ⊆ N we have the fundamental identity

(3.4)
∑

k∈I

[X, µk]µk[i] =
∑

k∈I

[X[i], uk]1 uk for all i = 1, . . . , d.

Given a tree Tn with n ≥ 0, the associated VGS approximation is defined by:
XTn ≡

∑
A∈Tn

[X, ψ
(0)
A ] ψ

(0)
A . Using (3.4) it can be shown that for any n ≥ 0 and

w ∈ A:

(3.5) XTn(w) =
1

P (A)

∫

A

X(w)dP (w), for all A ∈ Πn.

Therefore the sequence XTn is a martingale with respect to the sigma algebra
Fn ≡ σ(Πn). Moreover, it can be seen that

(3.6) lim
n→∞

XTn(w) = X(w) for almost all w ∈ Ω.

In fact if X takes only a finite number of distinct values the above limit will actually
be finite, namely, there exists N such that XTN (w) = X(w) for almost all w ∈ Ω.

The previously introduced functions can be collected in an increasing sequence
of orthonormal systems Hn, for n ≥ 0, corresponding to the n-th. iteration of
the VGS algorithm, as follows: H0 ≡ {µ0 ≡ ψ∅} also, assume, recursively that
Hn = {µ0, . . . , µkn} has been constructed. We then let, Hn+1 ≡ Hn

⋃{ψ(0)
A∗} where

A∗ is the set in (3.1), also set µkn+1 ≡ ψ
(0)
A∗ . We also set H ≡ ⋃

n≥0Hn.
At this point we have completed the description of an orthonormal system H =

{µk}. Elements from H are vector valued VGS functions of the type ψ
(0)
A . The

construction of scalar functions described above provides an scalar function ψ
(0)
A,s

associated to each function ψ
(0)
A . Clearly, this defines an orthonormal system of

scalar valued Haar functions, we will denote this system G = {uk}. It follows from
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(3.2) that there is a natural association between elements from H and elements
from G and we will assume uk is the element in G naturally associated with µk.

4. Transform Compression: Scalar and Vector Approximations

In practice, and as a first step, we will run the VGS algorithm on an input vector
in order to obtain a “full” tree TN so that ||X − XTN

|| ≈ 0. The second step
is to perform a transform compression, this involves pruning the tree nodes until
some stopping criteria is reached. To perform this task several different approaches
could be used. We consider two such approaches next. These two different points
of view will be called the Vector approximation and the Scalar approximation, they
are explained in more detail below. The relation (3.4) is a basic result and shows
that one could use the vector valued orthonormal system H to approximate X or
one could use the scalar valued orthonormal system G to approximate each X[i],
i = 1, . . . , d. The two systems, H and G, are not equivalent (for compression
purposes) when one considers the optimized expansions as we explain next.

Let h : N → N be a re-ordering function for H in such a way that |[X,µh(0)]| ≥
|[X, µh(1)]| ≥ . . . . We then have the n-term VGS optimized approximation defined
by

(4.1) Xn ≡
n−1∑

k=0

[X, µh(k)] µh(k).

In practice, the integer n is chosen to satisfy some error criteria, say an vector error
level εv is given so we can find n = n(εv) so that ||X −Xn|| ≤ εv.

One can define the same notions for the orthonormal system G, let gi : N → N
one such re-ordering function for each i = 1, . . . , d, so that |[X[i], ugi(0)]1| ≥
|[X[i], ugi(1)]1| ≥ . . . . We then define the n-term VGS optimized approximation by

(4.2) X[i]n =
n−1∑

k=0

[X[i], uh(k)]1 uh(k).

Given an scalar error level εs we can find integers ni such that ||X[i] −X[i]ni || ≤
εs for all i = 1, . . . , d. Therefore, there are two possible optimized approximations,
the optimized VGS approximation given by (4.1) (which we call the vector approx-
imation) and the d optimized scalar VGS approximations given by (4.2) (which we
call the scalar approximations). They are obtained by pruning the tree and keeping
only the active nodes, these are the tree nodes associated to the inner products
appearing in the optimized approximations. In either case, the pruning will give
rise to two different set of active nodes. Notice that in the scalar case, given an
scalar error level εs, each component X[i] requires ni = ni(εs) nodes. Of course,
many of these nodes are common to several signals. The final collection of active
nodes for the scalar case can be quite different than for the vector case. Once the
pruning has been completed, we need to store the relevant information associated
to each node. Depending if we are performing a scalar or a vector approximation
we will need to store different data types so that the reconstruction (by the de-
coder) of the approximation can be performed. In the vector case one needs to
store the following information at the active nodes: numbers of the form [X,ψ

(0)
A ]

and a corresponding vector b′A. In the scalar case one needs to store some (or all)
of the following numbers: [X[i], ψ(0)

A,s]1, i = 1, . . . , d.
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There also exists another related approximation used in this work, it is called
leaves average approximation, this approach uses the information on the tree leaves
after the tree has been pruned and it is described later.

5. Data Structures and Bit Counting

The decoder to the VGS approximations will use the following three data struc-
tures: partition map, significance map and quantization map. Roughly speaking,
the partition map encodes the partition associated to the tree after it has been
pruned; the significance map relates the VGS functions associated to active nodes
with the corresponding partition atoms and stores the children-parent information
associated to active nodes. The quantization map stores the quantized information
required for reconstruction at active nodes. When reporting numerical results we
will actually indicate with a single quantity the cost of the significance map plus the
cost of the quantization map. Moreover, whenever reporting bit costs for encoding
the partition map we will use two different methods: theoretical estimated costs
(by means of entropy encoding) and the cost resulting from Lempel-Ziv lossless
encoding.

5.1. Partition Map (MΠ). Definition: Consider n ≡ |Π(Ω)|, where Π(Ω) is a
finite partition of Ω , a function MΠ : Ω → N is called a Partition Map if for each
Ak ∈ Π(Ω), k = 1, . . . , n it satisfies:

(5.1) MΠ(w) = vk ∀ w ∈ Ak, if k 6= j ⇒ vk 6= vj .

We describe how the Partition Map is created by means of an example. Figure
1 displays a full tree obtained after three iterations, the partition associated to the
full tree is shown in Figure 2 a). Assuming the nodes {1, 3, 6} are the only active

Figure 1. Full tree with active nodes marked.

nodes, the resulting partition is shown in Figure 2 b). Notice that node 2 is not
active and hence the atom associated to node 1 is not further split in this case
(unless a descendant of node 2 were actually active.)

Remark 3. The partition map shares the same domain as the input images, and
the maximum number of atoms is equal to the number of pixels. In general, an
upper boundnumber of bits to store the partition map is log2 |Ω|.

The entropy encoding is straightforward, the symbols are the integer values
assigned to atoms in Π(Ω). The associated entropy is denoted by HMΠ and if
Ns ≡ |Ω| then the theoretical cost associated to MΠ is CMΠ = HMΠ ×Ns.
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Figure 2. a) Partition using the full tree, b) Partition using the
compressed tree.

5.2. Significance Map (MS). The tree structure required to reconstruct the in-
put vector is encoded by the data structure which we will call the Significance Map
(MS). It contains the information on the number of children and depending on the
method selected also contains the vector inner product, the scalar inner products
or the average values.

The scalar and vector approximations need a tree for the reconstruction. The
significance map stores the tree information and each node contains the information
associated to the approximation on each atom: inner products, b′, etc. Notice that
the significance map also needs to include links from nodes to the partition encoded
by the partition map. This is a main difference with other methods that make use
of trees to encode inner products. Our case has this added complexity due to the
fact that the encoder should encode the inner products and the links to the atoms
at the same time.

Figure 3. Compressed tree.

As we can see in Figure 3, if a node is active we do not require the ancestors to
be included. Most approaches at this point [3], [4] , assume that, under suitable
conditions, a significant node does not have any significant children nodes. The
zero-trees proposed in [2] make use of this property. The problem to include a node
and not its ancestors can be solved without including much more extra information
or introducing any extra computational cost. The resulting algorithm is rather
complex though and we will describe it only by means of an example.

We use three different types of symbols to encode the tree, the symbols are used
to create a string of symbols. This string will be called the significant string and
denoted with S. The symbols are: Q : Active node, V : Link to the partition and
D : Dummy node.

We start visiting tree nodes using a preorder traversal method. Recall that
Node 2 is not active and its right branch can not be completed then we labeled this
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node with a V. Node 3 has both left and right branches completed then we labeled
this node with a symbol D. The algorithm continues until the following string is
constructed S = {Q2, V 2, Q2, V, Q2, V, Q2V V,Q2V V,D2,
Q2V V, Q2, Q2V V, Q2V V }. Figure 4 shows the decoded tree that is equivalent, for
the purpose of reconstruction, to the original tree. The number of symbols proposed

Figure 4. Equivalent decoded tree.

is three, but if we associate the number of children to the symbol we may check
that the sequence of symbols “{Q2, V, V }” has a high probability and then we could
introduce another new symbol called Q2V V , this is the analogous of the zero tree
symbol introduced in [2].

Definition 2. A function MS : S → Z is called a Significance Map. For a
given k ∈ Z define: Sk = {s ∈ S : MS(s) = k }. Also define the symbol set by:
JS = {Sk ⊂ S : Sk 6= ∅}.

Using entropy encoding we find that

(5.2) HMS = −
∑

Sk∈JS
pk log2 pk where pk =

|Sk|
|S|

The theoretical cost associated to the significance map is given by CMS
= HMS

×
|S|. The cost associated to the significance map is, relatively speaking, the lowest
cost when compared with cost to encode the partition map or the quantization
map.

5.3. Quantization Map (MQ). In order to use entropy encoding we need to make
use of a quantization method. The two techniques can be combined and performed
simultaneously as in the case of the arithmetic coding, see [2], [5].
Quantization and Entropy Encoding: Let us use λk to denote, for the moment,
the values of inner products (scalar or vector) and let P to denote a queue containing
the active inner products. We have verified that the best quantization technique
for our algorithm is the uniform quantization defined as follows V(λk) =

⌊
λk

c

⌋ ×
c and c > 0. We also set Q ≡ {V(λi) : λi ∈ P}, we can then define the quantization
map as follows.

Definition 3. A function MQ : Q → Z is called a Quantization Map. Also, define
the set of al values from Q which equal k, namely: Qk = {q ∈ Q : MQ(q) =
k and k ∈ Z} and then the symbol set is given by JQ = {Qk ⊂ Q : Qk 6= ∅}.
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This allows us to compute the entropy encoding HMQ to find the average bit
per symbol.

(5.3) HMQ
= −

∑

Qk∈JQ

pk log2 pk where pk =
|Qk|
Q

i.e. pk is the relative frequency of each symbol in JQ. Then the theoretical total
cost associated with the quantization map can be computed as follows: CMQ

=
HMQ

×Q.
As an example, let λk = [X[i], ψA,s]1 denote the largest inner products kept after

pruning a full tree by means of the scalar approximation. Figure 5 shows the values
of λk sorted by |λk| (values taken from a video sequence).

Figure 5. Scalar inner products distribution.

6. Encoding for Scalar, Vector and Leaves Averages Approximations

This section describes three possible approximations resulting from the VGS
algorithm.
Scalar approximation: Here we describe the bit cost associated with the scalar
approximation for the Haar case. The information needed for the reconstruction in
this special case is: the scalar inner products [X, ψs]1, the partition and the tree.
A node is considered active if at least one scalar product λi is required at the node.
Indices information: The indexing information can be encoded using three differ-
ent approaches. The first approach uses d (number of input signals) bits to encode
whether an inner product is included or not. The second approach uses an index
header for each inner product included and the third approach uses a special null
character to identify when a scalar inner product is not included. Figure 6 shows

Figure 6. a) Binary encode, b) Indexing encode, c) Special character.

examples of these three approaches for a given sequence of scalar inner products
{λ1, λ2, λ3, λ4, λ5} where only {λ2, λ4} are needed. Then for a given node n the
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associated cost of each model is calculated as follows: a) CIn = d + k HMQ , b)
CIn

= k log2 d + k HMQ
, c) Consider that the special null character has HMQ

bits then CIn
= d HMQ

. Where d is, as usual, the number of inputs, HMQ
is the

average bits per scalar inner product, and k is the number of inner products being
used at node n. It is possible to evaluate a priori which method is the best for each
node and then add two bits to the header of the node so the decoder can use the
correct method. Then the total indexing cost is CI =

∑
n CIn

. In most cases CI is
small in relative terms. The total cost CT is then given by CT = CMΠ +CMS

+CI .
Where CMΠ is the cost associated with the partition, CMS

is the cost associated
with the tree, and CI is the indexing cost. The cost associated with the quantized
coefficients CMQ

(see section 5.3), is included in CI .
Vector Approximation: At a given active node A, the vector approximation
needs to store [ψ(0)

A , X] and b̂′A given by (3.3). This last vector can be encoded effi-
ciently as we describe below. Notice that 1

P (Ak)

∫
Ak

X[i](w) dP (w) = EAk
(X[i]),

which is the expected value of X[i] relative to the atom Ak, k = 0, 1. Therefore,
the value of the best b̂′[i] is given by the normalized difference of two expected
values EA1(X[i])−EA0(X[i]). In order to store the values of the best b̂′[i], we only
need to store the result of such difference because the normalization can be done a
posteriori. Now let us define

∆[i] = EA1(Xi)−EA0(Xi) and b̂′[i] = ∆[i]/||∆||.
Quantization Map for the Vector Haar Approximation: The quantization
technique used for this special case is just the integer part of the difference of
the expected values defined before, V(∆[i]) = b∆[i] + 0.5c Figure 7 shows and
example of the relative frequency of the quantized differences ∆[i], a set of 9 images
with a PSNR= 40, was used as the input vector. As we have done previously, if

Figure 7. Relative frequency of the quantized difference of the
expected values.

HMQ
denotes the average number of bits per symbol, then the theoretical total

cost associated with the quantization map can be computed as follows CMQ
=

HMQ × |Q|, where Q was defined above in Section 5.3. The total cost CT for this
case is given by CT = CMΠ +CMS +CMQ , where CMΠ is the cost associated with
the partition, CMS is the cost associated with the tree, CMQ is the cost associated
with the quantized coefficients.
Leaves Average Approximation: Given a finite partition Π, resulting from an
application of the VGS algorithm, we compute the integer part of the average of
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each input image over each atom Aj ∈ Π, λij =⌊
1
|Aj |

∑
w∈Aj

X[i](w)
⌋

. Define: Λ ≡ {λij for all i = 1, . . . , d and j = 1, . . . , n},
where n = |Π| and d is the number of input images, then |Λ| = n× d.

The leaves average approximation approximation XΠ is then defined by: XΠ(w) =
(λ1j , λ2j , . . . , λdj) ∀ w ∈ Aj . Therefore, if CΛ is the cost associated to encoding the
set of integers Λ, the total cost associated to this approximation as the cost asso-
ciated to the partition, plus the cost CΛ associated to encode Λ.

7. Video Compression Results

This section illustrates the VGS algorithm applied to standard video sequences
considered in the literature; more information about the video sequences used can
be obtained from [6]. Table 1 indicates the videos considered in this paper.

Table 1. Video sequences used in the paper.

Sequence Format Frames Resolution
Akiyo QCIF 300 176× 144
Foreman QCIF 300 176× 144
Flowers and Garden CIF 250 352× 288
Foreman CIF 300 352× 288

We present results for the following two methods: scalar approximation and average
leaves, these methods will be denoted Haar VGS (HVGS) and Average VGS (AVGS)
respectively. The AVGS method is considered with or without lossless compression.
In general, we only provide results in order to illustrate several characteristics of the
VGS algorithm and only briefly comment on how it compares to other approaches.
Comparisons with MPEG can be found in [7]. Figure 8 displays a comparison
between the cost of the PM (Partition Map) and the QM (Quantization Map) plus
the SM (Significance Map) for the Foreman video. The method used is HVGS; the
graph corresponds to a specific average distortion.

Figure 8. Foreman QCIF Avg.PSNR=45db - bits vs. d.
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Figure 9 displays a rate-distortion graph for the video Flowers and Garden using
HVGS .

Figure 9. HVGS Flowers & Garden Rate-distortion graph.

Figures 10-12 illustrate several aspects of our methods applied to Akiyo. Figure
10 plots the bit rate as a function of increasing values of d for a given target average
PSNR of 35 db; both methods, HVGS and AVGS are shown in the same graph.
Figure 11 displays the total number of bits averaged over the numbers of frames as
the VGS algorithm iterates over the video frames. The value of d = 10 was used
and the bit rate was 317.04 Kbps.

Figure 10. Akiyo Rate vs. d - Avg. PSNR=35db

Figure 11. Akiyo Avg.PSNR=35db d=10 bit-rate=317.04Kbps
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Figure 12. Akiyo Avg.PSNR=35db d=20 bit-rate=186.51Kbps.

Figure 11 illustrates how the number of bits oscillate, as a function of the frames,
for a given bit rate target. Figure 12 displays similar information to the previous
figure but with d = 20 (instead of d = 10 as before). The performance results
described so far for the VGS algorithm are not competitive with state of the art
video compression algorithms that make use of motion compensation and inter-
frame prediction. It should be emphasized that we have implemented a rather
naive version of the possibilities offered by VGS, in particular, there exists the
possibility to perform more thorough optimizations leading to ternary trees ([7]).
Notice also that we have used the same value of d for the whole video sequence,
choosing dynamic values for d will also make the VGS more competitive. In order
to enhance the performance of VGS we describe next several numerical experiments
in which we partition the frames in tiles. For simplicity, we constraint the tiles to be
fixed for the whole video sequence. Moreover, the tiles are of same size and shape
(rectangular). Figure 13 shows a comparison between the bit-rate vs. d for the
Foreman video sequence, with a target of 28db and using 3×3 tiles. The same figure
also presents the comparison between the AVGS method with and without applying
the Lempel Ziv algorithm to the stored data (this method is labeled AVGS-LZIV).

Figure 13. Foreman CIF Avg.PSNR=28db bit-rate vs. d Tiling=3x3.

Again, for the Foreman video sequence, Table 2 shows the bit-rate values (in
Kbs/sec.) for a given target of 28db and different values of d and numbers of tiles.
Values for both algorithms, AVGS and AVGS-LZIV, are displayed.
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Table 2. Foreman CIF, bit-rate (kbits/sec.) values for different
values of d for AVGS-LZIV and AVGS algorithms. Target PSNR
= 28 db.

d Tiles AVGS-LZIV AVGS
8 3x3 1279.20 7607.84
9 1× 1 1452.30 6852.08

1× 3 1329.92 6917.11
2× 3 1453.30 6956.36
3× 1 1353.50 6931.84
3× 3 1341.51 6983.98
4× 4 1271.36 7049.05
6× 6 1427.99 6918.42

12 3x3 3028.24 6443.83

Table 3, for the video sequence Flowers and Garden, shows a bit-rate comparison
between AVGS and AVGS-LZIV using different number of tiles for a fixed distortion
target of PSNR = 27db .

Table 3. Flowers CIF, bit-rate (kbits/sec.) values for AVGS-
LZIV and AVGS algorithms, PSNR = 27db

Tiles AVGS-LZIV AVGS
1× 1 5005.67 7093.59
2× 2 5824.99 8721.78
4× 4 6285.36 9390.17
6× 6 6592.69 9753.52
1× 3 6596.06 9172.63

Table 4. Akiyo QCIF, bit-rate (kbits/sec.) Tiles from 1 × 1 to
4× 4, PSNR=35db

1 2 3 4
1 108.8 76.3 106.2 99.0
2 76.1 81.2 107.3 100.7
3 87.0 94.6 124.7 122.1
4 87.3 96.6 123.7 129.9

Table 4, for the video sequence Akiyo, shows the bit-rate for different number of
tiles using AVGS-LZIV for a fixed distortion target of PSNR = 35db.
In order to provide support to the idea that different tiles require an specific value
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for d, we describe the variation of the bit-rate across different tiles for the video
Flowers and Garden. In the first case, CIF, AVGS, d=9, tiles=4× 4 and distortion
PSNR=28db, the average bit-rate per tile (the average cost of a tile in one frame,
because it is the same for the d images) is shown in Figure 14. It is possible to
see the variation of the cost within each consecutive group of 16 tiles that conform
each frame.

Figure 14. Bit-rate per tile - Flowers CIF Avg.PSNR = 28db,
d = 9, 4× 4 tiles. Average = 13934 Std.dev. = 13617

Finally, Figure 15 shows the original Akiyo video sequence in QCIF format 176×
144 and Figure 16 shows a detail of one frame and its reconstruction using AVGS
with a distortion target of PSNR = 38db and d = 9.

Figure 15. Video Sample Akiyo QCIF

Figure 16. Akiyo reconstruction detail using AVGS - PSNR =
38db - d = 9. Left: original, right: reconstruction.
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8. Conclusions

We have described the construction of an adapted orthonormal basis, the con-
struction provides a simultaneous approximation to a given collection of video
frames. The adaptivity allows fast decay of the inner products between the given
images and the basis elements. There is the extra cost of storing the basis elements;
this cost is ameliorated by imposing a tree structure to the construction. Numerical
results illustrate the trade off between speed of convergence and the storage costs.
We also provide results indicating the performance of the proposed algorithm on a
set of standard video sequences. Competitive performance can be obtained at the
expense of introducing more sophistication in the proposed technique, in particular
we show how the results are improved by introducing tiles and lossless compression
of the data structures.
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