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Abstract

The Sudoku number s(G) of graph G with chromatic number χ(G) is the smallest partial
χ(G)-colouring of G that determines a unique χ(G)-colouring of the entire graph. We show
that the Sudoku number of the random 3-regular graph Gn,3 satisfies s(Gn,3) ≤ (1 + o(1))n

3
asymptotically almost surely. We prove this by analyzing an algorithm which 3-colours Gn,3 in a
way that produces many locally forced vertices, i.e., vertices which see two distinct colours among
their neighbours. The intricacies of the algorithm present some challenges for the analysis, and
to overcome these we use a non-standard application of Wormald’s differential equations method
that incorporates tools from finite Markov chains.

1. Introduction

1.1. Background. The Sudoku number s(G) of a graph G = (V,E) with chromatic number
χ(G) is the smallest possible size of a subset S ⊆ V with the following property: there is some partial
χ(G)-colouring of the induced subgraph G[S] that has a unique extension to a χ(G)-colouring of all
of G. We call any set with this property a Sudoku set for G. While our terminology follows that of
the recent work [14], Sudoku sets have previously appeared in the literature as defining sets ([17]–
[21]) and determining sets ([4, 6]). (Generally, critical set has been used to refer to a minimal
Sudoku set.) The parameter s(G) was also called the forcing chromatic number in [11]. Determining
s(G) is a generalization of the analogous problem for Latin squares—namely, identifying a smallest
set of entries that uniquely determines a full Latin square—which dates to [24].

The study of Sudoku sets is motivated by problems in combinatorics, optimization, and infor-
mation theory, where identifying minimal structures that uniquely determine global properties is
of significant interest. For instance, in [12] Hatami and Qian relate Sudoku sets in Latin Squares
to the concepts of teaching dimension and VC dimension, which have important applications in
machine learning. More popularly, in [22] it was established (with computer assistance) that “there
is no 16-clue Sudoku,” confirming a conjecture that 17 clues are needed to determine a Sudoku
puzzle with a unique solution. (The name Sudoku number is, of course, inspired by this problem.)

Most previous work on the Sudoku number has focused primarily on proving bounds on s(G) for
specific families of graphs. We review some results which are relevant for our purposes, beginning
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with some lower bounds. In [19], it is shown that for any graph G,

s(G) ≥ |V (G)| − |E(G)|
χ(G) − 1

. (1)

[18] studies the Sudoku number for d-regular graphs with chromatic number d, in which case

s(G) ≥
⌈

d− 2

2(d− 1)
|V (G)| +

2 + (d− 2)(d− 3)

2(d− 1)

⌉
. (2)

(We remark that (2) gives a lower bound of
⌈
|V (G)|

4 + 1
2

⌉
when d = 3.)

For d-regular graphs G with d ≥ 4 and χ(G) = 3, it is also shown in [18] that s(G) ≥ 2.
Further, [20] proves that for any d ≥ 3 and any at least 2(d − 1)-regular graph G with χ(G) = d
and |V (G)| ≥ 3d it holds that s(G) ≥ d−1. All of these lower bounds are sharp with the exception
of (2), where sharpness requires d ∈ {3, 4, 5}. Upper bounds on s(G) are harder to come by. It
is known (see for instance [4, Theorem 2.1]) that s(G) ≤ n − 1 for any connected graph G on
n vertices, with equality if and only if G = Kn. However, beyond this, the literature contains
relatively little on general upper bounds for s(G), notwithstanding some results on specific graph
families in, e.g., [4], [6], and [14].

Notably, the Sudoku number of random graphs has not been studied yet. The random d-regular
graph Gn,d provides a natural model for studying this problem, as the chromatic number χ(Gn,d) is
known to concentrate on a single (explicit) value asymptotically almost surely, or a.a.s., for many
fixed values of d as n → ∞ [15]. (See Subsection 1.2 for a formal definition of the probability space
and more on asymptotic notation.) In this paper, we focus our attention on bounding the Sudoku
number of the random cubic graph Gn,3, which is known to have chromatic number 3 a.a.s. Our
main result is the following.

Theorem 1.1. A.a.s., s(Gn,3) ≤ (1 + o(1))n3 .

To prove Theorem 1.1 we design an algorithm Sudoku which, a.a.s., properly 3-colours Gn,3

and simultaneously constructs a corresponding Sudoku set of size at most (1 + o(1))n3 . (In fact this
is not quite true—our algorithm colours a random graph that is contiguous with Gn,3 which allows
us to exploit more structure; see Subsection 1.2.) Most of the paper is devoted to analyzing this
algorithm, a task to which we apply the differential equations method of Wormald [28].

Despite some effort, we were unable to improve the deterministic lower bound s(Gn,3) ≥ ⌈n/4 +
1/2⌉ implied by (2). Perhaps surprisingly, some existing results, supported by simulations, seem to
suggest that this lower bound may be correct, and we conjecture as much below.

Conjecture 1.2. A.a.s., s(Gn,3) = (1 + o(1))n4 .

We cite two previous results which lend support to Conjecture 1.2. The first, from [18], requires
an additional definition: a Sudoku set S is strong if there exists an ordering v1, v2, . . . , v|V (G)|−|S| of
|V \S| such that for each i ∈ {1, . . . , |V (G)|− |S|}, vertex vi has neighbours of all but one colour in
S ∪{v1, . . . , vi−1}. Strong Sudoku sets thus force colours as locally as possible: if we colour vertices
in V (G) \S sequentially in the order v1, v2, . . . , v|V (G)|−|S|, then at each step i the colour on vertex
vi is forced. The following theorem explains the relevance of strong Sudoku sets to our problem.

Theorem 1.3 ([18, Lemma 1]). If G is d-regular and χ(G) = d, then every Sudoku set for G is
strong.
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Note that if S is a strong Sudoku set for a d-regular graph with χ(G) = d, then G \ S induces
a forest. Indeed, if there were a cycle in G \S containing some vertex vi, then vi has at most d− 2
neighbours in S ∪ {v1, . . . , vi−1}, meaning S is not strong. In particular, any Sudoku set in this
case is a decycling set, i.e., a set of vertices whose removal from G destroys all cycles. Theorem 1.3
suggests decycling sets make good candidates for Sudoku sets.

Decycling sets for Gn,d have been previously studied by Bau, Wormald, and Zhao, who show in
particular the following for Gn,3:

Theorem 1.4 ([1, Theorem 1.1]). A.a.s., Gn,3 has a decycling set of size
⌈
n
4 + 1

2

⌉
, which is smallest

possible for a cubic graph on n vertices.

The proof of Theorem 1.4 provides a polynomial-time algorithm which, a.a.s., finds a smallest
decycling set in a random graph obtained by taking the union of a Hamilton cycle and a random
perfect matching on n vertices. (This random graph model is contiguous with the random 3-regular
graph—see Subsection 1.2 for formal definitions.) This allowed us to run simulations. We conducted
an experiment in which we independently generated many random 3-regular graphs on 60 vertices,
built from a Hamilton cycle and random matching as above. For roughly half of them, we were
able to find a colouring of the decycling set that implied a unique extension to the whole graph. If
none was found, it was almost always possible to extend the closest candidate to a Sudoku set by
adding a single vertex to it. Figure 1 illustrates this with an example of a 3-regular graph on 70
vertices, where the Sudoku set has size 18, the smallest possible value. These observations inspired
us to make Conjecture 1.2.

Figure 1: The left graph illustrates a Sudoku set of a random 3-regular graph with 70 vertices,
generated using a Hamilton cycle and a random perfect matching. The Sudoku set shown is of
minimum size for this graph. The right graph shows the proper colouring of the whole graph
determined by the Sudoku set.

1.2. On models and contiguity. Our results are asymptotic by nature, that is, we will assume
that n → ∞. We say that an event holds asymptotically almost surely (a.a.s.) if it holds with
probability tending to one as n → ∞.

For d ≥ 1, we let Gn,d be the uniform probability space on all d-regular graphs with vertex set
[n]. (Often, we will abuse notation and speak of Gn,d itself as a random d-regular graph.) The
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model Gn,d is often studied via a more general configuration model G∗
n,d, introduced by Bollobás

in [3], which is a probability space over d-regular multigraphs on vertex set [n]. G∗
n,d enjoys the

following properties with respect to Gn,d:

(i) for fixed d, the probability that G∗
n,d is simple approaches a positive constant, dependent on

d but not on n, as n → ∞, and;

(ii) conditioned on being simple, G∗
n,d is distributed uniformly over all simple d-regular graphs on

vertex set [n], i.e., conditioned on being simple G∗
n,d has the same distribution as Gn,d.

Thus, to show that some graph property An holds a.a.s. in Gn,d, it suffices to show that a corre-
sponding multigraph property A∗

n holds a.a.s. for G∗
n,d. This is essentially the approach we take to

prove Theorem 1.1, though we make a small modification to incorporate a more convenient model.
Let G′

n,d be the random multigraph G∗
n,d conditioned to have no self-loops (though with multiedges

still allowed). Then by [13, (3.3)], G′
n,3 is contiguous with the random multigraph Gn defined as

the union of a random Hamilton cycle Hn on vertex set [n] and a random perfect matching Mn on
[n]. Contiguity here means that an event holds a.a.s. for G′

n,3 if and only if it holds a.a.s. for Gn.
Now, properties (i) and (ii) above are equally valid when G∗

n,d is replaced with G′
n,d. Therefore,

using contiguity of G′
n,3 and Gn, we have the following: if A∗

n is some multigraph property which
restricts to a graph property An on simple graphs, then if A∗

n holds a.a.s. in Gn, An holds a.a.s. in
Gn,3. We will show that a.a.s., Gn has a proper 3-colouring c which is determined by its values on
a set S ⊆ [n] of size |S| ≤ (1 + o(1))n/3. By our reasoning above, the same holds a.a.s. for Gn,3,
and this, along with the well-known fact that χ(Gn,3) = 3 a.a.s., implies Theorem 1.1.

1.3. Concentration Inequalities. We will make use of two-well known concentration inequal-
ities. The first is a generalization of the Chernoff bound to sums of negatively correlated {0, 1}-
random variables. A collection Y1, Y2, . . . , Yn of {0, 1}-random variables is negatively correlated if
for all J ⊆ [n],

Pr(Yj = 1∀ j ∈ J) ≤
∏
j∈J

Pr(Yj = 1).

Note that collections of independent {0, 1}-random variables are negatively correlated under this
definition.

Proposition 1.5 (Chernoff bounds with negative correlation, [7, Theorems 1.10.23 and 1.10.24]).
Let Y1, Y2, . . . , Yn be {0, 1}-random variables such that both {Yj}nj=1 and {1− Yj}nj=1 are negatively
correlated. Let Y =

∑n
j=1 Yj . Then for any λ > 0,

Pr(Y ≤ E[Y ] − λ) ≤ e
− λ2

2E[Y ]

and

Pr(Y ≥ E[Y ] + λ) ≤ e
− λ2

2(E[Y ]+λ/3) .

Consequently, if 0 ≤ λ ≤ 3E[Y ]
2 , then

Pr(|Y − E[Y ]| ≥ λ) ≤ 2e
− λ2

3E[Y ] .

We also use Azuma’s inequality to control the large deviations of sub-and super-martingales.

4



Proposition 1.6 (Azuma’s inequality, [28, Lemma 4.1]). Suppose M0,M1,M2, . . . is a submartin-
gale such that |Mj+1 −Mj | ≤ C for all j ≥ 0. Then for any λ ≥ 0

Pr(Mn ≤ M0 − λ) ≤ e−
λ2

2C2n .

If M0,M1,M2, . . . is a super-martingale such that |Mj+1 − Mj | ≤ C for all j ≥ 0, then for any
λ ≥ 0

Pr(Mn ≥ M0 + λ) ≤ e−
λ2

2C2n .

1.4. A word on floors and ceilings. As is typical in the field of random graphs, for expressions
which clearly must be integers (e.g., indices in the set [n]) we round up or down to the nearest
integer but do not specify which. In all cases that we use this simplification, it will be clear that
the choice of which way to round has no significant effect on the final computation.

2. The algorithm Sudoku

Here we introduce our primary algorithm, Sudoku, which, given a multigraph G that is the
union of a Hamilton cycle H and perfect matching M on vertex set [n], produces a proper 3-colouring
c of G along with a Sudoku set S for c. Sudoku is a variant of a simple greedy colouring algorithm
which we describe below. For now, we state everything in terms of deterministic graphs; later,
when analyzing Sudoku on the random multigraph Gn = Hn ∪Mn, we will couple the execution
of the algorithm with a random graph process which reveals the edges of Mn one-at-a-time.

2.1. Greedily colouring Hamiltonian cubic graphs. For simplicity, we assume H has cyclic
ordering (12 · · ·n). For any i ∈ [n], we let p(i) be the unique j ∈ [n] such that {i, j} ∈ M—i.e.,
j is the partner of i in M . The generic greedy colouring algorithm sequentially assigns colours in
{1, 2, 3} to each vertex i ∈ [n], starting from 1 and proceeding in the order of H.

Begin by selecting c(1) from {1, 2, 3}. For i ∈ {2, 3, . . . , n−1}, we then select c(i) from {1, 2, 3}\
{c(i − 1), c(p(i))} if p(i) < i, or from {1, 2, 3} \ {c(i − 1)} if p(i) > i. The selection at each step
can be made randomly, deterministically, with a mixture of the two, etc. However the selections
are made, it is clear that this process constructs a partial proper 3-colouring c of the vertices in
[n − 1]. When the process reaches vertex n, it may be the case that n has neighbours in three
distinct colour classes, which prevents us from completing the colouring.

There are a variety of ways one could attempt to circumvent this issue. We propose one
which is well-suited to our needs in the random setting. Suppose that for some interval of vertices
I = {i, i+ 1, . . . , i+ 2j − 1} with 1 ≤ i < i+ 2j − 1 ≤ n, we have p(i) = i+ 2j − 1 and p(i′) ̸∈ I for
all i′ ∈ I \ {i, i+ 2j − 1}. Then, the subgraph of G induced by I is an even cycle. We may greedily
colour the vertices in [n] \ I as follows. We first greedily colour the interval {1, 2, . . . , i− 1}. (Note
that if i = 1, this interval is empty and thus there are no vertices to colour.) We then greedily
colour the interval {i+ 2j, i+ 2j + 1, . . . n} in reverse order (this interval is empty if i+ 2j−1 = n).
Since I induces a cycle in G, after colouring [n] \ I each vertex in I has exactly one neighbour that
is coloured, leaving 2 colours available. It is well-known (see, e.g., [9]) that even cycles are 2-list
colourable, and hence the colouring can be extended to I.

When colouring the random graph Gn, we will show that a.a.s. there is some interval of consec-
utive vertices in {n−n/ log log n, . . . , n} which induces an even cycle. Then, we will carefully colour
vertices 1 through n − n/ log log n, identifying vertices that need to be put into the Sudoku set.
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Once we are done, the above property ensures that a.a.s. the coloring can be completed. During
this completion phase, we may simply put all of the last n/ log log n vertices into the Sudoku set,
since they will not affect its asymptotic size.

2.2. Sudoku. Here we outline Sudoku. While the algorithm is somewhat complicated, it
is nonetheless a direct instance of the greedy algorithm defined in the previous section. Sudoku
sequentially builds a Sudoku set S ⊆ [n] in addition to the colouring c. We will define Sudoku
to start at a general vertex i0 ∈ [n] and end at a general vertex i1 satisfying i0 ≤ i1 ≤ n − 1. We
assume that vertices in [i0] are properly 3-coloured by some partial colouring c0, and that there is
a set S0 ⊆ [i0] that is a Sudoku set for c0 on the subgraph induced by vertices in [i0].

Sudoku constructs a colouring c that extends c0 and a set S that extends S0. We let S(i0) = S0,
and for i ∈ {i0 + 1, . . . , i1} let S(i) be the set constructed by the algorithm at time i, i.e., just after
vertex i is processed. We also maintain a pointer which at time i points to some vertex j ∈ [i]—we
denote this by ptr(i) = j. The pointer will maintain the property that if ptr(i) = j, then the set
S(i) ∩ [j] is a Sudoku set for the colouring c restricted to the subgraph induced by vertices in [j].
Thus, at any time i during the algorithm, any vertex in [ptr(i)] is either in S(i) ∩ [ptr(i)], or has
its colour forced by other vertices in S(i)∩ [ptr(i)]. We necessarily have ptr(i0) = i0, as we assume
that S(i0) = S0 is a Sudoku set for the colouring on [i0].

The algorithm proceeds in an alternating sequence of two types of runs, where the type of the
run at time j is determined by ptr(i), i.e., the location of the pointer with respect to vertex i.
Each type of run has its own colouring rules, and a run of one type ends (and a run of the other
type begins) when we encounter a bad vertex, where bad is also defined differently for each type of
run. We give full details below.

Runs of type A
A run of type A is defined as a sequence of consecutive vertices i, i + 1, . . . , i + r satisfying

ptr(j) = j for all j ∈ {i, i + 1, . . . , i + r}. Suppose that we have processed all vertices in [i] and
that we are in a run of type A, i.e., ptr(i) = i. There are two possibilities for i + 1, each with
corresponding update rules:

(A1) i + 1 is good if p(i + 1) < i + 1 and c(p(i + 1)) ̸= c(i).

→ Assign c(i + 1) = k for k the unique colour not in {c(p(i + 1)), c(i)};

→ set S(i + 1) = S(i);

→ set ptr(i + 1) = i + 1.

(A2) i + 1 is bad if:

(a) p(i + 1) > i + 1; or

(b) p(i + 1) < i + 1 and c(p(i + 1)) = c(i).

→ Choose c(i + 1) randomly from {1, 2, 3} \ {c(i)};

→ set S(i + 1) = S(i);

→ set ptr(i + 1) = ptr(i) = i.
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Thus a good vertex in a run of type A extends the run, while a bad vertex ends it and becomes
the first vertex of a run of type B. Note that a good vertex has its colour forced by vertices in [i],
as the condition ptr(i) = i ensures that each of i and p(i + 1) ∈ [i] is either already in S(i), or has
its colour forced by other vertices in [i]. (This is proved formally in Subsection 2.3.)

Runs of type B
A run of type B is a sequence i, i + 1, . . . , i + r with ptr(j) < j for all j ∈ {i, i + 1, . . . , i + r}.

Assume we have processed through i and ptr(i) < i, so we are in a run of type B. Define the set
Ci+1 by

Ci+1 =

{
{c(i− 1), c(i)} p(i) > i

{c(i), c(p(i))} p(i) < i.

(Provided that c is a proper colouring on [i], we have |Ci+1 = 2|.) The possibilities for i + 1 are:

(B1) i + 1 is good if p(i + 1) ≤ ptr(i) and c(p(i + 1)) ∈ Ci+1.

→ Assign c(i + 1) = k for k the unique colour not in Ci+1;

→ set S(i + 1) = S(i);

→ set ptr(i + 1) = ptr(i).

(B2) i + 1 is bad if

(a) p(i + 1) > i + 1; or

→ Assign c(i + 1) = k for k the unique colour not in Ci+1;

→ set S(i + 1) = S(i) ∪ {i + 1};

→ set ptr(i + 1) = i + 1.

(b) p(i + 1) ≤ ptr(i) and c(p(i + 1)) ̸∈ Ci+1; or

→ Assign c(i + 1) = k for k the unique colour not in {c(i), c(p(i + 1))};

→ set S(i + 1) = S(i) ∪ {i};

→ set ptr(i + 1) = i + 1.

(c) ptr(i) + 1 ≤ p(i + 1) ≤ i and c(p(i + 1)) ∈ Ci+1; or

→ Assign c(i + 1) = k for k the unique colour not in Ci+1;

→ set S(i + 1) = S(i) ∪ {i + 1};

→ set ptr(i + 1) = i + 1.

(d) ptr(i) + 1 ≤ p(i + 1) ≤ i and c(p(i + 1)) ̸∈ Ci+1

→ Assign c(i + 1) = k for k the unique colour not in {c(i), c(p(i + 1))};

→ set S(i + 1) = S(i) ∪ {i, i + 1};

→ set ptr(i + 1) = i + 1.

As with runs of type A, a good vertex in a run of type B extends the run, while a bad vertex
ends it (and begins a run of type A). A run of type B can be interpreted as a second chance:
after a run of type A ends with a bad vertex starting a run of type B, we get another attempt to
force the colour of this vertex in the run of type B. We remark that any run of either type can
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have at most one vertex with a forward edge, and that vertex can only be the first vertex in the
run. Indeed, vertices with forward edges are always bad, and thus they necessarily end the current
run and become the first vertex of the next one. In particular, this means that in cases (B2c) and
(B2d) above, we necessarily have p(i + 1) = ptr(i + 1).

Colours on vertices in a run of type B are (eventually) forced by vertices with larger indices.
Suppose that i is in a run of type B, and that i + 1 is good. Then we colour i + 1 with the unique
colour k not in Ci+1, at which point vertex i sees two different colours among its neighbours, one
of which must be in [ptr(i)]; thus if i + 1 is somehow forced to have colour k, i will be forced to
have colour c(i). The colouring rules in case (B2) ensure that the chain of dependencies eventually
stops when we reach a bad vertex, and that we may colour appropriately so that all vertices in the
run have their colours forced.

2.3. Correctness of the algorithm and bound on the size of S. It is clear that Sudoku produces
a partial proper 3-colouring c which extends c0 to vertices in {i0, i0 + 1, . . . , i1}. Here we show the
following.

Lemma 2.1. Let c0 be a proper partial 3-colouring of the subgraph of G induced by [i0], let S0 be
a Sudoku set for c0 on [i0], and let Sudoku run from i0 (with S(i0) = S0) until vertex i1 ≤ n− 1.
Let c be the extension of c0 produced by Sudoku. Then S(i1) is a Sudoku set for c restricted to
the subgraph induced by [ptr(i1)].

In particular, if we set S = S(i1)∪ {i1}, then S is a Sudoku set for the colouring c restricted to
the subgraph induced by [i1].

Proof. We let Pi be the property that S(i) is a Sudoku set for c on the subgraph induced by
[ptr(i)]. We show inductively that Pi1 holds. Note that Pi0 holds by assumption. Now, let i ≥ i0
and suppose that Pi holds. It suffices to assume that for vertex i + 1 we are in case (A1) or case
(B2), as these are the only cases in which the pointer moves. Verifying that Pi+1 holds for case
(A1) is straightforward. We thus assume case (B2), i.e., that ptr(i) < i and that i + 1 is bad. In
this case, the pointer moves to i + 1, so we must show that S(i + 1) is a Sudoku set for c on the
subgraph induced by [i + 1].

Note that every j ∈ {ptr(i) + 1, . . . , i} has a neighbour in [ptr(i)]—we have p(j) ∈ [ptr(i)]
for j > ptr(i) + 1, and ptr(i) itself is adjacent to j for j = ptr(i) + 1. Further, for each j ∈
{ptr(i) + 1, . . . , i − 1}, c(j + 1) is distinct from the neighbour of j that is in [ptr(i)]. This holds
because for each such j, we colour j + 1 as in case (B1). Thus it follows that if the colour on vertex
i is forced, the colours on all j ∈ {ptr(i) + 1, . . . , i} are forced as well.

In case (B2a), c(i) is forced because we colour i + 1 with a colour which is not yet in the
neighbourhood of i and include i+ 1 in S(i+ 1). (Vertex i+ 1 is thus trivially forced in this case.)
In (B2a), we include i itself in S; in this case vertex i+ 1 is forced because c(p(i+ 1)) is in [ptr(i)]
and is distinct from c(i). Case (B2c) is effectively equivalent to (B2a). Clearly (B2d) holds, since
both i and i + 1 are included in S in this case.

In all cases, we have that Pi+1 holds, and thus we conclude by induction that we have Pi1 .

We also obtain an upper bound on the size of S(i1). For a run of Sudoku from i0 to i1, we
define BC ⊆ {i0, . . . , i1} to be the set of conventionally bad vertices: these are vertices j which,
when processed by Sudoku, fall into cases (A2a), (A2b), (B1a), or (B1b). The set BC includes all
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j with forward edges and all j with backward edges which fail to extend a run because p(j) has a
“forbidden” colour, i.e., p(j) has the unique colour we would like to use on j.

Let B(c)
U and B(d)

U consist of the the vertices j covered by (B2c) and (B2d), respectively. These
vertices are unconventionally bad, and correspond to the situation in which we are in a run of type
B and ptr(j − 1) + 1 ≤ p(j) ≤ j − 1.

Lemma 2.2. We have

|S(i1)| ≤
1

2
|BC | + |B(c)

U | + 2|B(d)
U | + |S0|.

Proof. Note that |S(i)| only increases when we encounter a bad vertex in the algorithm. We will
calculate the contribution from each kind of bad vertex.

Clearly we add one vertex to S for each vertex in B(c)
U and two vertices to S for each vertex

in B(d)
U . We also add one vertex to S for every vertex in BC which ends a run of type B; these

vertices make up at most half of BC because runs alternate between types A and B, and we begin
the algorithm in a run of type A.

We could be more careful in the proof of Lemma 2.2 and derive an exact expression for |S(i1)|,
but the upper bound we give will suffice for our purposes.

2.4. Vertex types. We can think of the Sudoku as making transitions among a finite set of
vertex types, where a type encodes some characteristics of a particular vertex when it is processed
by the algorithm, e.g., its colour, the colour of its neighbours, whether it has a forward or backward
edge, etc.

Suppose a vertex i has the following properties: i is assigned colour k, i has a backward edge,

and ptr(i) = i in the execution of Sudoku. Then we say i is of type A
(k)
b , where A refers to the

fact that a vertex with these properties is part of a run of type A. Similarly, i is of type A
(k)
f if i

has colour k, i has a forward edge, and ptr(i) = i. We let

A = {A(1)
b , A

(2)
b , A

(3)
b , A

(1)
f , A

(2)
f , A

(3)
f }

be the formal class consisting of these types.
Now, suppose that vertex i has colour k, i has a backward edge to some vertex of colour ℓ, and

ptr(i) < i in the execution of Sudoku. Then we say i is of type B
(ℓk)
b . If instead i has a forward

edge and i− 1 is of colour ℓ, i is of type B
(ℓk)
f . We define

B = {B(12)
b , B

(21)
b , B

(13)
b , B

(31)
b , B

(23)
b , B

(32)
b , B

(12)
f , B

(21)
f , B

(13)
f , B

(31)
f , B

(23)
f , B

(32)
f }

and let V = A ∪ B be the set of all vertex types. See Figure 2 for an illustration of the types.
Transitions between the types are governed by the algorithm Sudoku. For instance, if i has

type A
(1)
b and vertex i+ 1 has a backward edge to a vertex of colour 2, then i+ 1 has type A

(3)
b . If

instead vertex i+1 has a forward edge, then its type will be B
(12)
f with probability 1

2 and B
(13)
f with

probability 1
2 , as in this situation we colour i+1 randomly with some colour in {2, 3}. In Section 4,

we will design a Markov chain on the set of types V that mimics these transition dynamics.

9



Figure 2: The types. Here we use blue for colour k, red for m, and green for ℓ. The pointer is

indicated by an upward arrow. Note that if vertex i is of type B
(km)
f , we must have ptr(i) = i− 1

as indicated in the right-most figure.

2.5. The random matching process. In order to analyze Sudoku on the random graph Gn, we
employ a common technique: we reveal the edges of the graph and “run the algorithm” simultane-
ously. (More formally, this is known as the principle of deferred decision.) To start, we reveal the
random Hamilton cycle Hn; since we do not care about the vertex labels, we may always relabel
Hn so that it has the convenient cyclic order (12 · · ·n). (We will assume that this is the case for
the remainder of the paper.)

We will sample the matching Mn via a random matching process in which we (partially) reveal
the partner p(i) of each vertex i ∈ [n] sequentially, starting from i = 1 and proceeding in the
order of the cycle. Formally, for some i ≥ 2 suppose that we have run the process for vertices
1, 2, . . . , i− 1; we partially reveal p(i) via the following experiment:

• Ask “is p(i) < i?”

(a) If the answer is “no,” then leave vertex i unsaturated and proceed to the next vertex.

(b) If the answer is “yes,” then fully reveal the partner p(i) by sampling it uniformly at
random from the unsaturated vertices in [i− 1].

We stress that p(i) is only fully revealed at time i if we have p(i) < i. For i ∈ [n], we let Fi be
the σ-algebra generated by the history of the matching process through time i, and let F0 be the
trivial σ-algebra corresponding to Mn. We define

X(i) = |{j ∈ [i] : p(j) > i}|

for i ∈ [n] and let X(0) = 0. In other words, X(i) is the number of unsaturated vertices at time i
of the process. Note that X(i) is Fi-measurable. We make note of the following useful expression,
which we use throughout our analysis:

Lemma 2.3. For any i ∈ [n] and 1 ≤ j < i, we have

Pr
(
p(i) = j | Fi−1

)
=

11{j is unsaturated}
n− (i− 1)

.

Consequently,

Pr
(
p(i) < i | Fi−1

)
=

X(i− 1)

n− (i− 1)
.

Proof. Suppose vertex j ∈ [i− 1] is unsaturated at time i− 1. There are

(n− i)X(i−1)−1 ·M(n− i− (X(i− 1) − 1)) (3)

10



ways to complete the matching which are consistent with Fi−1 and the event {p(i) = j}, where
M(m) is the number of perfect matchings on m elements and (a)b represents the falling factorial.
(Explanation: we first match the remaining X(i−1)−1 unsaturated vertices in [i−1] with partners
in [n] \ [i], then we match the remaining n− i− (X(i− 1) − 1) vertices.)

On the other hand, there are

(n− (i− 1))X(i−1) ·M(n− (i− 1) −X(i− 1)) (4)

valid ways in total to complete the matching consistent with Fi−1. Dividing (3) by (4) gives the
first expression in the statement. Summing this expression over j ∈ [i− 1] gives the second.

Thus, the procedure of partially revealing the partner of vertex i can be run as follows: given
Fi−1, flip a coin with probability X(i−1)

n−(i−1) of being heads; on heads, choose a partner for i uniformly

at random from the X(i−1) unsaturated vertices in [i−1]; on tails, leave i unsaturated. Repeating
this experiment independently for all i ∈ [n] reveals the complete matching Mn at time n with
the correct distribution. Since the execution of Sudoku at vertex i depends only on knowing if
p(i) > i or on the colour assigned to p(i) and i− 1 if p(i) < i, we can couple a run of the algorithm
with the matching process, which will be essential to our analysis.

2.6. Heuristic analysis and introduction to the differential equations method. Here we outline
how the different pieces of our algorithm fit together and give some heuristic justification for
Theorem 1.1.

We treat the first i0 = n
log logn steps of the matching process as a burn-in phase, during which we

run a different algorithm that properly 3-colours vertices 1 through i0 in a strongly balanced way.
We include all of the i0 initial vertices in the Sudoku set S, noting that they contribute only o(n) to
the total size. We then run Sudoku, started at vertex i0 and with S0 = [i0], until i1 = n− n

log logn .
The final n− i1 vertices are processed in a completion phase; per the discussion in Subsection 2.1,
we show that a.a.s. there is some sub-interval of vertices in {i1 + 1, . . . , n− 2} that induces an even
cycle in Gn, which ensures that colouring can be completed. All vertices in the completion phase
are included in S, which again adds o(n) to the total size. The burn-in and completion phases are
treated in Section 3.

The main contribution to |S| comes from vertices in {i0, . . . , i1}, where we run Sudoku. Recall

the definitions of the sets BC , B(c)
U , and B(d)

U from Subsection 2.3. Lemma 2.2 gives an upper bound
on the size of S(i1), the Sudoku set produced by Sudoku at time i1, in terms of the sizes of these

sets and S0. For the purposes of the informal analysis, we will ignore B(c)
U and B(d)

U , as very few
vertices in Gn will be included in these sets a.a.s. Since the contributions from the burn-in and
completion phases will also be negligible, using Lemma 2.2 we have |S| ≤ (1 + o(1))12 |BC |.

Now, vertex i is in BC if either i) it has a forward edge, or ii) it has a backward edge to a
particular forbidden colour, that colour being determined by the type of vertex i− 1. Importantly,
these conditions do not (directly) reference the type of run that i is a part of. Recall that X(i) is the
number of unsaturated vertices at time i of the matching process. We additionally let Xk(i) be the
number of unsaturated vertices of colour k at time i, so that X(i) = X1(i)+X2(i)+X3(i). Suppose

that at time i we have Xk(i) ≈ X(i)
3 for each k ∈ {1, 2, 3}. Then we claim that the probability that

vertex i + 1 is in BC , conditioned on Fi, is approximately

X(i)

3(n− i)
+ 1 − X(i)

n− i
= 1 − 2X(i)

3(n− i)
, (5)
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regardless of whether the algorithm is in a run of type A or B, and regardless of the type of vertex i.
Indeed, by the balance assumption the number of unsaturated vertices in the forbidden colour class
for vertex i+ 1 at time i is approximately X(i)

3 , and thus by Lemma 2.3 the probability that i+ 1 is

matched with one of them, conditioned on Fi, is roughly X(i)
3(n−i) . Also by Lemma 2.3, the probability

that p(i + 1) > i + 1 conditioned on Fi is exactly 1 − X(i)
n−i . Together these give the left-hand side

of (5).

Suppose that the balance condition Xk(i) ≈ X(i)
3 holds for the duration of the algorithm.

Also, suppose that there is some continuous function x(t) on [0, 1] such that X(i) stays tightly
concentrated around nx(i/n) for the duration of the process. (The differential equations method
can be used to establish results of precisely this type.) Since

E[X(i + 1) −X(i) | Fi] =

(
1 − X(i)

n− i

)
− X(i)

n− i
= 1 − 2X(i)

n− i

and X(1)
n−1 = 1

n−1 and X(n)
n = 0, it is natural to predict that the function x(t) solves the boundary

value problem

x′(t) = 1 − 2x(t)

1 − t
, x(0) = 0 and x(1) = 0 (6)

which is solved by x(t) = t(1 − t). We remark here that we do not need the differential equations
method to understand the trajectory of X(i)—this can be achieved, for instance, by applying
concentration inequalities directly to the sums

∑i
j=1 11{p(j) > j}. We use differential equations

only to understand the trajectories of the Xk(i)’s, which are more complicated. In doing so, we get
X(i) “for free,” since X(i) = X1(i) + X2(i) + X3(i).

Using (5), we can approximately bound |S| as follows:

|S| ≲ 1

2
|BC ≈ n

2

∫ 1

0

(
1 − 2x(t)

3(1 − t)

)
dt =

n

2

∫ 1

0

(
1 − 2t

3

)
dt =

n

3
. (7)

The main challenge in making the approximation (7) rigorous comes in establishing that the random
variables Xk(i) remain close to equal for the duration of the process. Applying the differential
equations method directly to the Xk(i)’s is difficult, since E[Xk(i + 1) − Xk(i) | Fi], the expected
one-step change for a particular k ∈ {1, 2, 3}, depends explicitly on the type of vertex i.

To overcome this, we will analyze changes in the variables Xk(i) over segments of length ω for
ω = ω(n) going to infinity slowly. The reasoning behind this is that over longer time intervals
the influence of the type of any single vertex on the Xk(i)’s is negligible. On these segments, the
trajectory of Sudoku can be approximated by a Markov chain which makes transitions between the
vertex types in V. One complication that arises in the approximation is the need for a sufficiently
large stock of unsaturated vertices in order for the chain to mix quickly. This is the reason for the
burn-in phase: it ensures that we accumulate many unsaturated vertices at the beginning of the
process, and that the colours classes are balanced with respect to these vertices.

Formally, given a length i0 = n
log logn for the burn-in phase and a length ω for the segments, we

will define

X̃k(i) =
1

ω
Xk(i0 + iω) for k ∈ {1, 2, 3}

X̃(i) =
1

ω
X(i0 + iω) = X̃1(i) + X̃2(i) + X̃3(i)

F̃i = Fi0+iω.

12



Letting N = n
ω and i1 = n − n

log logn , we will show that for each k ∈ {1, 2, 3} and 0 ≤ i ≤ i1−i0
ω =

N
(

1 − 2
log logn

)
,

E[X̃k(i + 1) − X̃k(i) | F̃i] = (1 + o(1))
1

3

(
1 − X̃(i)

N − i

)
(8)

which implies that X̃k(i) is well-approximated by N
3 x
(
i0
n + i

N

)
for all k. In particular, we expect

the X̃k(i)’s (and so also the Xk(i)’s) to remain balanced for almost the entire process.

3. The burn-in and completion phases

Here we establish some features of the burn-in and completion phases of our colouring algorithm.
For the burn-in phase, we will run the matching process up to time i0 = n

log logn and properly 3-
colour the corresponding vertices so that for any two colours k and ℓ, the number of unsaturated
vertices of colour k differs from the number of unsaturated vertices of colour ℓ by at most 1. For
the completion phase, we will show that some sub-interval of vertices in {i1 + 1, . . . , n} induces an
even cycle in Gn a.a.s.

3.1. The burn-in phase. Our goal is to colour the vertices in {1, 2, . . . , i0} in such a way that
the colour classes remain as balanced as possible with respect to unsaturated vertices. To achieve
this, we use a variant of the greedy colouring algorithm which we call BalancedGreedy.

In BalancedGreedy we divide the interval {1, 2, . . . , i0} into i0
7 batches of 7 consecutive vertices

apiece, and possibly one extra batch at the end which can be shorter. We say that vertex i ∈ [i0]
has a long forward edge if p(i) > i0, and call a batch good if it has 7 vertices with long forward
edges. All other batches are bad. (This means the extra batch at the end is always bad if it exists.)

We begin by partially revealing the edge of each vertex in [i0] and greedily colouring the bad
batches in order. Next we colour the good batches. Say that there are L good batches in total,

and for j = 0, 1, . . . , L we let X
(j)
k (i0) be the number of unsaturated vertices in [i0] of colour k just

after the jth good batch is coloured, or just after the last bad batch is coloured in the case j = 0.

Let D(j) = maxk X
(j)
k (i0) − mink X

(j)
k (i0). Observe that D(L) = maxk Xk(i0) − mink Xk(i0), since

after colouring the Lth good batch all vertices in [i0] have been coloured.
Now, it is not hard to show that in any good batch, vertices 2, 4 and 6 can be coloured using the

same colour, and vertices 1, 3, 5 and 7 can be coloured using each of the remaining two colours twice.
Further, it is also always possible to use an arbitrary colour only once in a good batch and use the
other two colours three times each. These properties ensure that we always have D(j) ≤ D(j−1)−1
if D(j− 1) > 1, or that D(j) ∈ {0, 1} if D(j− 1) ∈ {0, 1}. If the number of good batches L is large
enough, we will be able to conclude that D(L) = maxk Xk(i0) − mink Xk(i0) ∈ {0, 1}, and indeed
we show that this is the case in the next lemma.

Lemma 3.1. A.a.s., BalancedGreedy colours the vertices in [i0] so that

|Xk(i0) −Xℓ(i0)| ≤ 1

for all k, ℓ ∈ {1, 2, 3}.

Proof. Each time we colour a bad batch, the colour discrepancy for unsaturated vertices trivially
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increases by at most 7. Thus, if L is the number of good batches,

D(0) ≤ 7 · #bad batches ≤ 7

(
(1 + o(1))

i0
7
− L

)
= (1 + o(1))i0 − 7L.

Now, since each time we colour a good batch D(·) either decreases by at least 1 or remains in {0, 1},
we have

D(L) ≤ max{D(0) − L, 1} ≤ max {(1 + o(1))i0 − 8L, 1} .

In particular, if L ≥ i0
7.5 , then D(L) ≤ 1.

To see that this holds a.a.s., first observe that there are o(i0) edges which join pairs of vertices

in [i0] a.a.s. This follows from an easy first moment argument: we expect O
(
i0 · i0

n

)
= O

(
i0

log logn

)
such edges, and thus by Markov’s inequality there are o(i0) of them a.a.s. Since each such edge
makes at most 2 batches go bad, the number of good batches is at least (1 + o(1)) i07 − o(i0) ≥ i0

7.5
a.a.s.

We finish this section by showing that the number of unsaturated vertices at time i0 is well-
concentrated around what we expect. Recall from Section 2.6 that we define the function x(t) on
(0, 1) as

x(t) = t(1 − t).

Lemma 3.2. Let λ = λ(n) → ∞ as n → ∞ arbitrarily slowly. Then, a.a.s.

|X(i0) − nx(i0/n)| = O(
√
λi0).

Proof. For j ∈ [i0], let Yj = 11{p(j) > j} and let Y =
∑i0

j=1 Yj . We may write

X(i0) =

i0∑
j=1

11{p(j) > j} −
i0∑
j=1

11{p(j) < j} = 2Y − i0.

Since Pr(p(j) > j) = n−j
n−1 , we get

E[Y ] =

i0∑
j=1

n− j

n− 1
= i0 −

1

n− 1

i0∑
j=1

(j − 1) = i0 −
(i0 − 1)i0
2(n− 1)

= i0

(
1 − i0

2n

)
+ O(1)

from which we easily derive that E[X(i0)] = nx(i0/n) + O(1). To show the result, it will suffice
to show that Y is within O(

√
λi0) of E[Y ] a.a.s. for any λ → ∞. To do this, we will show that

both collections of indicators {Yj}i0+1
j=1 and {1 − Yj}i0+1

j=1 are negatively correlated. The desired
concentration is then implied by Proposition 1.5. (As an aside, it is perhaps a more natural idea to
consider the sum

∑i0
j=1 11{p(j) > i0} directly. However, the collection {11{p(j) > i0}}i0j=1 is actually

positively correlated, which prevents us from applying large deviations bounds to their sum.)
Let 1 ≤ j1 < j2 < · · · < jk ≤ i0 + 1. We claim

Pr(Yjh = 1∀h = 1, 2, . . . , k) =
n− jk
n− 1

· n− jk−1 − 2

n− 3
· · · n− j1 − 2(k − 1)

n− (2(k − 1) + 1)
. (9)

Indeed, by assigning neighbours for j1, . . . , jk in decreasing order, we see that there are n − jk
choices for the neighbour of jk, then n− jk−1 − 2 choices for the neighbour of jk−1, etc., which are
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consistent with p(jh) > jh for h = 1, . . . , k. Moreover, any particular assignment of neighbours for
these vertices occurs with probability

∏k−1
h=0

1
n−(2h−1) , which gives (9).

Observe that for any h = 1, . . . , k, the factor corresponding to h in (9) is

n− jh − 2(k − h)

n− (2(k − h) + 1)
≤ n− jh

n− 1
= Pr(Yjh = 1).

From the above, we immediately get that the product in (9) is upper bounded by
∏k

h=1 Pr(Yjh = 1).
We conclude that the collection {Yj}i0+1

j=1 is negatively correlated. Similar computations give that

{1 − Yj}i0+1
j=1 is also negatively correlated, completing the proof.

3.2. The completion phase. The main result of this subsection is the following lemma. Before
stating it, we recall that i0 = n

log logn and i1 = n− n
log logn .

Lemma 3.3. A.a.s., there is a sequence of consecutive vertices in {i1 + 1, . . . , n} which induce an
even cycle in Gn.

Proof of Lemma 3.3. For notational simplicity, we will prove instead that there is a sequence of
consecutive vertices in {1, 2, . . . , i0} which an induce an even cycle. By symmetry, the same clearly
holds when {1, 2, . . . , i0} is replaced with {i1 + 1, . . . , n}.

Divide the interval {1, 2, . . . , i0} into
√
n/log logn consecutive intervals of length

√
n, and label

these intervals I1, I2, . . . , I√n/ log logn. We will show that a.a.s., at least one interval Ij satisfies the
following:

(i) there is a single edge in Mn matching a pair of vertices in Ij , and

(ii) the pair of vertices matched by this edge are at odd distance from one another on the cycle.

Note that (i) guarantees Ij contains an induced cycle, and (ii) guarantees the cycle is even.
We will partially reveal edges on the vertices in order until we find some Ij satisfying (i) and

(ii) above, or until we have processed all vertices in
⋃

j Ij . Suppose we are about to process the
vertices in Ij for some j ≥ 1. We claim that, conditioned on the history F(j−1)

√
n up to this point

(recall F0 = ∅ in the case j = 1), the probability that Ij satisfies (i) and (ii) is at least

(1 + o(1))
1

2n

(√
n

2

)(
1 − (1 + o(1))

1√
n

)√
n

= (1 + o(1))
1

4e
. (10)

To prove (10), consider any vertex i ∈ Ij . Given Fi−1, the probability that p(i) ̸∈ {(j− 1)
√
n+

1, . . . , i− 1} is at least

1 − i− 1 − (j − 1)
√
n

n− (i− 1)
≥ 1 − (1 + o(1))

1√
n
. (11)

Indeed, the first expression above holds because once the process reaches vertex i, in the “worst
case” all vertices in {(j − 1)

√
n + 1, . . . , i − 1} are unsaturated, and i is matched with any one

of these vertices with probability 1
n−(i−1) by Lemma 2.3. For the second inequality, we use that

i ≤ j
√
n.

Now, (10) easily follows using the bound (11). Indeed, there are (1+o(1))12
(√

n
2

)
pairs {l, r} ⊂ Ij

with l < r and r − l odd. For any given such pair, the probability that r and l are matched by
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Mn is (1 + o(1)) 1
n ; the probability that no other vertex in Ij creates a cycle in Ij when its edge is

revealed is
(

1 − (1 + o(1)) 1√
n

)√n
. Combining all of these observations yields (10).

The bound (10) gives

Pr
(
Ij has no induced even cycle | F(j−1)

√
n

)
≤ 1 − (1 + o(1))

1

4e
.

With the tower property of conditional expectation, it follows that

Pr

√
n/ log logn⋂

j=1

{Ij has no induced even cycle}

 ≤
(

1 − (1 + o(1))
1

4e

)√
n/ log logn

= o(1)

which completes the proof.

4. The Markov chain on types

4.1. Definition and basic properties of the chain. Here we define a Markov chain Q on the set

of types V = B ∪ A which is used in the computation of E[X̃k(i + 1) − X̃k(i) | F̃i]. Throughout,
we identify a Markov chain with its transition matrix, so we think of Q as an 18 × 18 matrix with
rows and columns indexed by V. The chain Q is meant to reflect an idealized run of a segment of
Sudoku of length ω, starting from vertex i and assuming that vertices in [i] have already been
processed. When designing Q, we make a couple of heuristic assumptions on the matching process
which are technically false, but not by much. They are:

(i) for any i < j ≤ i + ω, the probability that j is joined to any particular unsaturated vertex is
1

n−i ;

(ii) for any i < j ≤ i + ω, we have p(j) ̸∈ {i + 1, i + 2, . . . , j − 1}.

Item (i) says that we “freeze” the matching probabilities at time i. (In reality, the correct probability
at time j is 1

n−j , by Lemma 2.3.) Item (ii) says that we ignore edges that match two vertices

{i+1, . . . , i+ω}. In practice, we will consider segments of length ω = o(
√
n); for any such segment,

the probability that we encounter one of these “short” edges is o(1), meaning that assumption (ii)
is not overly restrictive.

Q takes as parameters the (Fi-measurable) random variables Xk(i) for k ∈ {1, 2, 3}. To illustrate

the design principle behind Q, suppose that at time j ≥ i the algorithm is in state A
(1)
b . When

revealing the partner of j + 1, we get a good edge if p(j + 1) < j + 1 and c(p(j + 1)) = 2 or

c(p(j + 1)) = 3, corresponding to transitions to states A
(3)
b and A

(2)
b , respectively. Given Fj , these

events occur with probabilities X2(j)
n−j and X3(j)

n−j , respectively. If the Markov chain is in state A
(1)
b

at time j ≥ i, a transition to state A
(k)
b for k = 2 or k = 3 will occur with probability Xk(i)

n−i .
Other transition probabilities can be deduced similarly. We make one further exception when

considering states in B; with these states, there is a possibility that vertex j + 1 is joined to an
unsaturated vertex which is exactly one vertex ahead of the pointer, which puts us in case (B2c) or
(B2d) and causes a more complicated (though rare) colour selection and pointer update in Sudoku.
The chain Q simply ignores these transitions.
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We express the transition probabilities of Q in terms of general parameters q1, q2, q3 ∈ [0, 1]

satisfying q = q1 + q2 + q3 ≤ 1. (In the actual analysis, we will set qk = Xk(i)
n−i .) In the following

expressions, we assume {k, ℓ,m} = {1, 2, 3}. For e ∈ {b, f},

Q(A(k)
e , A

(ℓ)
b ) = qm

Q(A(k)
e , A

(m)
b ) = qℓ

Q(A(k)
e , B

(kℓ)
f ) = Q(A(k)

e , B
(km)
f ) =

1 − q

2

Q(A(k)
e , B

(kℓ)
b ) = Q(A(k)

e , B
(km)
b ) =

qk
2

Q(A(k)
e , V ) = 0 for all other V ∈ V

and

Q(B(kℓ)
e , A

(k)
b ) = qm

Q(B(kℓ)
e , A

(m)
f ) = 1 − q

Q(B(kℓ)
e , B

(km)
b ) = qk

Q(B(kℓ)
e , B

(ℓm)
b ) = qℓ

Q(B(kℓ)
e , V ) = 0 for all other V ∈ V.

The transition probabilities above determine a Markov chain on V for any values of q1, q2, q3 ∈
[0, 1]. When q1, q2, q3 ∈ (0, 1), Q is aperiodic and irreducible, and thus it has a unique stationary
distribution π (dependent on the qk’s). To verify irreducibility, we created a Jupyter notebook
that constructs a graph based on the states of Q and confirms that it is strongly connected. The
notebook is available at the GitHub repository1. The irreducible chain Q is aperiodic since

Q2(A1
b , A

1
b) ≥ Q(A1

b , A
2
b)Q(A2

b , A
1
b) = q23 > 0

and
Q3(A1

b , A
1
b) ≥ Q(A1

b , A
2
b)Q(A2

b , A
3
b)Q(A3

b , A
1
b) = q3q1q2 > 0.

In the balanced regime, i.e., when qk = q
3 for all k, we use the notation Qbal for the transition

matrix. We have an explicit expression for the stationary distribution of Qbal, which we denote by
πbal:

πbal(V ) =


q
6 if V ∈ Ab
q
12 if V ∈ Bb
1−q
6 if V ∈ Af

1−q
12 if V ∈ Bf

. (12)

Here Bb is the set of types in B with a backward edge, Ab the set of types in A with a backward
edge, etc. It is straightforward to verify that πbal is indeed stationary for Q in the balanced regime.

Before analyzing the chain, we recall some definitions and basic results about matrix and vector
norms as well as Markov chain mixing. For a vector v ∈ RK , the ℓ1 and ℓ∞ norms of v are,

1https://github.com/dwillhalm/sudoku_number/blob/main/irreducibility.ipynb
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respectively,

∥v∥1 =
K∑
i=1

|vi| and ∥v∥∞ = max
i∈[K]

|vi|.

Any norm ∥·∥ on RK induces a norm on matrices M ∈ RK×K via

∥M∥ = sup
v∈RK

∥v∥=1

∥Mv∥ .

It is an easy exercise to show that the following expressions hold for the ℓ1 and ℓ∞ matrix norms:

∥M∥1 = max
j∈[K]

K∑
i=1

|Mij | and ∥M∥∞ = max
i∈[K]

K∑
j=1

|Mij |. (13)

In the study of Markov chain mixing, it is conventional to consider convergence in the total-variation
norm ∥·∥TV . For probability distributions µ, ν ∈ RK , define

∥µ− ν∥TV = max
A⊆[K]

∣∣∣∑
i∈A

µi − νi

∣∣∣.
We note that ∥µ− ν∥TV = 1

2 ∥µ− ν∥1 (see [16, Proposition 4.2]).
Let P be the transition matrix for an aperiodic, irreducible Markov chain on a state space of

size K, and let π be its stationary distribution. Let d(t) = supµ

∥∥µP t − π
∥∥
TV

, where the sup is
taken over all probability distributions µ on the state space of P . The ε-mixing time of P , denoted
tmix(ε), is defined as

tmix(ε) = min{t : d(t) ≤ ε}.

4.2. Perturbations of the balanced regime. Our goal is to understand the behaviour of the chain
Q when (1 − γ) q3 < qk < (1 + γ) q3 holds for all k for some γ ∈ (0, 1), which is a perturbation of the
balanced regime. Specifically, we approximate the stationary distribution and bound the mixing
time of Q under such a perturbation. To do this we make repeated use of Lemma 4.1 below.

Lemma 4.1. There exists a constant Ccond > 1 so that the following holds for all q ∈ (0, 1): let
(Wi)i∈N0 be a Markov chain on V with transition matrix Qbal with parameter q; for any V ∈ V and
any V ′ ∈ Ab ∪ Bb, we have

PrV (W6 = V ′) ≥ πbal(V
′)

Ccond

and for any V ∈ V and V ′ ∈ Af ∪ Bf ,

PrV (Wi = V ′ for some i ∈ {0, 1, . . . , 6}) ≥ πbal(V
′)

Ccond
,

where PrV denotes probability conditioned on the chain started at V .

The proof is computationally intensive; therefore, we verified it using a Jupyter notebook that
computes powers of Qbal symbolically with the SimPy library. The notebook is available at the
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GitHub repository2. The constant Ccond in Lemma 4.1 is so-named because of its relationship
to a condition number of the chain Qbal. This number measures the sensitivity of the stationary
distribution πbal to perturbations of the parameters q1, q2, and q3 away from the balanced regime.
We formalize this in the next lemma.

Lemma 4.2. Let q ∈ (0, 1) and q = q1+q2+q3. Let γ ∈ (0, 1) and suppose (1−γ) q3 < qk < (1+γ) q3
for all k. Let Q be the corresponding transition matrix. Then the stationary distribution π of Q
satisfies

∥π − πbal∥∞ ≤ 3Ccondγq

where πbal is the stationary distribution of the chain Qbal with parameter q.

Proof. We use a result from [5]: for irreducible transition matrices P and P̃ = P − E on a finite
state space X with stationary distributions πP and π

P̃
, respectively, we have

∥∥πP − π
P̃

∥∥
∞ ≤ 1

2
κ(P ) ∥E∥∞ (14)

where
κ(P ) = max

y∈X
max
x ̸=y

πP (y)Ex[τy].

Here, τy denotes the hitting time of y of the chain P and Ex denotes expectation conditioned on
the chain P started at x. Let E = Qbal −Q. Using the transition probabilities for Qbal and Q, we
observe that ∥E∥∞ ≤ γq.

Let (Wi)i∈N0 be a walk according to Qbal and τV be the hitting time of state V by the walk
(Wi)i∈N0 . Lemma 4.1 implies that for any state V ′ ∈ V,

PrV (Wi = V ′ for some i = 0, 1, . . . , 6) ≥ πbal(V
′)

Ccond
for all V ∈ V (15)

from which it follows that PrV (τV ′ > 6i) ≤ (1 − πbal(V
′)

Ccond
)i for all i ∈ N0 and any V. Thus

EV [τV ′ ] =
∞∑
i=1

PrV (τV ′ ≥ i) ≤ 6
∞∑
i=0

PrV (τV ′ > 6i) ≤ 6
∞∑
i=0

(
1 − πbal(V

′)

Ccond

)i

=
6Ccond

πbal(V ′)

where for the first inequality we use that PrV (τV ′ ≥ i) is non-increasing in i. In particular, for any
V, V ′ we have πbal(V

′)EV [τV ′ ] ≤ 6Ccond, which implies κ(Qbal) ≤ 6Ccond.

Lemma 4.1 also allows us to bound the mixing time of a perturbation of Qbal provided that the
perturbation parameter γ is small enough. In the proof, it will be clear that the result holds provided
γ is smaller than some absolute constant (i.e., not dependent on q). Since in our application γ will
be o(1), we elect not to make this constant explicit for the sake of simplicity.

Lemma 4.3. Let q ∈ (0, 1) and q1, q2, q3 satisfy q = q1 + q2 + q3 and (1 − γ) q3 < qk < (1 + γ) q3 for
some γ ∈ (0, 1) sufficiently small. Let Q be the corresponding transition matrix. The mixing time
of Q satisfies

tmix(ε) = O

(
1

q
log

(
1

ε

))
.

2https://github.com/dwillhalm/sudoku_number/blob/main/matrix_calcs.ipynb
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Proof. We will use a minorization condition on Q to derive the bound on the mixing time. Suppose
we show that for some i0 ∈ N the following inequality holds:

α :=
∑
V ′∈V

min
V ∈V

Qi0(V, V ′) > 0. (16)

Then Q satisfies the minorization condition Qi0(V, ·) ≥ αν(·), where ν is the probability distribution
on V defined by

ν(V ′) =
minV ∈V Qi0(V, V ′)

α
.

By [25, Proposition 2], this implies
∥∥µQi − π

∥∥
TV

≤ (1 − α)⌊i/i0⌋ for any i ∈ N0 and any initial
distribution µ on V. We will show that (16) holds for i0 = 6 with α at least to small constant times

q, from which we derive tmix(ϵ) = O
(
1
q log

(
1
ϵ

))
.

Let Qbal be the balanced transition matrix with parameter q and let E = Qbal −Q. As in the
proof of Lemma 4.2, we have that ∥E∥∞ ≤ γq. It is an easy exercise to show that

∥∥Q6
bal −Q6

∥∥
∞ ≤

6∑
m=1

(
6

m

)
(γq)m = O(γq).

By the above and Lemma 4.1, we have

α ≥ min
V ∈V

Q6(V,A
(1)
b ) ≥ min

V ∈V
Q6

bal(V,A
(1)
b ) −O(γq) ≥ q

(
1

Ccond
−O(γ)

)
. (17)

Observe that the right-hand side of (17) is at least a small constant times q provided that γ is
sufficiently small with respect to 1

Ccond
.

4.3. Approximation by Q. Here we compute the error incurred by approximating a short seg-
ment of Sudoku with a run of the chain Q.

Lemma 4.4. Let ω = ω(n) ∈ N and let i ∈ [n] be such that ω
n−i = o(1). Let Q be the transition

matrix with parameters qk = Xk(i)
n−i for k ∈ {1, 2, 3}. Let Vj ∈ V be the type given to vertex j in

Sudoku. For j = 0, 1, . . . , ω, let ρj be the probability distribution on V given by

ρj(V ) = Pr(Vi+j = V | Fi).

Then, uniformly in j = 0, 1, . . . , ω,

∥∥ρj − ρ0Q
j
∥∥
1

= O

(
ω2

n− i

)
.

Proof. For j = 0, 1, . . . , ω and k ∈ {1, 2, 3}, define

qk(j) =
Xk(i + j)

n− (i + j)

and let Qj be the transition matrix with parameters q1(j), q2(j), q3(j). The distribution Qj(Vi+j , ·)
is quite similar to the distribution Pr(Vi+j+1 = · | Fi+j), which is the true one-step transition
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distribution on types given Fi+j . Indeed, these distributions are exactly equal but for one rare
case: if vertex i + j is part of a run of type B whose first vertex i + j′ (with j′ < j) is unsaturated
at time i + j, then with probability 1

n−(i+j) , vertex i + j + 1 is joined to i + j′ when the next edge

in the graph is revealed. This results in a transition from Vi+j to Vi+j+1 which is (potentially) not
allowed under Qj . However, even when this is the case, at most two coordinates of Qj(Vi+j , ·) and
Pr(Vi+j+1 = · | Fi+j) differ, each by at most 1

n−(i+j) ≤
1

n−(i+ω) in absolute value. Thus, we always
have the bound

∥Qj(Vi+j , ·) − Pr(Vi+j+1 = · | Fi+j)∥1 ≤
2

n− (i + j)
≤ 2

n− (i + ω)
= O

(
1

n− i

)
. (18)

We can also easily bound ∥Q(Vi+j , ·) −Qj(Vi+j , ·)∥1. For any k, the value of Xk(·) changes by at
most j over the interval [i + 1, . . . , i + j]. Thus,

qk(j) =
Xk(i + j)

n− (i + j)
≥ Xk(i) − j

n− i
≥ qk −

ω

n− i
(19)

and

qk(j) =
Xk(i + j)

n− (i + j)
≤ Xk(i) + ω

n− (i + ω)

= qk

(
1

1 − ω
n−i

)
+

ω

n− (i + ω)

= qk

(
1 + O

(
ω

n− i

))
+ O

(
ω

n− i

)
= qk + O

(
ω

n− i

)
. (20)

Together, (19) and (20) give that |qk − qk(j)| = O
(

ω
n−i

)
for all k. Note that this also implies

|q − q(j)| = O
(

ω
n−i

)
, and it easily follows that

∥Q(Vi+j , ·) −Qj(Vi+j , ·)∥1 = O

(
ω

n− i

)
. (21)

Applying the triangle inequality and using the bounds (18) and (21) yields

∥Q(Vi+j , ·) − Pr(Vi+j+1 = · | Fi+j)∥1 = O

(
ω

n− i

)
. (22)

Now, let ρj be the distribution Pr(Vi+j = · | Fi). (We think of ρj as a row vector.) Let V ′ ∈ V. For
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any j ≥ 0, we have

ρj+1(V
′) = E[11{Vi+j+1 = V ′} |Fi]

= E

[
11{Vi+j+1 = V ′}

∑
V ∈V

11{Vi+j = V }
∣∣∣Fi

]

= E

[
E

[
11{Vi+j+1 = V ′}

∑
V ∈V

11{Vi+j = V }
∣∣∣Fi+j

] ∣∣∣Fi

]

= E

[∑
V ∈V

11{Vi+j = V }E
[
11{Vi+j+1 = V ′} |Fi+j

] ∣∣∣Fi

]

= E

[∑
V ∈V

11{Vi+j = V }
(
Q(Vi+j , V

′) + O

(
ω

n− i

)) ∣∣∣Fi

]

= E

[∑
V ∈V

11{Vi+j = V }Q(V, V ′)
∣∣∣Fi

]
+ O

(
ω

n− i

)
= (ρjQ)(V ′) + O

(
ω

n− i

)
.

From the above, we may write
ρj+1 = ρjQ + vj , (23)

where vj is an error vector with ∥vj∥1 = O
(

ω
n−i

)
, uniformly in j. We claim that

∥∥ρj − ρ0Q
j
∥∥
1
≤

j∑
j′=0

∥∥vj′∥∥1 . (24)

Since
∑j

j′=0

∥∥vj′∥∥1 ≤∑ω
j′=0

∥∥vj′∥∥1 = O
(

ω2

n−i

)
for all j, the main result follows from (24). Obviously

the claim is true for j = 0. Suppose the statement holds for some j. Then,∥∥ρj+1 − ρ0Q
j+1
∥∥
1

=
∥∥ρjQ + vj+1 − ρ0Q

j+1
∥∥
1

≤
∥∥(ρj − ρ0Q

j)Q
∥∥
1

+ ∥vj+1∥1 .

We have ∥∥(ρj − ρ0Q
j)Q
∥∥
1

=
∥∥∥Q⊤(ρj − ρ0Q

j)⊤
∥∥∥
1
≤
∥∥∥Q⊤

∥∥∥
1

∥∥(ρj − ρ0Q
j)
∥∥
1
.

Since Q is a stochastic matrix, the columns of Q⊤ sum to 1, and hence
∥∥Q⊤∥∥

1
= 1 by (13). Thus,

∥∥(ρj − ρ0Q
j)Q
∥∥
1
≤
∥∥ρj − ρ0Q

j
∥∥
1
≤

j∑
j′=0

∥∥vj′∥∥1
by the inductive hypothesis. Thus, we conclude (24) holds for all j = 0, . . . , ω.
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5. The differential equations method

5.1. Notation and parameters. Recall from Section 3 that after the burn-in phase, vertices
n, 1, 2, . . . , i0 are properly 3-coloured and have had their edges partially revealed by the matching
process. In this section we will analyze Sudoku on vertices i0 + 1, . . . , i1. (Recall that i0 = n

log logn
and i1 = n− n

log logn .) We would like to understand the average trajectories of the variables Xk(i)
over short intervals of length ω. To this end, given some ω, we recall the definitions of the translated
and rescaled variables from Section 2.5:

X̃k(i) =
1

ω
Xk(i0 + iω)

and

X̃(i) = X̃1(i) + X̃2(i) + X̃3(i) =
1

ω
X(i0 + iω)

for k ∈ {1, 2, 3} and integers i with 0 ≤ i ≤ i1−i0
ω .

Define N = n
ω and ti = i0+iω

n = i0
n + i

N . Recall the function x(t) = t(1 − t). Our goal is

to show that the random variables X̃k(i) all remain quite close to N
3 x(ti) as i ranges from 0 to

imax = i1−i0
ω = N

(
1 − 2

log logn

)
. To this end, we will define a suitable error function ε(t) on (0, 1)

for which it holds that |X̃k(i)− N
3 x(ti)| < N

3 ε(ti) for all 0 ≤ i ≤ imax a.a.s. We generally follow the
roadmap in the excellent tutorial [2].

The method requires a number of parameters, most of which must be chosen with some care.
Below is a catalogue:

ω = n1/3

N =
n

ω
= n2/3

imax =
i1 − i0

ω
= N

(
1 − 2

log log n

)
ti =

i0 + iω

n
=

i0
n

+
i

N
for i = 0, 1, . . . , imax

C = 54Ccond + 2

ε(t) =
log3 n

n1/3(1 − t)C
for t ∈ [0, 1)

x(t) = t(1 − t)

Note that we have
i0 + imaxω = i1 = n− n

log log n

so i0 + iω < n for all i = 0, 1, . . . , imax.
For i = 0, 1, . . . , imax, let Ẽi be the event that∣∣∣∣X̃k(i′) − N

3
x(ti′)

∣∣∣∣ ≤ N

3
ε(ti′) for all 0 ≤ i′ ≤ i and k ∈ {1, 2, 3}.

We remark that Ẽi implies |X̃(i′) −Nx(ti′)| ≤ Nε(t′i) for all 0 ≤ i′ ≤ i. Additionally, recall

F̃i = Fi0+iω for i = 0, 1, . . . , imax.
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To make computations less cumbersome, we will use the following convention throughout this
section: for quantities A,B,C we write A = B ±C to indicate that A ∈ [B −C,B + C]. Thus the
event Ẽi says that X̃k(i′) = N

3 (x(ti′) ± ε(ti′)) for all 0 ≤ i′ ≤ i.
The upper limit imax ensures that ε(ti) = o(x(ti)) holds for all 0 ≤ i ≤ imax, and indeed it is

easy to show the following:

ε(ti)

x(ti)
= o

(
log4 n

n1/3

)
for i = 0, 1, . . . , imax. (25)

5.2. The main result: Ẽimax holds a.a.s. To apply the differential equations method, we will
need to compute the expected one-step changes

E[∆X̃k(i) | F̃i] = E[X̃k(i + 1) − X̃k(i) | F̃i]

for i = 0, 1, . . . , imax − 1. In order to accurately compute the one-step change at time i, we will

need to assume that Ẽi holds; this ensures that the X̃k(i)’s are all close to X̃(i)
3 , enabling us to use

the Markov chain of Section 4 for approximations. Thus our proof is ultimately inductive.
We will eventually show the following.

Lemma 5.1. There is a constant c ∈ (0, 1) such that for each k ∈ {1, 2, 3} and i = 0, 1, . . . , imax−1

E
[
11Ẽi∆X̃k(i) | F̃i

]
=

11Ẽi
3

(
1 − 2x(ti)

1 − ti
± cε′(ti)

)
=

11Ẽi
3

(
1 − 2ti ± cε′(ti)

)
.

Proving Lemma 5.1 is the main technical challenge of this section. Before beginning the proof,
we show how this allows us to conclude our target result.

Theorem 5.2. The event Ẽimax holds a.a.s. That is, a.a.s.,∣∣∣∣X̃k(i) − N

3
x(ti)

∣∣∣∣ ≤ N

3
ε(ti) for all 0 ≤ i ≤ imax and k ∈ {1, 2, 3}.

Proof. For k ∈ {1, 2, 3} and i = 1, 2, . . . , imax, define

X̃+
k (i) =

{
X̃k(i) − N

3 (x(ti) + ε(ti)) if Ẽi−1 holds

X̃+
k (i− 1) otherwise

and X̃+
k (0) = X̃k(0) − N

3 (x(t0) + ε(t0)). Similarly, let

X̃−
k (i) =

{
X̃k(i) − N

3 (x(ti) − ε(ti)) if Ẽi−1 holds

X̃−
k (i− 1) otherwise

for i = 1, 2, . . . , imax and X̃−
k (0) = X̃k(0) − N

3 (x(t0) − ε(t0)). Note that the we have the following
equivalence:

Ẽi if and only if X̃+
k (i) ≤ 0 and X̃−

k (i) ≥ 0 (26)
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We will show that X̃+
k is a submartingale and X̃−

k is a supermartingale. We remark that it suffices to

show E
[
11Ẽi∆X̃+

k (i) | F̃i

]
≤ 0 and E

[
11Ẽi∆X̃−

k (i) | F̃i

]
≥ 0, as the increments ∆X̃+

k (i) and ∆X̃−
k (i)

are 0 by definition on the complement of Ẽi.
Let us make two preliminary computations: for any i, we have

N

3
(x(ti+1) − x(ti)) =

N

3

(
1

N
− 2ti

N
− 1

N2

)
=

1

3

(
1 − 2ti −

1

N

)
.

Further, for t ∈ (0, 1) we have ε′(t) = C log3 n
n1/3(1−t)C+1 and ε′′(t) = (C+1)C log3 n

n1/3(1−t)C+2 . By Taylor’s theorem,

for t < 1 − 1
N ,

N

3

(
ε

(
t +

1

N

)
− ε(t)

)
=

ε′(t)

3
+ O

(
ε′′(ξ)

N

)
(27)

where ξ is a point in the interval
[
t, t + 1

N

]
. (Since ε′′ is increasing in t, the expression (27) remains

valid when ξ is replaced with t + 1
N .) If we additionally assume t ≤ timax−1, then we may compute

ε′′
(
t + 1

N

)
N

= O

(
ε′
(
t + 1

N

)
n2/3

(
1 − (t + 1

N )
))

= O

(
ε′
(
t + 1

N

)
log logn

n2/3

)

= O

(
ε′(t) log log n

n2/3

)
= o(ε′(t)).

(For the penultimate line, we use that ε′
(
t + 1

N

)
= O(ε′(t)) uniformly for t ≥ t0, which follows

from a simple computation.) Thus, from the above bound and (27), for 0 ≤ i ≤ imax − 1 we have

N

3
(ε(ti+1) − ε(ti)) =

ε′(ti)

3
+ o

(
ε′(ti)

)
.

Now, using our computations and Lemma 5.1, for 0 ≤ i ≤ imax − 1,

E
[
11Ẽi∆X̃+

k (i) | F̃i

]
= E

[
11Ẽi∆X̃k(i) | F̃i

]
− 11Ẽi

(
N

3
(x(ti+1) − x(ti) + ε(ti+1) − ε(ti))

)
≤ 11Ẽi

(
1 − 2ti

3
+ c

ε′(ti)

3
− N

3
(x(ti+1) − x(ti) + ε(ti+1) − ε(ti))

)
= 11Ẽi

((
c− 1

3
+ o(1)

)
ε′(ti) + O

(
1

N

))
≤ 0.

We use that 1
N = o(ε′(ti)) for all i in the last line, and also assume that n is sufficiently large.

Thus X̃+
k is a submartingale. A symmetric computation gives that X̃−

k is a supermartingale.

In order to apply large deviation bounds, we also remark that the increments of X̃+
k and X̃−

k

are bounded in absolute value: for i = 0, 1, . . . , imax − 1,

|∆X̃+
k (i)|, |∆X̃−

k (i)| ≤ |∆X̃k(i)| +
N

3
|x(ti+1) − x(ti)| +

N

3
|ε(ti+1) − ε(ti)| = O(1).
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By Lemmas 3.1 and 3.2, we have that a.a.s.

Xk(i0) =
nx(i0/n)

3
+ O

(√
i0 log logn

)
=

nx(t0)

3
+ O(

√
n).

It follows that, a.a.s.,

X̃+
k (0) =

1

ω
Xk(i0) −

N

3
(x(t0) + ε(t0))

=
nx(t0)

3ω
+ O

(√
n

ω

)
− n

3ω
(x(t0) + ε(t0))

= O

(√
n

ω

)
− n

3ω
ε(t0)

= O(n1/6) − n1/3 log3 n

3

= −(1 + o(1))
n1/3 log3 n

3
.

We similarly get X̃−
k (0) = (1 + o(1))n

1/3 logn
3 a.a.s. In particular Ẽ0 holds (with room to spare)

a.a.s. by the equivalence (26).
Now, if the event Ẽi fails at some i = 1, . . . , imax, then we have either X̃+

k (i′) > 0 for all i′ ≥ i,

or X̃−
k (i′) < 0 for all i′ ≥ i. Therefore,

Pr(Ẽi fails for some i = 1, 2, . . . , imax) ≤
3∑

k=1

Pr(X̃+
k (imax) > 0) + Pr(X̃−

k (imax) < 0). (28)

Since X̃+
k is a submartingale with increments bounded by a constant, Proposition 1.6 (Azuma’s

inequality) gives

Pr(X̃+
k (imax) > 0) = Pr(X̃+

k (imax) − X̃+
k (0) > −X̃+

k (0))

= Pr

(
X̃+

k (imax) − X̃+
k (0) > (1 + o(1))

n1/3 log3 n

3

)

≤ exp

{
−Ω

(
n2/3 log6 n

N

)}
≤ exp

{
−Ω(log6 n)

}
= o(1)

Again using Proposition 1.6, we can similarly bound Pr(X̃−
k (imax) < 0) ≤ exp

{
−Ω(log6 n)

}
. From

these bounds and (28), the desired result follows.

5.3. Expected one-step changes. We now turn to proving Lemma 5.1. We define two auxiliary
random variables which make our computations simpler. For i ∈ [n], h ∈ [n− i], and k ∈ {1, 2, 3},
define

Hk(i, h) =

i∑
j=1

11{c(j) = k and p(j) ∈ {i + 1, . . . , i + h}}.
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We think of Hk(i, h) as the number of unsaturated vertices in [i] of colour k which are “hit” by the
edges revealed from time i + 1 to i + h; the hit vertices stop contributing to Xk after time i + h.
Let

Bk(i, h) =

h∑
j=1

11{c(i + j) = k and p(i + j) > i + h}.

Then, Bk(i, h) counts the number of unsaturated vertices of colour k which are “born” (and “sur-
vive”) from time i + 1 to i + h. We may write

E
[
∆X̃k(i) | F̃i

]
=

1

ω
E
[
Xk(i0 + (i + 1)ω) −Xk(i0 + iω) | F̃i

]
=

1

ω
E
[
−Hk(i0 + iω, ω) + Bk(i0 + iω, ω) | F̃i

]
= − 1

ω
E
[
Hk(i0 + iω, ω) | F̃i

]
+

1

ω
E
[
Bk(i0 + iω, ω) | F̃i

]
. (29)

We perform the computations of the two terms on the right-hand side of (29) separately, beginning
with 1

ωE[Hk(i0 + iω, ω) | F̃i], which is easier.

Lemma 5.3. For i = 0, 1, . . . , imax − 1,

1

ω
E[11ẼiHk(i0 + iω, ω) | F̃i] = 11Ẽi

(
ti
3
± ε′(ti)

3C

)
.

Proof. Let Ii be the interval {i0 + iω + 1, . . . , i0 + (i + 1)ω}. For any vertex j ≤ i0 + iω, if j is
unsaturated at time i0 + iω, then the probability that j is still unsaturated at time i0 + (i+ 1)ω is
exactly

ω−1∏
h=0

(
1 − 1

n− (i0 + iω + h)

)
=

(n− i0 − iω − 1)ω
(n− i0 − iω)ω

=
n− i0 − (i + 1)ω

n− i0 − iω

and hence
Pr(p(j) ∈ Ii | F̃i) = 11{p(j) > i0 + iω} ω

n− i0 − iω
.

We get,

1

ω
E [Hk(i0 + iω, ω) | Fiω] =

1

ω

i0+iω∑
j=1

E
[
11{c(j) = k and p(j) ∈ Ii} | F̃i

]

=
1

ω

i0+iω∑
j=1

11{c(j) = k}E
[
11{p(j) ∈ Ii} | F̃i

]

=
1

ω

i0+iω∑
j=1

11{c(j) = k}11{p(j) > i0 + iω} ω

n− i0 − iω

=
Xk(i0 + iω)

n− i0 − iω
=

X̃k(i)

N(1 − ti)
.

On the event Ẽi, we have

X̃k(i)

N(1 − ti)
=

x(ti) ± ε(ti)

3(1 − ti)
=

ti
3
± ε(ti)

3(1 − ti)
=

ti
3
± ε′(ti)

3C
.
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This finishes the proof of the lemma.

Computing E[Bk(i0 + iω, ω) | F̃i] more challenging.

Lemma 5.4. For i = 0, 1, . . . , imax,

E[11ẼiBk(i0 + iω, ω) | F̃i] = 11Ẽi

(
1 − ti

3
± (1 + o(1))

54Ccond + 1

3C
ε′(ti)

)
.

Proof. Define

B′
k(i, h) =

h∑
j=1

11{c(i + j) = k and p(i + j) > i + j}

and note that for any i, h we have

B′
k(i, h) − e(i, h) ≤ Bk(i, h) ≤ B′

k(i, h), (30)

where e(i, h) is the number of matching edges which join pairs of vertices in {i + 1, . . . , i + h}. To
ease notation, going forward we will write Bk = Bk(i0 + iω, ω) and B′

k = B′
k(i0 + iω, ω).

Conditioned on F̃i, we expect(
ω

2

)
n− i0 − iω −X(i0 + iω)

(n− i0 − iω)(n− i0 − iω − 1)
≤ ω2

2(n− i0 − iω − 1)
= O

(
1

n1/3(1 − ti)

)
edges in the interval {i0 + iω + 1, . . . , i0 + (i + 1)ω}. Thus, by (30),

1

ω
E[Bk | F̃i] =

1

ω
E[B′

k | F̃i] + O

(
1

n2/3(1 − ti)

)
. (31)

To bound E[B′
k | Fiω], we use a comparison with the Markov chain introduced in Section 4. For

k ∈ {1, 2, 3}, let

qk =
Xk(i0 + iω)

n− i0 − iω
=

X̃k(i)

N(1 − ti)

and define q = q1 + q2 + q3. Let Q be the transition matrix with parameters q1, q2, q3 and denote
the stationary distribution of Q by π. We also let Qbal be the transition matrix with all parameters
equal to q

3 , and denote its stationary distribution by πbal. For any j′, let Vj′ ∈ V be the type
assigned to vertex j′ by Sudoku at time j′, and for j ∈ 0, . . . , ω let ρj be the distribution on V
defined by

ρj(V ) = Pr(Vi0+iω+j = V | F̃i).

Our plan is to approximate ρj by ρ0Q
j . (Note that conditioned on F̃i, ρ0 assigns probability 1 to

Vi0+iω.) There are multiple sources of error which arise in the approximation, and we introduce
some additional parameters to account for them:

δcomp := max
0≤j≤ω

∥∥ρj − ρ0Q
j
∥∥
∞ the error incurred by approximating ρj by ρ0Q

j

δmix :=
tmix

(
1
N

)
ω

the error incurred by waiting for Q to mix to within
1

N
of stationary

δcond := ∥π − πbal∥∞ the error incurred by approximating π by πbal.
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We will deal with each of these in turn, and then perform the actual calculations. The parameters
i0 and ω and the error function ε(t) were chosen somewhat carefully so that the following situation
obtains: δcomp and δmix will be “small” errors, in the sense that it will suffice to absorb them into
O(·). The term δcond, however, will be “large”, and we will need to pay attention to constants when
dealing with it.

The term δcomp is handled by Lemma 4.4. Observe that for any 0 ≤ i ≤ imax − 1

ω

n− i0 − iω
≤ ω

n− i0 − imaxω
= O

(
log log n

n2/3

)
= o(1).

Thus we may apply Lemma 4.4 to get

δcomp = O

(
ω2

n− i0 − iω

)
= O

(
ω

N(1 − ti)

)
= O

(
1

n1/3(1 − ti)

)
. (32)

To handle the other two error terms, we will apply Lemmas 4.3 and 4.2, respectively. These both
require the parameters qk to satisfy (1 − γ) q3 < qk < (1 + γ) q3 for some value of γ ∈ (0, 1) (and

Lemma 4.3 requires γ to be sufficiently small). By conditioning on the event Ẽi, we can compute a
value of γ for which these bounds hold. Indeed, given Ẽi, we have that

qk =
X̃k(i)

N(1 − ti)
=

x(ti) ± ε(ti)

3(1 − ti)

for all k and

q =
X̃(i)

N(1 − ti)
=

x(ti) ± ε(ti)

1 − ti
.

We may write

qk
q/3

=
x(ti) ± ε(ti)

x(ti) ∓ ε(ti)
= 1 ± 2ε(ti)

x(ti)
+ O

((
ε(ti)

x(ti)

)2
)
.

(Above, we use that ε(ti) = o(x(ti)) by (25).) Thus, when the event Ẽi holds, we may assign

γ = 2ε(ti)
x(ti)

+O

((
ε(ti)
x(ti)

)2)
. Note that γ = O

(
ε(ti)
x(ti)

)
= o

(
log4

n1/3

)
= o(1) uniformly in 0 ≤ i ≤ imax−1

by (25), so in particular we are free to apply Lemma 4.3, provided n is large enough.

Lemma 4.3 gives tmix

(
1
N

)
= O

(
logN
q

)
. On Ẽi, we have

q =
x(ti) ± ε(ti)

1 − ti

=

(
1 + O

(
ε(ti)

x(ti)

))
x(ti)

1 − ti

= (1 + o(1))ti

≥ (1 + o(1))t0

= (1 + o(1))
1

log log n
.

Therefore, tmix

(
1
N

)
= O(logN log log n) = O(log2 n). So, when Ẽi holds,

δmix = O

(
log2 n

ω

)
= O

(
log2 n

n1/3

)
. (33)
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Lemma 4.2 gives that δcond ≤ 3Ccondγq. On Ẽi, we compute

γq =
2ε(ti)

1 − ti
+ O

(
ε(ti)

2

x(ti)(1 − ti)

)
=

2ε′(ti)

C
+ o(ε′(ti))

and so

δcond = (1 + o(1))
6Ccondε

′(ti)

C
. (34)

With the error terms (32), (33), and (34) in hand, we are ready to compute E[11ẼiB
′
k | F̃i]. Let

F (k) = {A(k)
f , B

(lk)
f , B

(mk)
f } ⊂ V. For j = 0, 1, . . . , ω we can express

11{c(i0 + iω + j) = k and p(i0 + iω + j) > i0 + iω + j} = 11{Vi0+iω+j ∈ F (k)}.

Write tmix = tmix

(
1
N

)
. To bound B′

k, we use

ω∑
j=tmix+1

11{Vi0+iω+j ∈ F (k)} ≤ B′
k ≤ tmix +

ω∑
j=tmix+1

11{Vi0+iω+j ∈ F (k)}. (35)

The sums above are empty if tmix ≥ ω, in which case we evaluate them to 0. Assuming that
tmix < ω, for any j with tmix + 1 ≤ j ≤ ω,

E[11{Ai0+iω+j ∈ F (k)} | F̃i] = ρj(F
(k))

= (ρ0Q
j)(F (k)) + O (δcomp)

= π(F (k)) + O

(
δcomp +

1

N

)
= πbal(F

(k)) ± 3δcond + O

(
δcomp +

1

N

)
=

1 − q

3
± 3δcond + O

(
δcomp +

1

N

)
=

1

3

(
1 − X̃(i)

N(1 − ti)

)
± 3δcond + O

(
δcomp +

1

N

)
.

In the penultimate line we use πbal(F
(k)) = 1−q

3 , which follows from an easy computation using the
stationary distribution for πbal (12). Combining the above with (35) yields the following:

1

ω
E[B′

k | F̃i] =
1

3

(
1 − X̃(i)

N(1 − ti)

)
± 3δcond + O

(
δcomp + δmix +

1

N

)
. (36)

On the event Ẽi, using (34) the main term in (36) satisfies

1

3

(
1 − X̃(i)

N(1 − ti)

)
+ 3δcond ≤ 1

3

(
1 − x(ti) − ε(ti)

1 − ti

)
+ (1 + o(1))

18Ccondε
′(ti)

C

=
1

3

(
1 − x(ti)

1 − ti

)
+

ε′(ti)

3C
+ (1 + o(1))

18Ccondε
′(ti)

C

=
1 − ti

3
+ (1 + o(1))

54Ccond + 1

3C
ε′(ti).
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In the same way, we get the lower bound

1

3

(
1 − X̃(i)

N(1 − ti)

)
− 3δcond ≥ 1 − ti

3
− (1 + o(1))

54Ccond + 1

3C
ε′(ti).

Using (32) and (33), the O(·) error term in (36) is, on Ẽi,

δcomp + δmix +
1

N
= O

(
1

n1/3(1 − ti)
+

log2 n

n1/3
+

1

n2/3

)
= o

(
ε′(ti)

)
.

In total,
1

ω
E
[
11ẼiB

′
k

]
= 11Ẽi

(
1 − ti

3
± (1 + o(1))

54Ccond + 1

3C
ε′(ti)

)
To finish, recall from (31) that 1

ωE[Bk | F̃i] = 1
ωE[B′

k | F̃i] + O
(

1
n2/3(1−ti)

)
. The O(·) term here is

clearly also o (ε′(ti)), and thus we have

1

ω
E
[
11ẼiBk

]
= 11Ẽi

(
1 − ti

3
± (1 + o(1))

54Ccond + 1

3C
ε′(ti)

)
.

This finishes the proof of the lemma.

We are now able to prove Lemma 5.1.

Proof of Lemma 5.1. From (29) and Lemmas 5.3 and 5.4, we may write

E
[
11Ẽi∆X̃k(i) | F̃i

]
= 11Ẽi

(
1 − 2ti

3
± (1 + o(1))

54Ccond + 1

3C
ε′(ti)

)
for any 0 ≤ i ≤ imax − 1. Since C = 54Ccond + 2, there is some constant c ∈ (0, 1) so that
(1 + o(1))54Ccond+1

C < c for n sufficiently large. The result follows.

6. Proof of Theorem 1.1

Proof of Theorem 1.1. Recall that we add all 2n
log logn vertices from the burn-in and completion

phases to S. Using Lemma 2.2, we then get

|S| ≤ 1

2
|BC | + |B(c)

U | + 2|B(d)
U | +

2n

log log n
,

where BC , B(c)
U , and B(d)

U are as in Subsection 2.3. We write BU = B(c)
U ∪ B(d)

U and note |B(c)
U | +

2|B(d)
U | ≤ 2|BU |. It is easy to show that |BU | = o(n) a.a.s. Indeed, for any j ∈ {i0, . . . , i1 − 1} we

have

Pr
(
j + 1 ∈ BU | Fj

)
≤ Pr

(
p(j + 1) = ptr(i) + 1 | Fj

)
≤ 1

n− j
.

Thus E[|BU |] ≤
∑i1−1

j=i0
1

n−j ≤ i1 · 1
n−i1

= O (log log n). That |BU | = o(n) a.a.s. then follows from

Markov’s inequality, and we conclude that |B(c)
U | + 2|B(d)

U | = o(n).
Now we focus on bounding |BC |. Let j ∈ {i0, . . . , i1 − 1}. Conditioned on Fj , there is a single

colour k(j) which is “forbidden” for p(j + 1) if the current run is to continue. Vertex j + 1 is in
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BC if and only if it has a forward edge, or it has a backward edge with p(j + 1) ≤ ptr(j) and
c(p(j + 1)) = k(j). Thus

Pr
(
j + 1 ∈ BC | Fj

)
≤ 1 − X(j)

n− j
+

Xk(j)(j)

n− j
. (37)

Now, consider the largest i so that i0 + iω ≤ j. We write

Xk(j)(j)

n− j
≤

Xk(j)(i0 + iω) + ω

n− j

=
Xk(j)(i0 + iω)

n− (i0 + iω)

 1

1 − j−(i0+iω)
n−(i0+iω)

+ O

(
log logn

n2/3

)

=
Xk(j)(i0 + iω)

n− (i0 + iω)

(
1 + O

(
ω

n− (i0 + iω)

))
+ O

(
log logn

n2/3

)
=

X̃k(j)(i)

N(1 − ti)
+ O

(
log logn

n2/3

)
.

Similarly,

X(j)

n− j
≥ X(i0 + iω) − ω

n− (i0 + iω)
=

X̃(i)

N(1 − ti)
−O

(
log log n

n2/3

)
.

On the event Ẽi, we thus have

1 − X(j)

n− j
+

Xk(j)(j)

n− j
≤ 1 − X̃(i)

N(1 − ti)
+

X̃k(j)(i)

N(1 − ti)
+ O

(
log logn

n2/3

)
≤ 1 − x(ti) − ε(ti)

1 − ti
+

x(ti) + ε(ti)

3(1 − ti)
+ O

(
log logn

n2/3

)
= 1 − 2ti

3
+ O

(
ε(ti)

1 − ti
+

log logn

n2/3

)
= 1 − 2ti

3
+ O

(
log4 n

n1/3

)
= (1 + o(1))

(
1 − 2ti

3

)
.

For the penultimate line, we use that ε(ti)
1−ti

= log3 n
n1/3(1−ti)C+1 ≤ log3 n(log logn)C+1

n1/3 for ti ≤ 1 − 1
log logn .

For the last, note that 1
3 ≤ 1 − 2ti

3 ≤ 1 for ti ∈ [0, 1].

Since Ẽi holds for all i = 0, 1, . . . , imax = n
ω

(
1 − 1

log logn

)
a.a.s. by Theorem 5.2, we may conclude

from the above and (37) that for all j ∈ {i0 + 1, . . . , i1}, we have

Pr
(
j + 1 ∈ BC | Fj

)
≤ (1 + o(1))

(
1 − 2ti

3

)
,

where i is the largest index so that i0 + iω ≤ j.
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The sum
∑i1

j=i0+1 11{j ∈ BC} is thus stochastically dominated by a sum of independent {0, 1}-
random variables

Z =

imax−1∑
i=0

ω∑
h=1

Z
(i)
h ,

where Pr(Z
(i)
h = 1) = (1 + o(1))

(
1 − 2ti

3

)
for all h = 1, 2, . . . , ω, uniformly in i. We compute

E[Z] = (1 + o(1))ω

imax−1∑
i=0

(
1 − 2ti

3

)

= (1 + o(1))ω

imax−1∑
i=0

(
1 − 2

3
· i0 + iω

n

)

= (1 + o(1))ωimax

(
1 − 2i0

3n

)
− 2ω

3n

imax−1∑
i=0

i

= (1 + o(1))

(
n− 2ω

3n

i2max

2

)
= (1 + o(1))

2n

3
.

It follows from Proposition 1.5 that Z ≤ (1 + o(1))E[Z] = (1 + o(1))2n3 a.a.s. Since Z stochastically
dominates |BC |, we may conclude 1

2 |BC | ≤ (1 + o(1))n3 a.a.s., completing the proof.

7. Conclusion

In this paper, we have shown that s(Gn,3) ≤ (1 + o(1))n3 a.a.s., and have additionally made
the conjecture that s(Gn,3) = (1 + o(1))n4 a.a.s., which is (asymptotically) smallest possible for
cubic graphs on n vertices. Resolving this conjecture is an interesting direction for future research.
Another one is to study s(Gn,d) for d ≥ 4—a problem which at present appears challenging.

We considered the following crude technique for upper bounding the Sudoku number of a graph
G with chromatic number k. Start with any k-coloring of G using colour classes {1, 2, . . . , k}.
Iteratively move vertices from class k to another available class until every remaining vertex has a
neighbour in each class i for i = 1, . . . , k−1. Then the union of classes 1 through k−1 is a Sudoku
set for G, and we have the bound

s(G) ≤ (χ(G) − 1)α(G), (38)

where α(G) is the size of the largest independent set in G.
Using the best available bound α(Gn,4) ≤ 0.41635 a.a.s. (see [23]) and the fact that χ(Gn,4) = 3

a.a.s. ([26]), (38) gives s(Gn,4) ≤ 0.8327n a.a.s. The next value of d for which χ(Gn,d) is known
explicitly is d = 6, where we have χ(Gn,d) = 4 a.a.s. [27]. However, it has been shown that Gn,6 has
an independent set of size at least 0.33296n a.a.s. [8], meaning that any bound using (38) for d = 6
will be very close to n. In fact, currently available upper bounds, such as 0.35799n, are well above
n/3 (see for instance [8]) and thus, are far from providing any useful bound on s(Gn,6). For large
d, (38) is too weak to say anything nontrivial about s(Gn,d). Indeed, for d → ∞ sufficiently slowly
with respect to n, it is known that χ(Gn,d) = (1 + o(1)) n

α(Gn,d)
= (1 + o(1)) d

2 log d a.a.s. [10].
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For small d, one could attempt to construct a Sudoku set algorithmically as we did for d = 3.
In [26] and [27], Shi and Wormald analyze an algorithm which efficiently colours Gn,d a.a.s. for
d ∈ {4, 5, . . . , 10}, using exactly χ(Gn,d) colours for d = 4 and d = 6 and at most χ(Gn,d)+1 colours
for the other values of d. It is conceivable that their algorithm could be adapted to produce a
Sudoku set along with the colouring, although this task appears to be difficult.

References

[1] S. Bau, N.C. Wormald, and S. Zhou. Decycling numbers of random regular graphs. Random
Structures & Algorithms, 21(3-4):397–413, 2002.

[2] P. Bennett and A. Dudek. A gentle introduction to the differential equation method and
dynamic concentration. Discrete Math., 345(12):Paper No. 113071, 2022.

[3] B. Bollobás. A probabilistic proof of an asymptotic formula for the number of labelled regular
graphs. European J. Combin., 1(4):311–316, 1980.

[4] S. Cambie. Bounds and monotonicity of critical set parameters of colourings. Discrete Math.,
347(7):Paper No. 114041, 2024.

[5] G.E. Cho and C.D. Meyer. Markov chain sensitivity measured by mean first passage times.
Linear Algebra Appl., 316(1-3):21–28, 2000.

[6] J. Cooper and A. Kirkpatrick. Critical sets for sudoku and general graph colorings. Discrete
Math., 315:112–119, 2014.

[7] B. Doerr. Probabilistic tools for the analysis of randomized optimization heuristics. In Theory
of evolutionary computation—recent developments in discrete optimization, Nat. Comput. Ser.,
pages 1–87. Springer, Cham, 2020.

[8] W. Duckworth and M. Zito. Large independent sets in random regular graphs. Theoret.
Comput. Sci., 410(50):5236–5243, 2009.
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