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Abstract

We present two ways to measure the simplicial nature of a hypergraph: the sim-
plicial ratio and the simplicial matrix. We show that the simplicial ratio captures the
frequency, as well as the rarity, of simplicial interactions in a hypergraph while the
simplicial matrix provides more fine-grained details. We then compute the simplicial
ratio, as well as the simplicial matrix, for 10 real-world hypergraphs and, from the
data collected, hypothesize that simplicial interactions are more and more deliberate
as edge size increases. We then present a new Chung-Lu model that includes a pa-
rameter controlling (in expectation) the frequency of simplicial interactions. We use
this new model, as well as the real-world hypergraphs, to show that multiple stochas-
tic processes exhibit different behaviour when performed on simplicial hypergraphs vs.
non-simplicial hypergraphs.

1 Introduction

Many datasets that are typically represented as graphs would be more accurately represented
as hypergraphs. For example, in the graph representation of a collaboration dataset, authors
are represented as vertices and an edge exists between two vertices if the corresponding
authors wrote a paper together [26]. Using this representation, it is impossible to distinguish
between a three-author paper and three separate two-author papers. In contrast, when
we represent a collaboration dataset as a hypergraph we can clearly distinguish between a
three-author paper (a single hyperedge) and three separate two-author papers (three distinct
hyperedges). Hypergraph representations have proven to be useful for studying collaboration
datasets [12], protein complexes and metabolic reactions [9], and many other datasets that

∗Department of Mathematics, Toronto Metropolitan University, Toronto, ON, Canada; e-mail:
jordan.barrett@torontomu.ca

†Department of Mathematics, Toronto Metropolitan University, Toronto, ON, Canada; e-mail:
pralat@torontomu.ca

‡Department of Mathematics and Statistics, University of Ottawa, Ottawa, ON, Canada; e-mail:
asmi28@uOttawa.ca

§Tutte Institute for Mathematics and Computing, Ottawa, ON, Canada; email: theberge@ieee.org

1



are traditionally represented as graphs [24]. Moreover, after many years of intense research
using graph theory in modelling and mining complex networks [8, 11, 16, 25], hypergraph
theory has started to gain considerable traction [3, 4, 5, 6, 18, 14, 17]. It is becoming clear
to both researchers and practitioners that higher-order representations are needed to study
datasets involving higher-order interactions [5, 20, 28, 24].

Similar to hypergraph representations, simplicial complexes provide another way to rep-
resent datasets with higher-order interactions and, in some cases, it is not clear what the
better model is for a given dataset [19, 29, 31]. The notion of simpliciality was first intro-
duced by Landry, Young and Eikmeier in [22] as a way of describing how closely a hypergraph
resembles its simplicial closure. In their work, they discover that many hypergraphs built
from real-world data, although not actually simplicial complexes, resemble their simplicial
closures more closely than random hypergraphs. In a similar but distinct study, LaRock and
Lambiotte in [23] find that real-world hypergraphs often contain more instances of hyper-
edges contained in other hyperedges than in random hypergraphs. The results found in these
two papers suggest that real-world hypergraphs are organized in a way where many of the
small hyperedges live inside larger hyperedges. In our work, we pursue this idea further and
define a ratio and a matrix for hypergraphs, which we call the simplicial ratio and simplicial
matrix respectively, based on the number of instances of hyperedges inside other hyperedges
compared to that of a null model.

The remainder of the paper is organized as follows. In Sections 1.1 and 1.2 we discuss
notation as well as the measures for simpliciality given in [22]. Next, we define the simplicial
ratio in Section 2.1, the simplicial matrix in Section 2.2, and temporal variants in Section 2.3.
Then, in Section 3.1 we compute the simplicial ratio and simplicial matrix of the same 10
real-world hypergraphs that were studied in [22] and then analyse this data in Section 3.2.
In Section 4 we present a new random graph model that allows for more or less instances
of hyperedges inside other hyperedges depending on an input parameter q ∈ [0, 1]. In
Section 5 we experiment with four stochastic processes, comparing the processes on real-
world hypergraphs and on our proposed model for varying q. We conclude and suggest
further research in Section 6. Finally, let us mention that this paper is a (long) journal
version of the (short) proceeding paper published in [2].

1.1 Notation

In this paper, we use the terms graph and edge in lieu of hypergraph and hyperedge.
A graph G is a pair (V (G), E(G)) where V (G) is a set of vertices and E(G) is a collection

of edges, i.e., a collection of subsets of vertices. We insist that ∅ /∈ E(G) for any graph
G. In general, for a graph G and edge e ∈ E(G), it is acceptable that |e| = 1. In this
paper, however, we forbid such edges and consider only edges of size at least 2. We write
[n] := {1, . . . , n} and typically label the vertices in G as [n]. A subgraph of a graph G is any
graph H = (V (H), E(H)) with V (H) ⊆ V (G) and E(H) ⊆ E(G) (note that, as H is itself a
graph, any edge e ∈ E(H) contains only vertices in V (H)). For e ∈ E(G), write |e| for the
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size of e and, for each positive integer k, define

Ek(G) := {e ∈ E(G), |e| = k} .

If Ek(G) = E(G) for some k > 0, then we call G a k-uniform graph. Note that, for any
graph G, the graph Gk := (V (G), Ek(G)) is a k-uniform subgraph of G, and

G =
⋃
k>0

Gk ,

and thus every graph is the edge-disjoint union of uniform subgraphs.
A multigraph G is a graph that allows edges e ∈ E(G) with more than one instance of the

same vertex (multiset edges) and allows multiple edges e1, . . . , ek ∈ E(G) that are identical
(parallel edges); a graph G is simple if it contains no multiset edges or parallel edges. Note
that all simple graphs are multigraphs. For a multigraph G and a vertex v, writing mG(v, e)
for the number of instances of v in e, the degree of v in G, denoted degG(v), is defined as

degG(v) :=
∑

e∈E(G)

mG(v, e) .

If G is simple, we equivalently have

degG(v) =
∣∣∣{e ∈ E(G)

∣∣ v ∈ e
}∣∣∣ .

All graphs in this paper are simple except for the random graphs generated by Algorithm 2
and Algorithm 4.

We use standard notation for probability, i.e., P (·) for probability, E [·] for expectation.

We write X ∼ U to mean X is sampled from distribution U and write X1, . . . , Xk
i.i.d.∼ U to

mean X1, . . . , Xk are sampled independently and identically from distribution U . For a set
S, we write X ∈u S to mean that X is chosen uniformly at random from S.

1.2 Measures for simpliciality

In [22], Landry, Young and Eikmeier establish three distinct measures quantifying how close
a graph is to a simplicial complex. The first measure they establish is the simplicial fraction.
Given a graph G, let S ⊆ E(G) be the set of edges such that e ∈ S if and only if |e| ≥ 3 and,
for all f ⊆ e with |f | ≥ 2, f ∈ E(G). Then the simplicial fraction of G, written σSF(G), is
defined as

σSF(G) :=
|S|∣∣⋃

k≥3Ek(G)
∣∣ .

In words, σSF(G) is the proportion of edges of size at least 3 in E(G) that satisfy downward
closure.
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The second and third measures that Landry, Young and Eikmeier establish are the edit
simpliciality and the face edit simpliciality, respectively. For a graph G, define the k-closure,
written Gk, as the graph (V (Gk), E(Gk)) where

V (Gk) = V (G),

E(Gk) =
{
e ⊆ V (G)

∣∣∣ |e| ≥ k and e ⊆ f for some f ∈ E(G)
}
.

Then the edit simpliciality of G, written σES(G), is defined as

σES(G) :=
|E(G)|
|E(G2)|

.

Thus, 1 − σES(G) is the (normalized) number of additional edges needed to turn G into its
2-closure. Similarly, the face edit simpliciality of G, written σFES(G), is the average edit
simpliciality across all induced subgraphs defined by maximal edges (edges not contained in
other edges) in

⋃
k≥3Ek(G).

Using the three measures defined above, Landry, Young and Eikmeier show that real-
world graphs are significantly more simplicial than graphs sampled from random models.
However, they also note some unique short-comings of each measure. In the following two
examples, we show some additional short-comings that are shared among all three measures.
The first example shows that none of the measures properly capture the types of simplicial
relationships in a graph.

Example 1.1. Fix n, k with 5 ≤ k and 3k ≤ n. Let G1 be a graph on the vertex set [n]
and with three edges {1, . . . , k}, {k + 1, . . . , 2k}, {2k + 1, . . . , 3k} of size k and three edges
{1, 2, 3}, {k + 1, k + 2, k + 3}, {2k + 1, 2k + 2, 2k + 3} of size 3. Let G2 be a graph on the
same vertex set and with the same three edges {1, . . . , k}, {k + 1, . . . , 2k}, {2k + 1, . . . , 3k}
of size k, but now with three edges {1, . . . , k − 1}, {k + 1, . . . , 2k − 1}, {2k + 1, . . . , 3k − 1}
of size k − 1. See Figure 1 for an illustration of G1 and G2 with n = 18 and k = 6.

With G1 and G2 as defined above, we have

σSF(G1) = σSF(G2) = 0 ,

σES(G1) = σES(G2) =
2 · 3

(2k − k − 1) · 3
=

2

2k − k − 1
, and

σFES(G1) = σFES(G2) =
2

2k − k − 1
,

the value 2k −k− 1 coming from the fact that there are 2k subsets, k of which are subsets of
size 1, and 1 of which is the empty set. Thus, by all three measures, G1 and G2 are equally
simplicial. However, qualitatively the simplicial relationships in G1 are different than in G2.
Consider, for example, edges e3, e5, e6 in an Erdős-Rényi random graph on n vertices with
|e3| = 3, |e5| = 5 and |e6| = 6. Then, the probability of e3 ⊂ e6 (as in G1) is of order n−3,
whereas the probability of e5 ⊂ e6 (as in G2) is of order n−5.
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Figure 1: (left) a graph G1 with 18 vertices, 3 edges of size 6, and 3 edges of size 3, and
(right) a graph G2 with 18 vertices, 3 edges of size 6, and 3 edges of size 5. We have
σSF(G1) = σSF(G2) = 0, σES(G1) = σES(G2) = 2/57, and σFES(G1) = σFES(G2) = 2/57.

The second example shows that, while the three measures are good indicators of how
close a graph is to its 2-closure, none of the measures are good indicators of how common it
is to see edges inside of other edges in the graph.

Example 1.2. Let G1 and G2 be as shown in Figure 2. There is a clear, strong simplicial
structure in G1, and there is clearly no simplicial structure in G2. However, in both graphs,
the simplicial fraction is 0 (none of the edges satisfy downward closure). Moreover, the
edit simpliciality of G1 is 4/57 ≈ 0.07 and of G2 is 3/41 ≈ 0.07. Likewise, the face edit
simpliciality of G1 is 4/57 ≈ 0.07 and of G2 is

1

3

(
1

26
+

1

11
+

1

4

)
≈ 0.13 .

Thus, G1 and G2 are equally simplicial according to the simplicial fraction and the edit
simpliciality and, more strikingly, G1 is less simplicial than G2 according to the face edit
simpliciality.

As mentioned previously, Examples 1.1 and 1.2 are not issues when we treat the simplicial
fraction, edit simpliciality, and face edit simpliciality as measures of how close a graph is
to its 2-closure (as was their intended purpose). Instead, these examples suggest that if we
want to understand the extent to which edges sit inside other edges in real-world networks
then we need a new type of scoring system.

2 A new approach to simpliciality

We aim to quantify a graph based on the frequency and rarity of edges inside other edges
when compared to a null model. The metrics we present focus on the regime where data
is “slightly” more simplicial than random (and so nearly-complete large simplices are ex-
tremely rare), while previous metrics focus on the regime where data is “almost completely”
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Figure 2: (left) a graph G1 with 6 vertices and 4 edges, and (right) a graph G2 with 10 vertices
and 3 edges. We have σSF(G1) = 0, σES(G1) ≈ 0.07, σFES(G1) ≈ 0.07, and σSF(G2) = 0,
σES(G2) ≈ 0.07, σFES(G2) ≈ 0.13.

simplicial. The motivation behind these metrics is that the former regime is often more
appropriate in real networks.

The hypergraph Chung-Lu model

In the material to come, we frequently reference the hypergraph Chung-Lu model. The
original model was defined for graphs [7] and has been extensively studied since then. More
recently, the model was generalized to other structures, including geometric graphs [15, 13]
(both undirected and directed variants) as well as hypergraphs [14]. We give an algorithm
for building the hypergraph model, conditioned on the number of edges, and point the reader
to [14] for a full description of the model.

Let (d1, . . . , dn) be a degree sequence on vertex set [n] and let (mkmin
, . . . ,mkmax) be a

sequence of edge sizes where mk represents the number of edges of size k. Then, writing p(·)
for the probability distribution with p(v) = dv/

∑
u∈[n] du for all v ∈ [n], we first give the

algorithm that generates a Chung-Lu edge of a given size.

Algorithm 1 Chung-Lu edge.

Require: (d1, . . . , dn), k

1: Sample e[1], . . . , e[k]
i.i.d.∼ p(·).

2: Return {e[1], . . . , e[k]}

We now give the algorithm that generates a Chung-Lu graph.
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Algorithm 2 Chung-Lu Model.

Require: (d1, . . . , dn), (mkmin
, . . . ,mkmax).

1: Initialize edge list E = {}.
2: for k ∈ {kmin, . . . , kmax} do
3: for i ∈ [mk] do

4: sample e ∼ Algorithm 1
(

(d1, . . . , dn), k
)

.

5: Set E = E ∪ {e}.
6: end for
7: end for
8: Return G = ([n], E).

For a graph G with degree sequence d = (d1, . . . , dn) and edge size sequence m =
(mkmin

, . . . ,mkmax), we write Ĝ ∼ CL(G) to mean Ĝ ∼ CL(d,m), where CL(d,m) is the
random graph returned by Algorithm 2. A key feature of the Chung-Lu model is that the
degree sequence is preserved in expectation.

Lemma 2.1. Let Ĝ ∼ CL(G) for some graph G. Then

E [degĜ(v)] = degG(v)

for all v ∈ [n].

Proof. Let dv := degG(v) for all v ∈ [n]. First, note that every vertex in every edge of Ĝ is
sampled independently with probability p, where p(v) = dv∑

u∈[n] du
. Thus, the expected total

occurrence of v in E(Ĝ) is

p(v)
∑

e∈E(G)

|e| =

(
dv∑

u∈[n] du

) ∑
e∈E(G)

|e| =

(
dv∑

u∈[n] du

)∑
u∈[n]

du = dv ,

the second equality coming from the hypergraph counterpart of the hand-shaking lemma.
Given that the total occurrence of v in E(Ĝ) is precisely degĜ(v), the lemma follows.

2.1 The simplicial ratio

For a graph G, a simplicial pair in G is a pair of distinct edges e1, e2 ∈ E(G) with e1 ⊂ e2.
Let sp (G) be the number of simplicial pairs in G.

Let G be a graph and let Ĝ ∼ CL(G) conditioned on Ĝ having no multiset edges. Then
the simplicial ratio, denoted by σSR (G), is defined as

σSR (G) :=
sp (G)

E
[
sp
(
Ĝ
)] ,

if E
[
sp
(
Ĝ
)]

> 0, and σSR (G) := 1 otherwise. In words, σSR (G) is the ratio of the number

of simplicial pairs to the expected number of simplicial pairs.
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Remark 2.2. If E
[
sp
(
Ĝ
)]

= 0 then it is necessarily the case that sp (G) = 0, since it is

always true that P
(
Ĝ = G

)
> 0. Moreover, if sp (G) = 0 and E

[
sp
(
Ĝ
)]

= 0 then the

number of simplicial pairs is as expected and so we define σSR (G) = 1.

Remark 2.3. We have mentioned already that the sizes of the edges in a simplicial pair are
important. For this reason, we condition on Ĝ ∼ CL(G) having no multiset edges.

Remark 2.4. Our choice of the Chung-Lu model is not necessary for defining the simplicial
ratio. One could equivalently define the simplicial ratio by taking expectations with respect
to any model: the configuration model, Erdős-Rényi model, Stochastic Block Model, ABCD
model, etc. We choose to use the Chung-Lu model as, in our opinion, it achieves the best bal-
ance of (a) retaining important features of a graph and (b) allowing for fast approximations

of E
[
sp
(
Ĝ
)]

.

Remark 2.5. As mentioned in the previous remark, we approximate E
[
sp
(
Ĝ
)]

rather than

compute this expectation exactly. For a graph G, computing E
[
sp
(
Ĝ
)]

is quite difficult as

we discuss in the open problems presented in Section 6.1. We approximate using a Monte
Carlo estimator which is detailed in Appendix B.

Examples

Let us revisit Examples 1.1 and 1.2.
Starting with Example 1.1, the number of simplicial pairs in both graphs is 3. However,

in G1 the expected number of simplicial pairs is ≈ 0.3, and in G2 this expectation is ≈ 0.008.
Thus, σSR (G1) ≈ 10, whereas σSR (G2) ≈ 380, suggesting that the number of simplicial
relationships in G2 is far more surprising than in G1. This result confirms that the simplicial
ratio weighs different types of simplicial pairs differently.

Continuing with Example 1.2, we have that sp (G1) = 6 and E
[
sp
(
Ĝ
)]

≈ 4.3, meaning

σSR (G1) ≈ 1.4, whereas sp (G2) = 0 and E
[
sp
(
Ĝ2

)]
≈ 0.2 > 0, meaning σSR (G2) = 0.

Thus, the simplicial ratio can clearly distinguish G1 and G2.
By computing the simplicial ratio of the graphs in Examples 1.1 and 1.2, we see a clear

distinction between the three measures given in [22] and the simplicial ratio that we present
here: the simplicial fraction, edit simpliciality, and face edit simpliciality are all ways of
measuring how close a graph is to its induced simplicial complex, whereas the simplicial
ratio is a way to measure how surprisingly simplicial a graph is.

2.2 The simplicial matrix

For a graph G, write sp (G, i, j) for the number of simplicial pairs (e1, e2) in G with |e1| = i
and |e2| = j with i < j. Then, letting Ĝ ∼ CL(G) conditioned on having no multiset edges,
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the simplicial matrix of G, denoted by MSR (G), is the partial matrix with cell (i, j) equalling

MSR (G, i, j) :=
sp (G, i, j)

E
[
sp
(
Ĝ, i, j

)]
whenever i < j and G contains edges of size i and of size j (and substituting 0 if there are
no simplicial pairs of this type), and with cell (i, j) being empty otherwise.

Remark 2.6. We once again approximate E
[
sp
(
Ĝ, i, j

)]
via the sampling technique found

in Appendix B.

Intuitively, the simplicial matrix “unpacks” the simplicial ratio and shows how power-
ful the simplicial interactions between edges of all different sizes are. More formally, the
simplicial matrix and simplicial ratio of G satisfy the following weighted sum.

σSR (G) =
∑
i<j

wi,j ·MSR (G, i, j)

where

wi,j :=
E
[
sp
(
Ĝ, i, j

)]
E
[
sp
(
Ĝ
)] ,

∑
i<j

wi,j = 1 .

We will see in Section 3 that the simplicial matrix reveals information about real-world
graphs that the simplicial ratio alone does not. In particular, a hypothesis we make in this
paper, as suggest by these matrices, is that the composition of an edge in a real-world network
becomes more dependent on simpliciality as the edge size increases.

Examples

We again revisit Examples 1.1 and 1.2. In Example 1.1, MSR (G1) contains one non-empty
cell, (3, 6), with value ≈ 10, and MSR (G2) contains one non-empty cell, (5, 6), with value
≈ 380.

Example 1.2 is more interesting as G1 contains simplicial pairs of various types. For G1,
we have

MSR (G1) ≈


∅ ∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ 3.8 1.7 1
∅ ∅ ∅ ∅ 2.4 1
∅ ∅ ∅ ∅ ∅ 1
∅ ∅ ∅ ∅ ∅ ∅

 ,

and for G2 we have

MSR (G2) ≈


∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ 0 0
∅ ∅ ∅ ∅ 0
∅ ∅ ∅ ∅ ∅

 .
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The simplicial matrix for G1 unpacks the information about its simplicial interactions. In-
deed, the simplicial ratio simply tells us that the number of simplicial pairs is 1.4 times more
than expected. On the other hand, the simplicial matrix tells us that all 3 simplicial pairs
involving the edge of size 6 are to be expected, whereas the other three simplicial pairs are
at least somewhat surprising. We can also see that the existence of the (3, 4) pair in G1 is
more surprising than the existence of the (3, 5) pair, which is in turn more surprising than
the existence of the (3, 6) pair. In general, given a graph G and distinct edge sizes i < j < k,
if G has the property that |Ej(G)| ≤ |Ek(G)| then it follows from the sampling process in
Algorithm 1 that E [sp (G, i, j)] ≤ E [sp (G, i, k)]. In the case of Example 1.2, we have that
|E4(G1)| = |E5(G1)| = |E6(G1)| = 1 and E [sp (G1, 3, 4)] ≈ 0.26, E [sp (G1, 3, 5)] ≈ 0.59, and
E [sp (G1, 3, 6)] = 1.

2.3 Including a temporal element

Many networks (both real and synthetic) are not merely static graphs, but rather evolving
process with edges forming over time. In these evolving processes, there are two distinct
formations of a simplicial pair: either a small edge could form first, followed by a larger
(superset) edge, or a large edge could form first, followed by a smaller (subset) edge. In the
context of a collaboration graph, a “bottom-up” formation is a group of collaborators who
invite more people for a future collaboration, whereas a “top-down” formation is a group
who exclude some people for a future collaboration. At least in this context, there is a
substantial difference between bottom-up simplicial pairs and top-down simplicial pairs, and
we would ultimately like to know how different networks bias towards or against the two
types of simplicial formations. For this reason, we include a version of the simplicial ratio
and of the simplicial matrix that accounts for time-stamped edges. In the definitions to
come, we assume that no two edges are born at the exact same time.

Let G be an evolving graph with time-stamped edges E(G) = (e1, . . . , em) such that ei
was generated before ei+1 for all 1 ≤ i < m. Next, let sp �(G) be the number of simplicial
pairs (ei, ej) in G with i < j and |ei| < |ej|, and let sp

�
(G) be the number of simplicial pairs

(ei, ej) with i > j and |ei| < |ej|. Finally, let Ĝ ∼ CL(G) and assign a uniformly random

ordering to the edges of Ĝ. Then the bottom-up simplicial ratio and top-down simplicial
ratio of G, denoted σ �

SR (G) and σ
�
SR (G) respectively, are defined as

σ �
SR (G) :=

sp �(G)

E
[
sp �
(
Ĝ
)] and σ

�
SR (G) :=

sp
�

(G)

E
[
sp

�
(
Ĝ
)] .

Remark 2.7. By symmetry, we have that E
[
sp �
(
Ĝ
)]

= E
[
sp

�
(
Ĝ
)]

= 1
2
· E
[
sp
(
Ĝ
)]

.

Thus, we can equivalently define the bottom-up simplicial ratio and top-down simplicial
ratio respectively as

2 · sp �(G)

E
[
sp
(
Ĝ
)] and

2 · sp
�

(G)

E
[
sp
(
Ĝ
)] .
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For the temporal version of the simplicial matrix we distinguish between bottom-up and
top-down simplicial pairs by their location in the matrix. For a temporal graph G with edge
ordering E(G) = (e1, . . . , em) and for k < ℓ, write sp �(G, k, ℓ) for the number of simplicial
pairs (ei, ej) such that i < j, |ei| = k, and |ej| = ℓ. Likewise, write sp

�
(G, k, ℓ) for the

number of simplicial pairs (ei, ej) such that i > j, |ei| = k and |ej| = ℓ. Then the temporal
simplicial matrix, denoted M→

SR (G), is the partial matrix with cell (k, ℓ) equalling

M→
SR (G, k, ℓ) :=

sp �(G, k, ℓ)

E
[
sp �
(
Ĝ, k, ℓ

)] ,
cell (ℓ, k) equalling

M→
SR (G, ℓ, k) :=

sp
�

(G, k, ℓ)

E
[
sp

�
(
Ĝ, k, ℓ

)] ,
for all valid k < ℓ, and cells (k, ℓ) and (ℓ, k) being empty otherwise.

3 Empirical results

In this section, we show the simplicial ratio and simplicial matrix, both with and without a
temporal element where applicable, for the same 10 graphs that were analysed in [22]. We
then comment on the data and build some hypotheses about the simplicial nature of real
networks.

The 10 graphs are all taken from [21] and full descriptions can be found there. We
paraphrase and summarize the descriptions below.

contact-primary-school: a temporal graph where nodes are primary students and edges
are instances of contact (physical proximity) between students.

contact-high-school: the same as contact-primary-school except with high-school students.

hospital-lyon: the same as contact-primary-school and contact-high-school except with
patients and health-care workers in a hospital.

email-enron: a temporal graph where nodes are email-addresses and edges comprise the
sender and receivers of emails.

email-eu: the same as email-enron except built from a different organization.

diseasome: a static (non-temporal) graph where nodes are diseases and edges are collections
of diseases with a common gene.

disgenenet: a static graph where nodes are genes and edges are collections of genes found
in a disease. In other words, disgenenet is precisely the line-graph of diseasome.
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ndc-substances: a static graph where nodes are substances and edges are collections of
substances that make up various drugs.

congress-bills: a temporal graph where nodes are US Congresspersons and edges comprise
the sponsor and co-sponsors of legislative bills put forth in both the House of Representatives
and the Senate.

tags-ask-ubuntu: a temporal graph where nodes are tags and edges are collections of tags
applied to questions on the website askubuntu.com.

For each graph, we restrict to edges of sizes 2 through 11, as is the case in [22]. We throw
away multi-edges, only keeping the first occurrence of each edge in the case of temporal

graphs. We approximate E
[
Ĝ
]

using the Monte Carlo method presented in Appendix B.

3.1 The data

We first show a table which includes the ratios, as well as useful information about each
graph.

G |V (G)| |E(G)| [|E2|, |E3|, |E4|, |E≥5|] σSR (G) σ �
SR (G) σ

�
SR (G)

disgenenet 1982 760 [157, 139, 93, 371] 28.81 n.a. n.a.
contact-h.s. 327 7818 [5498, 2091, 222, 7] 6.68 11.19 2.17
diseasome 516 314 [153, 92, 26, 43] 6.49 n.a. n.a.
email-eu 967 23729 [13k, 5k, 2k, 4k] 5.19 5.77 3.72

email-enron 143 1442 [809, 317, 138, 178] 4.96 6.98 2.94
congress-bills 1715 58788 [14k, 10k, 8k, 27k] 4.46 5.23 3.69

ndc-substances 2740 4754 [1130, 745, 535, 2344] 4.22 n.a. n.a.
contact-p.s. 242 12704 [7748, 4600, 347, 9] 2.74 4.82 0.66

hospital-lyon 75 1824 [1107, 657, 58, 2] 0.94 1.71 0.17
tags-ask-ubuntu 3021 145053 [28k, 52k, 39k, 25k] 0.69 1.09 0.29

Table 1: The simplicial ratio of 10 real networks and the corresponding bottom-up simplicial
ratio and top-down simplicial ratio for the 7 temporal networks. The graphs are ordered
according to σSR (G), from largest to smallest.

In Figure 4 we show the simplicial matrices of these graphs and in Figure 5 we show the
temporal matrices of the 7 temporal graphs. For readability we show only the non-empty
cells of the partial matrices and omit cells involving edges of size greater than 5. Figure 3
shows the simplified presentation of the simplicial matrix of G1 from Example 1.2.
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Figure 3: The simplicial matrix of G1 from Example 1.2, presented in a simplified manner.
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Figure 4: The simplicial matrix of 10 real networks, as well as the cell-wise average matrix.
For each graph G, only non-empty cells of MSR (G) are shown, and cells involving edges of
size greater than 5 are omitted. The value of a cell is replaced with “> 1k” whenever the
value is above 1000.
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Figure 5: The temporal simplicial matrix of 7 real networks, as well as the cell-wise average
matrix. For each graph G, only non-empty cells of M→

SR (G) are shown, and cells involving
edges of size greater than 5 are omitted. The value of a cell is replaced with “> 1k” whenever
the value is above 1000.

3.2 Analysis

Simplicial ratio

Based on our results, we see that that biology networks are, on average, more surprisingly
simplicial than contact-based networks and email networks. In contrast, it was shown in [22]
that contact-based networks are the closest to their simplicial closures and biological networks
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are furthest from theirs. In fact, comparing the ranks of the 3 existing measures (sf, es, fes)
and the ranks from our simplicial ratio (sr), we get the following Kendall correlation values.

sf es fes sr

sf 1.000 0.706 0.989 -0.270
es 0.706 1.000 0.722 -0.256
fes 0.989 0.722 1.000 -0.289
sr -0.270 -0.256 -0.289 1.000

These values show that our ranking system is negatively correlated with the ranking systems
in [22]. A partial explanation for this correlation is that (a) the measures behave differently
under different regimes of edge density and (b) the 10 datasets cover a wide range of edge
density.

Bottom-up and top-down simplicial ratios

In our testing, we find that every temporal graph contains more bottom-up simplicial pairs
than top-down simplicial pairs. This suggests that, in general for many real networks, a
small edge leading to a larger (superset) edge is more common than a large edge leading
to a smaller (subset) edge. However, this result is heavily biased on our choice of keeping
only the first instance of an edge. To see this bias, let G be a temporal graph with edges
e1, e2 ∈ E(G) such that e1 ⊂ e2 and suppose that e1 appears with multiplicity 5 and that e2
appears with multiplicity 1. Then there are 6 possible birth orderings for e2 and the 5 copies
of e1, and only 1 such ordering sees e2 born before e1. In most of the temporal networks
analysed, the highest frequency of multi-edges are indeed 2-edges, and hence this bottom-up
trend is at least partly explained by the above discussion. The topic of temporal simpliciality
is one that we intend on exploring further in future works.

Simplicial matrix

Arguably the most immediate take-away from these matrices is that simplicial interactions
become more surprising as edge size increases. Although this feature is interesting, there is
at least a partial explanation for this phenomenon that we explore in the following example.

Example 3.1. Let n ∈ N, d be a uniform degree sequence, and let m = (m2, . . . ,m5) be
a sequence of edge sizes with m2 = m3 = m4 = m5 = n. Now let G ∼ CL(n,p,m), and
let e2, e3, e4, e5 ∈ E(G) be chosen uniformly at random conditioned on |ei| = i for each
i ∈ {2, 3, 4, 5}. Then, writing Xi,j for the indicator variable which is 1 if ei ⊂ ej, we have

E [X2,3] ∝ n−2 E [X2,4] ∝ n−2 E [X2,5] ∝ n−2

E [X3,4] ∝ n−3 E [X3,5] ∝ n−3

E [X4,5] ∝ n−4
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which implies

E [sp (G, 2, 3)] ∝ 1 E [sp (G, 2, 4)] ∝ 1 E [sp (G, 2, 5)] ∝ 1
E [sp (G, 3, 4)] ∝ 1/n E [sp (G, 3, 5)] ∝ 1/n

E [sp (G, 4, 5)] ∝ 1/n2

Now, let H be a graph with degree sequence d and edge-size sequence m, and suppose H
has one simplicial pair of each type. Then, based on the above calculations, we get that

σSR (H, 2, 3) ∝ 1 σSR (H, 2, 4) ∝ 1 σSR (H, 2, 5) ∝ 1
σSR (H, 3, 4) ∝ n σSR (H, 3, 5) ∝ n

σSR (H, 4, 5) ∝ n2

Thus, the above matrix acts as a loose, point-wise lower-bound on the simplicial matrix for
sparse graphs with at least one simplicial pair of each type. For many of the graphs analysed,
this rough sketch of a simplicial matrix is a good approximation of the actual matrices. In
summary, what the simplicial matrix is capturing, above all else, is that (a) real graphs
contain simplicial pairs of all types, and (b) synthetic (sparse) models very rarely generate
simplicial pairs other than pairs containing 2-edges.

Temporal simplicial matrix

Here, the bias towards bottom-up simplicial pairs is consistent with the cell-wise comparisons.
This suggests that the bias is independent, or at least not heavily dependent, on edge size.

4 A new model that incorporates simpliciality

In this section, we define a random graph model, called the simplicial Chung-Lu model, that
generalizes the Chung-Lu hypergraph model defined in [14]. We begin with the algorithm
that generates a simplicial edge.

Let (d1, . . . , dn) be a degree sequence, k be an edge size, E be a set of existing edges, and
Ek ⊆ E be a set of existing edges that are of size k. Recalling that p(·) is the probability
distribution governed by (d1, . . . , dn), writing

(
S
k

)
for the collection of k-subsets of S, and

recalling that x ∈u X means x is sampled uniformly from X, the algorithm to generate a
simplicial edge is as follows.
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Algorithm 3 Simplicial edge.

Require: (d1, . . . , dn), k, E.
1: if E \ Ek = ∅ then

2: Sample e ∼ Algorithm 1
(

(d1, . . . , dn), k
)

3: else
4: Sample e′ ∈u E \ Ek.
5: if |e′| < k then

6: Sample e′′ ∼ Algorithm 1
(

(d1, . . . , dn), k − |e′|
)

.

7: Set e = e′ ∪ e′′

8: else
9: Sample e ∈u

(
e′

k

)
10: end if
11: end if
12: Return e

In words, we first check if there is at least one edge in E not of size k to pair e with. If
there is no such edge, we return a Chung-Lu edge. Otherwise, we choose an existing edge e′

uniformly at random from the set of edges not of size k and construct our edge e from e′ in
one of two ways: if k < |e′| we set e to be a uniform k-subset of e′, whereas if k > |e′| we
build e by combining e′ with a Chung-Lu edge of size k − |e′|.

We now give the algorithm to generate a simplicial Chung-Lu graph. Let (d1, . . . , dn) be
a degree sequence, (mkmin

, . . . ,mkmax) be a sequence of edge sizes, and S = (s1, . . . , sℓ) be a
random permutation of all available sizes for an edge, i.e., S contains mk copies of k for each
edge size k in some random order. Additionally, let q ∈ [0, 1] be a parameter governing the
number of simplicial edges created during the process.

Algorithm 4 Simplicial Chung Lu model.

Require: (d1, . . . , dn), (mkmin
, . . . ,mkmax), q.

1: Initialize edge list E = {} and random edge-size list S.
2: for k ∈ S do
3: Sample X ∼ Bernoulli(q).
4: if X = 1 then
5: Sample e ∼ Algorithm 3

(
(d1, . . . , dn), k, E

)
6: else
7: Sample e ∼ Algorithm 1

(
(d1, . . . , dn), k

)
8: end if
9: Set E = E ∪ {e}.
10: end for
11: Return G = ([n], E).

Note that, if q = 0, the simplicial Chung-Lu model yields a Chung-Lu model, ensuring
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that this new model is indeed a generalized Chung-Lu model. Moreover, the following lemma
shows that the main feature of the Chung-Lu model is still present in this new model.

Lemma 4.1. Let G be a random graph generated as a simplicial Chung-Lu model with input
parameters (d1, . . . , dn), (mkmin

, . . . ,mkmax), and q ∈ [0, 1]. Then, for all v ∈ [n],

E [degG(v)] = dv .

Proof. Let us generate a random edge-size list S that will be used to create the simplicial
Chung-Lu graph G. We will first prove (by induction on i) the following claim.

Claim: Each vertex v of the i’th edge ei formed during the construction process of G satisfies

P (v = u) = p(u) for all u ∈ [n].

Note that edges of G are not generated independently; the graph has rich dependence struc-
ture. The distribution of ei is affected by edges generated earlier. It is important to keep in
mind that the claim applies to the edge formed at time i but without exposing information
about earlier edges.

Firstly, if i = 1, then e1 is necessarily generated via Algorithm 1 and the claim follows
immediately. Now fix i > 1 and consider the formation of ei. On the one hand, if ei was
generated via Algorithm 1 then the claim is once again immediate. Otherwise, ei was
generated via Algorithm 3, i.e., generated constructively from another edge ej with j < i.
In this case, if |ei| < |ej| then ei ∈u

(
ej
|ei|

)
and, regardless which subset of ej is selected to

form ei, the claim holds by induction. Otherwise, if |ei| > |ej|, then ei is the union of ej and
another edge e′′ generated via Algorithm 1: the claim holds immediately for vertices in e′′,
and for vertices in ej, the claim holds by induction.

Thus, for any e ∈ E(G), v ∈ e, and u ∈ [n], we have that P (v = u) = p(u). Summing
over all vertices in all edges, we get that

E [degG(u)] =

 ∑
e∈E(G)

∑
v∈e

P (v = u)

 =

p(u)
∑

e∈E(G)

|e|

 =

p(u)
∑
v∈[n]

dv

 = du ,

the first equality following from linearity of expectation, and the third equality following
from the generalized handshaking lemma.

The simplicial Chung Lu model does in fact generate more simplicial pairs as q increases.
Figure 6 shows the expected number of simplicial pairs (approximated via 1000 samples) for
graphs generated via Algorithm 4 with q varying from 0 to 1 in 0.1 increments.
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Figure 6: The average number of simplicial pairs (taken over 1000 samples) for simpli-
cial Chung Lu graphs with varying q. For each q ∈ [0, 0.1, . . . , 1], Gq is a simplicial
Chung Lu graph with n = 1000, d a uniform degree sequence, and [|E2|, |E3|, |E4|, |E5|] =
[5000, 1000, 100, 10]. The shaded region represents the standard deviation over the 1000
samples.

5 Experiments

One reason to study simpliciality is that it likely has an impact on the evolution of stochastic
processes on the associated graphs. We illustrate this potential impact via two toy processes
with varying parameters. The first process is component growth which a standard way to
measure the robustness of a network (see, for example, Chapter 8 in [1]). The second type
is information diffusion which simulates how quickly a substance (e.g., a disease, a rumour)
spreads through a network. Intuitively, both of these processes should be affected by a
graph containing a large number of simplicial pairs: in the case of component growth the
smaller edge of a simplicial pair does not contribute to component size, and in the case of
information diffusion a simplicial pair transfers information less efficiently than two non-
overlapping edges.
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5.1 Descriptions of the experiments

We perform four experiments (two experiments for each of the two types of stochastic pro-
cesses) on the real networks and on the corresponding simplicial Chung-Lu graphs for varying
q ∈ {0, 0.5, 1}.

Giant component growth with random edge selection: We choose a uniform random
order for E(G) and track the size of the largest component as edges are added to G according
to a random ordering. We plot the growth up to the point where min{|E(G)|, |V (G)|} edges
have been added. We perform this experiment independently 100 times on the real graphs,
meaning we shuffle the edge ordering and track the growth 100 times. For the simplicial
Chung-Lu models we (a) sample the graph, (b) shuffle the edges, and (c) track the growth,
performing steps (a), (b), and (c) independently 100 times.

Giant component growth with adversarial edge selection: We order E(G) in ascend-
ing order of betweenness (breaking ties randomly) and track the size of the largest component
as edges are added to G according to this adversarial ordering. Note that the betweenness of
an edge e in a hypergraph is equivalent to the betweenness of its corresponding vertex ve in
the line graph (see [10], or any textbook on network science such as [16], for a definition of
betweenness for graphs). For the real graphs, we run the experiment only once (the results
will be the same every time), and for the Chung-Lu models we sample and track growth 10
times. We sample significantly less here than in the other three experiments due to the time
complexity of calculating betweenness.

Information diffusion from a single source: We initialize a function w0 : V (G) →
[0, 1] with w0(v) = 0 for all vertices, except for one randomly chosen vertex v∗ which has
w0(v

∗) = 1. Then, in round i + 1, we choose a random edge e and, for each v ∈ e, set
wi+1(v) = w(e)/|e|, where w(e) =

∑
u∈ew(u) (keeping wi+1(v) = wi(v) for all v /∈ e). We

track the Wasserstein-1 distance (also known as the “earth mover’s distance” [27]) between
wi and the uniform distribution w∞ : V (G) → 1/|V (G)|. We run the experiment 100 times,
re-rolling the Chung-Lu model every time.

Information diffusion from |V (G)|/10 sources: This experiment is identical to the pre-
vious experiment, except that w0(v

∗) = 1 for 10% of the vertices chosen at random, and that
w∞ : V (G) → 1/10.

Insisting on connected graphs

These experiments, and in particular the two diffusion experiments, are highly dependent on
connectivity. The real graphs are restricted to their largest component, and so we insist that
the random graphs are also connected. To achieve this, we modify the simplicial Chung-Lu
model and insist that incoming edges must connect disjoint components, until the point the
graph is connected when we continue generating edges as normal. A full description of this
algorithm is presented in Appendix B.
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5.2 The results

Here, we will show the results for the two graphs: hospital-lyon and disgenenet. Recall
that the hospital-lyon graph has a simplicial ratio of approximately 0.94, whereas the
disgenenet graph has a ratio of approximately 28.81. The full collection of results can be
found in Appendix A 1 and the sampling technique can be found in Appendix B.

Experiment 1: random growth

Figure 7: Giant component size (normalized by the number of vertices) vs. number of edges
added in the random growth process on the hospital-lyon graph (left) and the disgenenet
graph (right). The curve is the point-wise average across 100 independent experiments: for
the real graph the edges are resampled each time, and for the random models the entire
graphs are resampled each time.

In this first experiment we see the following. For hospital-lyon the real graph grows in a
near identical way to the random model with q = 0 and q = 0.5, whereas the random model
with q = 1 grows much slower. In contrast, for disgenenet the real graph grows at a rate
somewhere between the random model with q = 0.5 and q = 1. Of course, these graphs have
very different growth behaviour due to the difference in edge densities. Nevertheless, this
result suggests that the high simplicial ratio of disgenenet plays a role in slowing down the
growth of the graph, whereas the low simplicial ratio of hospital-lyon leads it to grow as
quickly as a classical Chung-Lu model.

1Due to computational limitations, we do not present the adversarial growth experiment for all 10 net-
works.
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Experiment 2: adversarial growth

Figure 8: Giant component size vs. number of edges added in the adversarial growth process
on the hospital-lyon graph (left) and the disgenenet graph (right). The curve is the
point-wise average across 10 independent experiments: for the real graph the experiment is
performed only once as the result will always be the same, and for the random models the
graphs are resampled each time.

The results of this second experiment, adversarial growth, are less clear due to the fact that
we averaged over 10 samples instead of 100. Nonetheless, there is still a clear distinction
between the real growth vs. the synthetic growth for these two graphs. On the left, we see
that the real graph grows faster than all the random models, whereas on the right the real
graph grows slower than all the models.
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Experiment 3: single-source diffusion

Figure 9: Wasserstein distance to uniform vs. number of rounds in the single-source diffusion
process on the hospital-lyon graph (left) and the disgenenet graph (right). The curve is
the point-wise average across 100 independent experiments: for the real graph the chosen
edges per round, as well as the location of the initial vertex with weight 1, are resampled
each time, and for the random models the entire graphs are resampled each time.

This experiment is perhaps the most substantial in showing the effect of simpliciality on a
random process, namely, that information diffusion is slower on highly simplicial graphs vs.
non-simplicial graphs.
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Experiment 4: 10% diffusion

Figure 10: Wasserstein distance to uniform vs. number of rounds in the 10% sprinkled
diffusion process on the hospital-lyon graph (left) and the disgenenet graph (right). The
curve is the point-wise average across 100 independent experiments: for the real graph the
chosen edges per round, as well as the location of the initial 10% of vertices with weight 1,
are resampled each time, and for the random models the entire graphs are resampled each
time.

The result here mirrors the result in the previous experiment, except of course that the
diffusion is much faster.

6 Conclusion

The phenomenon of edges inside of other edges is a feature of hypergraphs not present
in graphs and, based on our results and on the preceding results of Landry, Young and
Eikmeier, it is clear that this phenomenon is a key feature of real-world networks with multi-
way interactions. The simplicial ratio captures the strength of simplicial interactions in a
graph and, from the collection of 10 real-world networks analysed, we have showed that
(a) the simplicial ratio is not at all consistent across the graphs, (b) the simplicial ratio
varies significantly even for graphs of a similar type (e.g., contact high-school, contact
primary-school, and hospital-lyon), (c) the number of simplicial interactions involving
edges of size k, ℓ > 2 is not at all captured by the Chung Lu model, and (d) the simplicial
ratio can affect the outcome of random growth, adversarial growth, and information diffusion.
We hope that our work continues to motivate research into the phenomenon of edges inside
edges, and we discuss some potential follow ups to this research.
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6.1 Further research

The simplicial ratio involves the parameter E
[
sp
(
Ĝ
)]

where Ĝ ∼ CL(G). Instead of ap-

proximating E
[
sp
(
Ĝ
)]

as we do, one could compute E
[
sp
(
Ĝ
)]

explicitly. For example,

given a uniform degree sequence d and edge-size sequence (mkmin
, . . . ,mkmax), and condi-

tioning on Ĝ containing no multiset edges, the probability that e1, e2 form a simplicial pair
is (

|e2|
|e1|

)/( n

|e1|

)
.

Thus, by linearity of expectation, conditioning on the event that Ĝ has no multiset edges,
we have

E
[
sp
(
Ĝ
)]

=
kmax−1∑
k=kmin

kmax∑
ℓ=k+1

mkmℓ

(
ℓ

k

)/(n
k

)
.

Thus, for a uniform degree sequence, E
[
sp
(
Ĝ
)]

is relatively straightforward to compute.

However, trying to compute this expectation if the degree sequence is not uniform is signifi-
cantly harder. Finding a closed form for this expectation, or even a closed form approxima-
tion, would allow for a significantly faster algorithm for computing σSR (G). Such a result
would also allow for a better understanding of the nature of the simplicial matrix for both
sparse and dense graphs.

Understanding the degree to which edges form simplicial pairs could aid in predicting
the composition of future edges, especially large edges, in temporal networks. If a graph
has a high simplicial ratio, then a potential new edge should be given more weight based on
the number of new simplicial pairs it creates, as well as on the size of the smaller edge in
each pairs. For example, when considering the location for a new edge of size 5 in a highly
simplicial graph G, a location that creates many (2, 5) pairs should be given more weight,
but perhaps a location that creates a single (4, 5) pair should be given even more weight. In
any case, incorporating simpliciality in the link prediction problem should improve existing
algorithms, at least for highly simplicial graphs.

Along with the simplicial ratio and simplicial matrix, we introduce temporal variants.
In our experiments where only the first instance of an edge is kept in a temporal network,
we find that, typically, more bottom-up pairs are generated than top-down pairs, in part
because there are more small multi-edges than large multi-edges. There are of course other
ways to measure the difference in frequency between bottom-up pairs and top-down pairs.
For example, we could insist that a simplicial pair ek, eℓ is “temporally relevant” if and only
if both ek and eℓ were born within the same ϵ-window of time. In this case, we could measure
the frequency of ek pairs followed shortly by eℓ pairs, and vice versa. The temporal formation
of simplicial pairs could once again be valuable for the task of link prediction.
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A All experiments

Here we show the results of the random growth, single-source diffusion, and 10% diffusion
experiments. Due to the time complexity of computing edge-betweenness, we are unable to
perform the adversarial growth experiment for all 10 graphs. Note that ubuntu (edge-
chopped) is the subgraph of tags-ask-ubuntu containing only the first 20000 edges. The
simplicial ratio of this edge-chopped graph is ≈ 0.37 and so this subgraph is even less
simplicial than the whole graph.

The experiments are presented in the the following order: random growth, single-source
diffusion, and 10% diffusion. Each of the three figures are presented on two separate pages.
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Figure 11: Giant component size (normalized by the number of vertices) vs. number of edges
added in the random growth process for all 10 graphs. The curve is the point-wise average
across 100 independent experiments: for the real graph the edges are resampled each time,
and for the random models the entire graphs are resampled each time.
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Figure 12: Wasserstein distance to uniform vs. number of rounds in the single-source dif-
fusion process for all 10 graphs. The curve is the point-wise average across 100 independet
experiments: for the real graph the chosen edges per round, as well as the location of the
initial vertex with weight 1, are resampled each time, and for the random models the entire
graphs are resampled each time.
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Figure 13: Wasserstein distance to uniform vs. number of rounds in the 10% sprinkled
diffusion process for all 10 graphs. The curve is the point-wise average across 100 independent
experiments: for the real graph the chosen edges per round, as well as the location of the
initial 10% of vertices with weight 1, are resampled each time, and for the random models
the entire graphs are resampled each time.
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B Algorithms

B.1 Estimating the expected number of simplicial pairs

To compute the simplicial ratio of a graph G, we must first compute the expected number
of simplicial pairs in Ĝ ∼ CL(G). As discussed in Section 6, computing this expectation
is quite difficult. In this section, we outline a Monte Carlo approximate technique for this
expectation.

For a degree sequence d = (d1, . . . dn) and an edge size k, write P (simple | d, k) for the
probability that Algorithm 1 generates a simple edge when given inputs d and k. For a
graph G with degree sequence d, we first approximate P (simple | d, k) for all edge sizes
k in E(G). To do this, we chose a number of samples s, sample s edges independently
as Algorithm 1(d, k), and compute the ratio x/s where x is the number of simple edges
generated. In all experiments performed for the paper, we use s = 1000.

With P (simple | d, k) approximated for all edge sizes k, we can now approximate the
number of simplicial pairs. We will show the algorithm for computing the expected number
of (3, 5)-pairs here, as the generalization is straightforward to interpret but difficult to notate.
Write |d| :=

∑
i∈[n] di. For an edge e = {v1, . . . , v5}, the probability that an edge e′ of size 3

generated by Algorithm 1 is (a) simple and (b) satisfies e′ ⊂ e is given by∑
1≤a<b<c≤5

3! dvadvbdvc
(|d|)3 P (simple | d, 3)

. (1)

To break this down, consider only the probability that e′ = {v1, v2, v3}. Algorithm 1 can
generate this edge in 3! different orders, and the probability of generating the edge in each
case is

dv1dv2dv3
|d|3

.

It can also happen that Algorithm 1 generates a multi-edge, requiring us to sample again.
Thus, the probability of eventually sampling the edge e′ = {v1, v2, v3} is∑

i≥0

(1 − P (simple | d, 3))i
3! dv1dv2dv3

|d|3
=

3! dv1dv2dv3
|d|3

∑
i≥0

(1 − P (simple | d, 3))i

=
3! dv1dv2dv3

|d|3

(
1

1 − (1 − P (simple | d, 3))

)
=

3! dv1dv2dv3
(|d|3)P (simple | d, 3)

.

Summing over all
(
5
3

)
possible 3-edges inside e gives us (1).

We now approximate the number of (k, ℓ) simplicial pairs as follows.

1. Choose some sampling number s. Then, sample s independent edges via Algorithm 1(d, ℓ).

2. For each edge, compute the probability of generating a (k, ℓ) simplicial pair.
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3. Compute the average and multiply this result by mkml, where mk is the number of
edges of size k, and similarly for mℓ.

B.2 Constructing a connected skeleton of a random graph

We will generate a connected skeleton for our random graph via multiplicative coalescence.
In short, multiplicative coalescence is a process in which particles in a space join together
at a rate proportional to the product of their masses. We point the reader to [30] for
an overview on the multiplicative coalescence process. In the context of generating random
graphs, multiplicative coalescence is the process where new edges joining disjoint components
are chosen with probability proportional to the product of the weights of the components.

We will describe Algorithm 5 in words before presenting it as pseudo-code. Let d :=
(d1, . . . , dn) be a degree sequence and m := (mkmin

, . . . ,mkmax) be a sequence of edge sizes.
We construct the skeleton of our graph as follows.

1. Initially, we have an empty edge list E = {} and a collection of components, one
for each vertex. For component C = {v}, define the weight of C, written w(C), as
w(C) := dv.

2. We generate a random edge-size list S as per Algorithm 4, i.e., a uniform permutation
containing mk copies of k for each edge size k.

3. Iteratively until the graph is connected, we do the following.

(a) Choose a size k from S (iteratively).

(b) Sample k components independently, each component C being chosen with prob-
ability proportional to w(C). If the chosen components C1, . . . , Ck are not all
unique, discard them all and sample again (repeating until we have a collection
of distinct components).

(c) For each component C chosen in the previous step, randomly sample a designated
vertex for C; for v ∈ C, choose v as the designated vertex for C with probability
dv/
∑

u∈C du.

(d) Construct the edge e consisting of all the designated vertices. Add e to E, remove
the chosen components C1, . . . , Ck, and create a new component C = ∪j∈[k]Ck

with w(C) =
∑

i∈[k] Ci.

If, just before the graph is fully connected, the chosen size k is greater than the number of
components c, we generate the last edge of the connected skeleton by connecting the final c
components as per step 3 (with k replaced by c) and sampling the remaining k−c vertices as
per the usual Chung-Lu sampling technique, i.e., using Algorithm 1. We note that, other
than potentially the last edge constructed, an edge constructed in step 3 is equivalent to an
edge generated by Algorithm 1 conditioned on this edge joining k distinct components. We
use this observation to simplify Algorithm 5. We will simplify Algorithm 5 by writing
“update [collection of components]” after generating an edge.
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Algorithm 5 Connected skeleton.

Require: (d1, . . . , dn), (mkmin
, . . . ,mkmax)

1: Initialize edge list E = {}, a random edge-size list S as per Algorithm 4, and a collection
of components C =

{
Cv := {v}

∣∣v ∈ [n]
}

.
2: for k ∈ S do
3: if k ≤ |C| then
4: repeat

5: Sample e ∼ Algorithm 1
(

(d1, . . . , dn), k
)

.

6: until
∣∣e ∩ C

∣∣ ≤ 1 for all C ∈ C
7: Set E = E ∪ e and update C.
8: else
9: Set c = |C|.
10: repeat

11: Sample e′ ∼ Algorithm 1
(

(d1, . . . , dn), c
)

.

12: until
∣∣e′ ∩ C

∣∣ ≤ 1 for all C ∈ C
13: Sample e′′ ∼ Algorithm 1

(
(d1, . . . , dn), k − c

)
.

14: Set E = E ∪ {e′ ∪ e′′} and update C.
15: end if
16: if |C| = 1 then
17: Return E
18: end if
19: end for
20: Return E

Once we generate a connected skeleton via Algorithm 5, we then update the parameter
(mkmin

, . . . ,mkmax) (by subtracting, from mk, the number of edges of size k that were gener-
ated for each k) and generate the rest of the simplicial Chung-Lu graph via Algorithm 4
with updated parameter (mkmin

, . . . ,mkmax) and initial (non-empty) edge list E.
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