
Multilayer Artificial Benchmark
for Community Detection (mABCD)

 Lukasz Kraiński∗, Micha l Czuba†, Piotr Bródka‡, Pawe l Pra lat§,

Bogumi l Kamiński¶, François Théberge‖

July 9, 2025

Abstract

The Artificial Benchmark for Community Detection (ABCD) model is a random
graph model with community structure and power-law distribution for both degrees
and community sizes. The model generates graphs similar to the well-known LFR
model but it is faster, more interpretable, and can be investigated analytically. In this
paper, we use the underlying ingredients of the ABCD model and introduce its variant
for multilayer networks, mABCD.

Keywords— Synthetic graphs, Random graphs, Complex networks, Community structure,
ABCD, Multilayer networks.

1 Introduction

One of the most important features of real-world networks is their community structure, as it
reveals the internal organization of nodes [24, 35]. In social networks, communities may represent
groups by interest; in citation networks, they correspond to related papers; in the Web graph,
communities are formed by pages on related topics, etc. Identifying communities in a network is
therefore valuable as this information helps us to understand the network structure better.

∗Decision Analysis and Support Unit, SGH Warsaw School of Economics, Warsaw, Poland; email:
lkrain@sgh.waw.pl; ORCID: 0000-0002-3664-468X

†Department of Artificial Intelligence, Wroc law University of Science and Technology, Wroc law, Poland;
e-mail: michal.czuba@pwr.edu.pl; ORCID: 0000-0001-8652-3678

‡Department of Artificial Intelligence, Wroc law University of Science and Technology, Wroc law, Poland;
e-mail: piotr.brodka@pwr.edu.pl; ORCID: 0000-0002-6474-0089

§Department of Mathematics, Toronto Metropolitan University, Toronto, ON, Canada; e-mail:
pralat@torontomu.ca; ORCID: 0000-0001-9176-8493

¶Decision Analysis and Support Unit, SGH Warsaw School of Economics, Warsaw, Poland; email:
bkamins@sgh.waw.pl; ORCID: 0000-0002-0678-282X

‖Tutte Institute for Mathematics and Computing, Ottawa, ON, Canada; email: theberge@ieee.org;
ORCID: 0000-0002-5499-3680

1



Unfortunately, there are very few datasets with ground-truth communities identified and la-
belled. As a result, there is a need for synthetic random graph models with community structure
that resemble real-world networks to benchmark and tune clustering algorithms that are unsuper-
vized by nature. The LFR (Lancichinetti, Fortunato, Radicchi) model [42, 41] is a highly popular
model that generates networks with communities and, at the same time, allows for heterogene-
ity in the distributions of both node degrees and of community sizes. It became a standard and
extensively used method for generating artificial networks.

A similar synthetic network to LFR, the Artificial Benchmark for Community Detection
(ABCD) [34] was recently introduced and implemented1, including a fast implementation2 that
uses multiple threads (ABCDe) [38]. Undirected variants of LFR and ABCD produce graphs
with comparable properties, but ABCD/ABCDe is faster than LFR and can be easily tuned to
allow the user to make a smooth transition between the two extremes: pure (disjoint) communities
and random graphs with no community structure. Moreover, it is easier to analyze theoretically —
for example, in [33] various theoretical asymptotic properties of the ABCD model are investigated,
including the modularity function that, despite some known issues such as the “resolution limit”
reported in [25], is an important graph property of networks in the context of community detection.
In [5], some interesting and desired self-similar behaviour of the ABCD model is analyzed; namely,
it is shown that the degree distribution of ground-truth communities is asymptotically the same as
the degree distribution of the whole graph (appropriately normalized based on their sizes). Finally,
the building blocks in the model are flexible and may be adjusted to satisfy different needs. Indeed,
the original ABCD model was recently adjusted to include potential outliers (ABCD+o) [36],
overlapping communities (ABCD+o2) [4], and extended to hypergraphs (h–ABCD) [37]3. The
ABCD model is used by practitioners but, for the reasons mentioned above, it also gains recogni-
tion among scientists. For example, [2] suggests to use Adjusted Mutual Information (AMI)
between the partitions returned by various algorithms with the ground-truth partitions of syntheti-
cally generated random graphs, ABCD and LFR. In particular, they use both models to compare
30 community detection algorithms, mentioning that being directly comparable to LFR, ABCD
offers additional benefits, including higher scalability and better control for adjusting an analogous
mixing parameter. In the context of this paper, the most important of the above features is that
the ABCD model is flexible and can be easily extended. In this paper, we utilize that property to
deliver a new version producing multilayer networks.

The study of complex networks has evolved significantly over the past two decades, driven
by the growing need to model and analyze interconnected systems. Among the notable advance-
ments in this field is the development of multilayer networks, a powerful framework that captures
multiple types of relationships within a single network structure. Unlike traditional single-layer
networks where all edges represent the same type of interaction, multilayer networks allow nodes
to participate in diverse types of relationships across different layers. For instance, in a multilayer
social network, layers may represent distinct relations such as friendships, coworker connections,
family ties, and online interactions via platforms like Facebook or LinkedIn [40, 21]. This flexibility
makes multilayer networks uniquely suited to model the complexity of real-world systems. The
concept of multilayer networks was introduced to address the limitations of traditional network
models, particularly their inability to represent systems with heterogeneous interactions. Early

1https://github.com/bkamins/ABCDGraphGenerator.jl/
2https://github.com/tolcz/ABCDeGraphGenerator.jl/
3https://github.com/bkamins/ABCDHypergraphGenerator.jl

2

https://github.com/bkamins/ABCDGraphGenerator.jl/
https://github.com/tolcz/ABCDeGraphGenerator.jl/
https://github.com/bkamins/ABCDHypergraphGenerator.jl


research focused on formalizing the structure of multilayer networks, including their mathematical
representation and classification. Kivelä et al. [40] provided a seminal framework for multilayer
networks, categorizing them into multiplex, interconnected, and temporal networks. This foun-
dational work established the groundwork for studying the dynamics and structures of multilayer
systems, sparking a surge of interest in the network science community.

As we already mentioned, one of the most important aspects of network analysis is community
detection, which aims to identify groups of nodes that are densely connected within the network
while being sparsely connected to nodes outside their group. In multilayer networks, this prob-
lem is significantly more complex because communities may exist consistently across layers, vary
between layers, or even exhibit dependencies across layers [43]. The field of community detection
in multilayer networks emerged shortly after the formalization of multilayer network structures,
with pioneering studies exploring both theoretical and algorithmic approaches [8, 53, 14]. The
survey by Magnani et al. [43] provides an exhaustive overview of existing methods for community
detection in multilayer networks, categorizing them into optimization-based methods (e.g., modu-
larity maximization), statistical methods (e.g., stochastic block models), and heuristic approaches.
These methods address diverse challenges, such as detecting overlapping communities, identifying
temporal changes, and incorporating inter-layer dependencies. Despite these advancements, evalu-
ating community detection algorithms remains challenging due to the lack of real-world multilayer
datasets with ground-truth community structures.

To overcome the scarcity of real-world datasets with known community structures, researchers
have developed synthetic models capable of generating multilayer networks with predefined com-
munity structures. These models provide a controlled environment for testing and validating com-
munity detection algorithms, ensuring reproducibility and comparability of results. The models
proposed so far, although important milestones have some limitations that can affect their applica-
bility to different research scenarios (see Section 2.1 for details). These limitations underscore the
ongoing need for a new model that better replicates the multifaceted nature of real-world multilayer
networks and is faster in generating multilayer networks.

In this paper, we use the underlying flexible ingredients of the ABCD family of models and
introduce its variant for multilayer networks, mABCD4. It is a journal version of a short conceptual
paper [13] presented at the 20th Workshop on Modelling and Mining Networks (WAW2025). We
significantly extend the previous work by improving, evaluating, and validating the model as well
as setting mABCDin the context of related works.

The paper is structured as follows. We start with a gentle introduction to various aspects of
multilayer networks (Section 2), including an overview of existing synthetic models, summarizing
approaches to measure correlations between layers. Then, we present design assumptions under
which mABCD was developed (Section 3). In Section 4, we formally define the mABCD model.
Experiments highlighting properties of the model are discussed in Section 5. We finish the paper
with a demonstration of how one can use the mABCD model to investigate properties of complex
networks and algorithms that are running on them. As an example, we concentrated on the
spreading of information (Section 6), which constitutes a problem of greater complexity in the
realm of multilayer networks compared to its counterpart in classic graphs.

4https://github.com/KrainskiL/MLNABCDGraphGenerator.jl

3

https://github.com/KrainskiL/MLNABCDGraphGenerator.jl


2 Related Work

In this section, we introduce the standard notation used across the paper and properties of interest,
especially from the perspective of multilayer networks [21, 40]. For a given n ∈ N = {1, 2, . . .}, we
use [n] to denote the set consisting of the first n natural numbers, that is, [n] = {1, 2, . . . , n}. We
define a multilayer network as a quadruple M = ([n], [ℓ], V = [n] × [ℓ], E), where

• [n] is a set of n actors (for example, users of various social networking sites),

• [ℓ] is a set of layers (for example, different social networking platforms, such as LinkedIn,
Facebook and Instagram, on which actors interact with each other),

• V ⊆ [n] × [ℓ] a set of nodes (vertices); node v = (a, ℓi) ∈ V represents an actor a in layer ℓi,

• E is a set of (undirected) edges between nodes; if e = v1v2 ∈ E with v1 = (a1, ℓ1) ∈ V and
v2 = (a2, ℓ2) ∈ V , then ℓ1 = ℓ2, that is, edges occur only within layers.

Figure 1 presents an example of a simple multilayer network consisting of eleven actors (rep-
resented as integers from [11]), three layers (professional, associated with the actors’ interactions
in a work environment, friendship relations between actors, and a layer representing actors playing
football together), thirty nodes, and thirty edges.

Note that not every actor in the example above is present on all layers. For example, actor 8
does not exist in the football layer, meaning that it does not play football with other actors. For
simplicity, in our model, we assume that each layer has exactly n nodes associated with all actors.
Actors that do not engage with a given layer (we will call them inactive) will be associated with
isolated nodes (nodes of degree zero).

1
3

2
7

9

8

10

4

6

5

1

2
7

9

8

10

4

6

5

11

1
3

2
7

9 10

4

6

5

11

Figure 1: Example of a multilayer network.

4



2.1 Existing Synthetic Models

The first synthetic models for multilayer networks, with known community structure, were exten-
sions of existing single-layer benchmarks. For example, in [11], the mLFR model was introduced, as
an extension of the original LFR benchmark, to generate multilayer networks with realistic (scale-
free) degree and community size distributions. While the mLFR model preserves realistic degree
and community size distributions, it assumes homogeneity in community generation across layers,
limiting its applicability to networks where community structures vary between layers. Another
drawback is its limited ability to model inter-layer correlations, a critical aspect of many real-world
multilayer networks. Furthermore, the mLFR benchmark inherits the computational complexity
of the original LFR model, making it resource-intensive for generating large networks with detailed
configurations. Another example of early works presenting multilayer network generators is [49],
the MuNeG generator was proposed as an extension of the Eldardiry model [22]. It is governed
by six scalar parameters: the number of nodes, layers, and groups; the probability that two nodes
from the same (or different) group are connected; and community homophily. However, as an early
contribution to the field of multilayer network generation, its functionality is limited. The model
does not capture inter-layer relations, nor does it provide direct control over the distributions of
degrees or communities.

As the body of literature on multilayer networks expanded, various generators addressing spe-
cific forms of multilayer networks emerged. For example, [54] introduces a synthetic model designed
to construct multilayer networks in which a link between two actors may exist in only one layer,
thereby representing a social system composed of four distinct types of relationship: support, sym-
pathy, band, and community. Elsisy et al. [23] also proposed a generator tailored to a specific
problem. Specifically, they developed a framework for modelling covert social structures, such as
criminal or terrorist networks. Their goal was to provide a model capable to represent both the
organizational structure and the community partition of the considered system. These models,
despite useful for specific problems, remain limited in terms of their applicability to more general
scenarios.

A review of related work also reveals a broad influx of methods extending the Stochastic Block
Model [30]. For instance, Huang et al. [31] build upon this framework by assuming that a given
community may appear in multiple layers, and propose a method for retrieving such exactly match-
ing groups from the network. On the other hand, the generator proposed by [47] emerges as an
indirect outcome of efforts to generalize the modularity function to a multilayer setting. It attempts
to address several limitations of extensions of the Stochastic Block Model, such as the restriction
to identical communities across layers, but imposes an additional constraint: any inter-layer de-
pendencies are induced solely through the multilayer partition and the coupling of nodes. Another
significant contribution (also basing on the Stochastic Block Model) came from Bazzi et al. [6], who
proposed a framework for generating networks with mesoscale structures, including communities.
This is a very general and powerful model that enables researchers to control the properties of
generated networks, such as the strength of inter-layer connections and the overlap of communities
between layers. Because of its versatility (multilayer, temporal networks and more), the model
might be challenging to use for a novice researcher (the need to define an inter-layer dependency
tensor, implementing a new network model if one wants to use something else than the Degree Cor-
rected Stochastic Block Model) and it suffers from high computational complexity (see Figure 15
and Table 4). Finally, it lacks the flexibility needed to reflect the various dependencies existing in
real networks (for example, injecting degree sequences from real multilayer networks). As a result,

5



despite its advanced capabilities, the model does not address all needs.
Magnani et al. [43], in the recent review paper on community detection in multiplex networks,

have not used the model proposed by Bazzi. Instead, they proposed a simple model for generating
multilayer networks with community structures designed specifically for various algorithm compar-
isons. This model, partially integrated into the multinet library [44], simplifies the generation of
multilayer networks and facilitates the benchmarking of various community detection algorithms.
While this simplicity facilitates comparisons of different algorithms, it limits the model’s ability to
replicate the complexity of real-world networks, such as diversity in community sizes. Furthermore,
the model offers only basic representations of inter-layer dependencies, which reduces its relevance
for studying networks with varying edge correlations between layers.

3 Design Assumptions

Before building the model, it is essential to address the question if and how degrees, edges, and
partitions correlate between layers in real-world networks. Existing studies [43, 12] have not pro-
vided a definitive answer to this question. To bridge this gap, we conducted an analysis of eight
real-world networks from diverse domains and of different sizes. In the following section, we first
present a methodology of computing these correlations. Then, we discuss obtained results and
conclude with the assumptions underlying the design of mABCD.

3.1 Correlations Between Layers

Although there are no edges between nodes in different layers, in most real-world multilayered
networks, layers are clearly not independently generated. Each actor is associated with ℓ nodes,
one in each layer, and there are some highly non-trivial correlations between edges across layers.
For example, active users on one social media platform are often also active on another one [27].
This creates correlations between degree distributions across layers. Communities that are naturally
formed in various layers often depend on the properties of the associated actors. For example, users
interested in soccer might group together on Instagram and on Facebook. As a result, partitions of
nodes into communities (associated with different layers) are often correlated. Finally, interactions
between actors in one layer might increase their chances of interacting in another layer, yielding
correlations at the level of edges.

Below, we briefly summarize how we measure these three types of correlations mentioned above.
The first two measures are standard, and their detailed description can be found, for example,
in [12, 35].

Correlations Between Nodes Degrees in Various Layers

We will use Kendall rank correlation coefficient τ [39] to measure correlations between se-
quences of node degrees in two different layers. It is a nonparametric measure of the ordinal
association between two measured quantities: the similarity of the orderings of the data when
ranked by each of the quantities (in our application, the degree sequences). The Kendall correla-
tion between two variables ranges from −1 to 1. It is large when observations have a similar rank
between the two variables and is small when observations have a dissimilar rank between the two
variables.

6



Specifically, we will use the “tau-b” statistic, which is adjusted to handle ties. If an actor is
inactive in one of the two layers we compare against each other, then we simply ignore the two
nodes corresponding to this actor. As a result, the degree sequences are always of the same length.

Correlations Between Partitions in Various Layers

The adjusted mutual information (AMI), a variation of mutual information (MI), is a
common way to compare partitions of the same set [35, 55]. Usually, one may want to compare
the partitions returned by some clustering algorithms. In our present context, we may want to
compare partitions into ground-truth communities from two different layers. The AMI takes a
value of 1 when the two partitions are identical and 0 when the MI between two partitions equals
the value expected due to chance alone. Actors, that are inactive in at least one of the two layers
we compare against each other, are ignored so that a comparison of partitions is made on the same
set of actors.

Correlations Between Edges in Various Layers

To measure correlations between edges in different layers, we define R, a ℓ × ℓ matrix in which
elements ri,j ∈ [0, 1] (i, j ∈ [ℓ]) capture correlation between edges present in layers i and j. For any
i, j ∈ [ℓ] with i < j, let

Ej
i = {a1a2 : (a1, i)(a2, i) ∈ E ∧ a1, a2 ∈ [n] ∧ a1 and a2 are active in layers i and j}, (1)

be the set of edges that are present in layer i, involving actors that are also active in layer j. Note
that in the definition of Ej

i , edges are defined over actors that are active in both layers, not nodes
in layer i, so that we can perform set operations on edges between layers. Entries ri,j in R are
computed using the following formula:

ri,j =
|Ej

i ∩ Ei
j |

min{|Ej
i |, |Ei

j |}
. (2)

If min{|Ej
i |, |Ei

j |} = 0, then we leave ri,j undefined; in the implementation, NaN value is produced.
Note that the definition of R implies that ri,i = 1 for any i ∈ [ℓ] and ri,j = rj,i for 1 ≤ i < j ≤ ℓ.

The maximum value of 1 is attained when edges in one of the layers form a subset of edges in the
other layer. The minimum value of 0 is attained when the two sets of edges in the corresponding
layers are completely disjoint. As a result, rij aims to capture correlations between individual edges,
but it is not normalized as, for example, the Kendall rank correlation coefficient τ . The coefficient
τ ranges from −1 to 1, corresponding to the two extremes, and 0 corresponds to a neutral case.
Graphs associated with the layers are sparse, but one layer might have substantially more edges
than the other. Hence, rij is convenient, but it does not have a natural interpretation as τ . Finally,
let us mention that one can easily update the value of rij when some small operations are applied to
either layer i or j. It will become handy when such operations must be performed on our synthetic
model to converge to the desired correlation matrix R.

3.2 Examples of Multilayer Networks

The aspects of inter-layer dependencies, in the form introduced above, were derived from eight real-
world networks, which varied in the number of actors, nodes, edges, layers, and in the domains they

7



represented. Table 1 presents a detailed overview of the characteristics of each network, offering
insights into their structural properties.

Table 1: Real-world networks evaluated with respect to their inter-layer dependencies, with
their basic parameters summarized.

Name Layers Actors Nodes Edges Note

arxiv 13 14,065 26,796 59,026 Coauthorship network obtained from arti-
cles published on the “arXiv” repository [20].
Each layer represents a different arXiv cate-
gory, e.g. Physics and Society or Social and
Information Networks.

aucs 5 61 224 620 A graph of interactions (friends on Facebook,
leisure, work, co-authorship and lunch) be-
tween employees of Aarhus University, De-
partment of Computer Science [50].

cannes 3 438,537 659,951 974,743 A network of interactions (retweets, mentions
and replies) between Twitter (now X) users
during the Cannes Film Festival in 2013 [45].

ckmp 3 241 674 1,370 A network depicting diffusion of innovations
among physicians [17]. Each layer was built
based on the physician’s answers to questions
like “Tell me the first names of your three
friends whom you see most often socially”.

eutr-A 37 417 2,034 3,588 The European air transportation network [15].
Each layer represents the connections of differ-
ent airline operator in Europe.

l2-course 2 41 82 297 A network of interactions (collaboration,
friends) between U.S. students learning Arabic
language during an intensive course in Jordan
(1st month snapshot) [48].

lazega 3 71 212 1,659 A network of interactions (co-work, friendship
and advice) between staff of a law corpora-
tion [51].

timik 3 61,702 102,247 881,676 A graph of interactions (text messages, online
transactions, home visits) between users of the
virtual world platform for teenagers [32].

Next, in Figure 2 we present correlation matrices between layers for degrees of nodes, partitions,
and edges, according to the methodology desctibed in Section 3.1. Due to a lack of ground truth
partitions, communities were identified by the outcome of the Louvain algorithm [9]. After con-
ducting a thorough analysis of the results, we observed a lack of consistent patterns in the examined
real-world multilayer networks. Specifically, there was no universal relationship between degrees,
edges, and community partitions across the layers. In some cases, these features were correlated,
while in others, they appeared to be independent. Furthermore, within a single network, we found
that while two layers might exhibit a correlation, this relationship did not necessarily extend to
other layers. For instance, a node might have similar neighbours across two layers but exhibit a
completely different connectivity pattern in a third layer. These observations highlight the inherent
heterogeneity and complexity of real-world multilayer networks, emphasizing the need for a flexible

8



and customizable synthetic network generation framework.

(a) Inter-layer correlations of degrees within each network.
arxiv aucs cannes ckmp eutr-A l2-course lazega timik

1.0

0.5

0.0

0.5

1.0

(b) Inter-layer correlations of edges within each network.
arxiv aucs cannes ckmp eutr-A l2-course lazega timik

0.0

0.2

0.4

0.6

0.8

1.0

(c) Inter-layer correlations of partitions within each network.
arxiv aucs cannes ckmp eutr-A l2-course lazega timik

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2: Correlations between degrees, edges, and partitions presented as heatmaps for
real-world networks: arxiv, aucs, cannes, ckmp, eutr-A, l2-course, lazega, and timik (layer
names and explicit values have been removed for clarity). Note that there is no consistent
trend across networks or within the given property.

3.3 Assumed Functionalities

In light of these findings, we assumed that the framework has to accommodate inter-layer diversities.
Moreover, since the question of how precisely these relations should be modelled constitutes an issue
that must be addressed individually, depending on the specific problem one is working on, we aimed
to provide a tool that balances flexibility and accessibility. Thus, building the framework upon
ABCD seemed a plausible approach, as the design assumptions underlying it allow for extension
in this direction.

On the one hand, mABCD aims to provide advanced users with full control over critical
properties of the network, such as the distributions of degrees or edges correlations. This level of
customization ensures that users can generate networks tailored to their specific research needs,
allowing for precise modelling of complex scenarios observed in real-world systems. On the other
hand, we recognized the importance of making the framework accessible to less experienced users
who may not be familiar with the intricacies of network science and programming. To address this,
mABCD was designed to include default settings, like generating networks with a power-law degree

9



distribution, which is a common feature of many real-world systems. These default parameters pro-
vide a starting point for users while maintaining the ability to modify them as needed.Additionally,
this is complemented by guidelines, default configurations, and examples provided at the associated
GitHub repository.

In conclusion, by combining flexibility with ease of use, we designed mABCD to bridge the gap
between accessibility and sophistication, making it a versatile tool for researchers across different
levels of expertise. This approach ensures that users can generate synthetic multilayer networks
that reflect the diverse and sometimes unpredictable patterns observed in real-world systems while
still being able to explore a wide range of scenarios, from highly correlated layers to those with
minimal interdependence. That kind of adaptability constitutes a crucial step forward in advancing
the study and validation of community detection algorithms and other analytical techniques in
multilayer network science.

4 The mABCD Model

In this section, we introduce a variant of the ABCD model that produces a synthetic collection of
graphs that form a multilayer structure, mABCD.

4.1 Power-law Distribution

Power-law distributions will be used to generate both the degree sequence and community sizes
so let us formally define it. For given parameters γ ∈ (0,∞), δ,∆ ∈ N with δ ≤ ∆, we define a
truncated power-law distribution P (γ, δ,∆) as follows. For X ∼ P (γ, δ,∆) and for k ∈ N with
δ ≤ k ≤ ∆,

P (X = k) =

∫ k+1
k x−γ dx∫ ∆+1
δ x−γ dx

.

4.2 The Configuration Model

The well-known configuration model is an important ingredient of the generation process, so let
us formally define it here. Suppose then that our goal is to create a graph on n nodes with a
given degree sequence d = (di, i ∈ [n]), where d is a sequence of non-negative integers such that
m =

∑
i∈[n] di is even. We define a random multi-graph CM(d) with a given degree sequence known

as the configuration model (sometimes called the pairing model), which was first introduced
by Bollobás [10]. (See [7, 56, 57] for related models and results.)

We start by labelling nodes as [n] and, for each i ∈ [n], endowing node i with di half-edges.
We then iteratively choose two unpaired half-edges uniformly at random (from the set of pairs of
remaining half-edges) and pair them together to form an edge. We iterate until all half-edges have
been paired. This process yields Gn ∼ CM(d), where Gn is allowed self-loops and multi-edges and
thus Gn is a multi-graph.

4.3 Parameters of the mABCD Model

The mABCD model is governed by the following parameters. The first family of parameters is
responsible for a few global properties of the model and is enlisted in Table 2.

10



Table 2: Global parameters of mABCD.

Parameter Range Description
n N Number of actors
ℓ N Number of layers
R [0, 1]ℓ×ℓ Correlation between edges
d N Dimension of reference layer

Actors will be associated with labels from the set [n]. These labels will affect the degrees of
actors. Each actor a ∈ [n] will be associated with ℓ nodes, vi = (a, i) with i ∈ [ℓ], one for each of
the ℓ layers. Moreover, each actor will be associated with a vector in Rd representing their features.
We will refer to these vectors as vectors in the reference layer. This reference layer will affect the
process of generating partitions into communities in various layers.

The second family of parameters (Table 3) is responsible for various properties that are specific
for each of the ℓ layers; subscripts i ∈ [ℓ] indicate that the corresponding parameters shape the ith

layer. In particular, the set of parameters ξi, i ∈ [ℓ], will control the level of noise, that is, the
fraction of edges in layer i that are between nodes from two different communities.

Table 3: Layer-specific parameters of mABCD.

Parameter Range Description
qi (0, 1] Fraction of active actors
τi [−1, 1] Correlation coefficient between degrees and labels
ri [0, 1] Correlation strength between communities and the ref-

erence layer
γi (2, 3) Power-law degree distr. with exponent γi
δi N Min degree as least δi
∆i N (1 ≤ δi ≤ ∆i < n) Max degree at most ∆i

βi (1, 2) Power-law community size distr. with exponent βi

si N Min community size at least si
Si N (δ < si ≤ Si ≤ n) Max community size at most Si

ξi (0, 1) Level of noise

The suggested range of values for parameters γ and β (namely, the intervals (2, 3) and (1, 2),
respectively) are chosen according to experimental values commonly observed in complex net-
works [3, 46].

4.4 The mABCD Construction

We will use A for the distribution of graphs (layers) generated by the following 6-phase construction
process. The model generates ℓ graphs; graph Gi

n = ([n]×{i}, Ei), i ∈ [ℓ], is the graph representing
the ith layer. Once they are generated, we simply take V =

⋃
i∈[ℓ]([n] × {i}) and E =

⋃
i∈[ℓ]E

i.

11



Phase 1: Selecting Active Nodes

As mentioned above, in a multilayer network, not all of the actors are active in all the layers. Actor
a ∈ [n] is active in layer i with probability qi, independently for each i ∈ [ℓ] and all other actors.
If an actor is not active in a given layer, then it will be represented by an “artificial” inactive
node. We use N i to denote the number of active nodes (and actors) in layer i. (Clearly, N i is a
random variable with expectation qin.) For convenience, we will keep inactive nodes as a part of
the corresponding graphs, but one may think of them as being removed from a given layer.

Phase 2: Creating Degree Sequences

The degree sequences for all of the ℓ layers are generated independently so we may concentrate on
a given layer i ∈ [ℓ]. We ensure that the degree sequence satisfies (a) a power-law with parameter
γi, (b) a minimum value of at least δi, and (c) a maximum value of at most ∆i.

Inactive nodes (representing actors not present in particular layer) are easy to deal with,
they simply have degree zero. The remaining N i degrees are i.i.d. samples from the distribu-
tion P (γi, δi,∆i). We use di

n = (div, v ∈ [n]) for the generated degree sequence of Gi
n with

di1 ≥ di2 ≥ · · · ≥ din; di
N i is a degree subsequence of active nodes. Finally, to ensure that

∑
v∈[n] d

i
v

is even, we decrease di1 by 1 if necessary; we relabel as needed to ensure that di1 ≥ di2 ≥ · · · ≥ din.
Parameter τi ∈ [−1, 1] controls how degrees of the nodes are correlated with labels of the

associated actors (recall that node (a, i) in layer i is associated with an actor with label a). In one
important case, namely, when τi = 0, there is no correlation at all and the degree sequence di

N i is
assigned randomly to the Ni active nodes. When τi = 1, the order of active nodes with respect to
their labels is the same as the order with respect to their degrees; the largest degree node is first.
In other words, if nodes (a1, i), (a2, i) with 1 ≤ a1 < a2 ≤ n are active, then degi(a1) ≥ degi(a2),
where degi(a1) is the degree of node (a1, i). Similarly, if τi = −1, then the order of active nodes
with respect to their labels is also consistent with the order with respect to their degrees but this
time the last node is of the largest degree. Since τi’s could be different for different layers, one node
could have large degrees in some layers but small ones in some other ones.

To achieve the desired property, each active node (a, i) independently generates a normally
distributed random variable Xa = N(a/n, σi), where the variance σi is a specific function of τi.
(Recall that we concentrate on a given layer i ∈ [ℓ]. For convenience, we simplify the notation
and stop referencing to layer i in notation such as Xa. Still, there are many independent random
variables for each active node (a, i) associated with actor a.) We sort active nodes in increasing
order of their values of Xa and assign the degree sequence accordingly; that is, node (a, i) gets
degree dir, where r ∈ [N i] is the rank of Xa. In particular, the node with the smallest value of Xa

gets assigned the largest degree, namely, di1. Note that if σi = 0, then Xa = a/n (deterministically),
and so we recover the perfect correlation between the degrees and the labels (τi = 1). On the other
hand, if σi → ∞, then the order of nodes is perfectly random (with uniform distribution), so we
recover the other desired extreme (τi = 0).

Function σi : [0, 1] → [0,∞) is empirically approximated so that the variance σi = σi(ρi) yields
the Kendall rank correlation close to τi ∈ [0, 1] between the ordering generated by the ranks of Xa

and the labels a associated with corresponding actors that are active in layer i. Twenty degree
distributions are independently generated (with the same σ and different random seeds), and the
one with the correlation coefficient that is the closest to the desired value of τi is kept. To deal
with negative correlations τi ∈ [−1, 0), we simply “flip” the order generated for |τi|.

12



Phase 3: Creating Communities

Our next goal is to create community structure in each layer of the mABCD model. When we
construct a community, we assign a number of nodes to said community equal to its size. Initially,
the communities form empty graphs. Then, in later phases we handle the construction of edges
using the degree sequence established in Phase 2.

Similarly to the process of generating the degree sequences, the sequence of community sizes
are generated independently, ensuring that the distribution for a given layer i ∈ [ℓ], satisfy (a)
a power-law with parameter βi, (b) a minimum value of si, and (c) a maximum value of Si. In
addition, we also require that the sum of community sizes is exactly n. Specifically, inactive nodes
(if there are any) form their own community, namely, Ci

0. Other communities are generated with
sizes determined independently by the distribution P (βi, si, Si). We generate communities until
their collective size is at least n. If the sum of community sizes at this moment is n+x with x > 0,
then we perform one of two actions: if the last added community has a size at least x + si, then
we reduce its size by x. Otherwise (that is, if its size is c < x+ si), then we delete this community,
select c− x old communities and increase their sizes by 1.

Now, given that the sequences of community sizes are already determined (for all layers), it is
time to assign nodes to communities. To allow communities to be correlated with each other, we first
create a latent reference layer that will guide the process of assigning nodes to specific communities
across all layers. One may think of this auxiliary layer as properties of actors (such as people’s
age, education, geographic location, beliefs, etc.) shaping different layers (for example, various
social media platforms). This single reference layer will be used for all ℓ layers. In this reference
layer, each actor a ∈ [n] gets assigned a random vector in Rd (by default, d = 2) that is taken
independently and uniformly at random from the ball of radius one centred at 0 = (0, 0, . . . , 0).

Let us now concentrate on a given layer i ∈ [ℓ]. Recall that the community sizes have already
been generated. We write Li for the (random) number of regular communities in layer i partitioning
the set of active nodes in this layer and use ci = (cij , j ∈ {0}∪[Li]) for the corresponding sequence of
community sizes. Recall that inactive nodes (representing actors not present in a particular layer)
form their own community (namely, Ci

0) so ci0 = n−N i is the number of inactive nodes in layer i.
Let R be the set of active nodes. We assign nodes to communities, dealing with one community
at a time, in a random order. When community Ci

j is formed (for some j ∈ [Li]), we first select a
node from R that is at the largest distance from the center 0 (in the reference layer). This node,
together with its cij − 1 nearest neighbours in R, are put to Ci

j . We remove Ci
j from R and move

on to the next community.
The above strategy creates a partition of nodes that is highly correlated with the geometric

locations of nodes in the reference layer; nodes that are close to each other in the reference layer are
often in the same community — see Figure 3 for an example. To reduce the correlation strength
(modelled by the parameter ri ∈ [0, 1]), we perform the following procedure. Each active node
independently leaves its own community with probability 1 − ri, freeing a spot in this community.
All the nodes that left are then put back randomly to any available spot (which typically is in
a community that this node was not originally in). Note that in the extreme case, when ri = 0,
the resulting partition does not depend on the reference layer at all, so there is no correlation. We
write Ci

n = (Ci
j , j ∈ {0} ∪ [Li]) for the generated collection of communities in Gi

n. Again, let us

stress the fact that Ci
n is a random partition of [n] of random size Li + 1.

Finally, note that in the above process of assigning nodes to communities, as opposed to the
original ABCD model, we ignore the degree of nodes. Indeed, the original ABCD model tries to

13



make sure that large degree nodes are not assigned to small communities. In mABCD, there are
many layers and non-trivial correlations between partitions into communities and degree sequences
between layers. In a hypothetical extreme situation, it might happen that each node belongs to
some small community in some layer. Hence, the mABCD model does not try to prevent such
unavoidable situations and will resolve potential issues later (see Phase 5).

Figure 3: Two partitions generated based on the same reference layer with n = 1,000 nodes:
(left) q1 = 1 (all nodes active), S1 = 32, s1 = 16, β1 = 1.5, (right): q2 = 0.5 (50% nodes
active), S2 = 50, s2 = 25, β2 = 1.5.

Phase 4: Creating Edges

Now, it is time to form edges in mABCD. It will be done in the next three phases, Phases 4–6.
Phases 4 and 5 will independently generate ℓ graphs Gi

n, i ∈ [ℓ], for each of the ℓ layers whereas
Phase 6 will make sure that edges across various layers are correlated, if needed. We may then
concentrate on a given layer i ∈ [ℓ].

At this point Gi
n contains n nodes labelled as (a, i), a ∈ [n], partitioned by the communities

Ci
n, with node (a, i) containing degi(a) unpaired half-edges. Firstly, for each a ∈ [n], we split

the degi(a) half-edges of (a, i) into two distinct groups, which we call community half-edges and
background half-edges. For a ∈ Z and b ∈ [0, 1) define the random variable ⌊a + b⌉ as

⌊a + b⌉ =

{
a with probability 1 − b, and
a + 1 with probability b .

(Note that E [⌊a + b⌉] = a(1 − b) + (a + 1)b = a + b.) Now define Ya =
⌊
(1 − ξ) degi(a)

⌉
and

Za = degi(a) − Ya (note that Ya and Za are random variables with E [Ya] = (1 − ξ) degi(a) and
E [Za] = ξ degi(a) and since we generate each layer separately they are different for each layer)
and, for all a ∈ [n], split the degi(a) half-edges of (a, i) into Ya community half-edges and Za

background half-edges. Next, for all j ∈ [Li], construct the community graph Gi
n,j as per the

configuration model on node set Ci
j and degree sequence (Ya, a ∈ Ci

j). Note that C0 consists of
inactive nodes which, by design, have degree zero. Hence, there is no need to do anything with

14



them. Finally, construct the background graph Gi
n,0 as per the configuration model on node set [n]

and degree sequence (Za, a ∈ [n]). In the event that the sum of degrees in a community is odd, we
pick a maximum degree node (a, i)) in said community and replace Ya with Ya + 1 and Za with
Za − 1. Note that Gi

n,j is a graph, and Ci
j is the set of nodes in this graph; we refer to Ci

j as a

community and Gi
n,j as a community graph. Note also that Gi

n =
⋃

0≤j≤Li Gi
n,j .

Phase 5: Rewiring Self-loops and Multi-edges

We continue concentrating on a given layer i ∈ [ℓ]. Note that, although we are calling Gi
n,j

(j ∈ {0} ∪ [Li]) graphs, they are in fact multi-graphs at the end of Phase 4. To ensure that Gi
n is

simple, we perform a series of rewirings in Gi
n. A rewiring takes two edges as input, splits them into

four half-edges, and creates two new edges distinct from the input. We first rewire each community
graph Gi

n,j , j ∈ [Li], independently as follows.

1. For each edge e ∈ E(Gi
n,j) that is either a loop or contributes to a multi-edge, we add e to a

recycle list that is assigned to Gi
n,j .

2. We shuffle the recycle list and, for each edge e in the list, we choose another edge e′ uniformly
from E(Gi

n,j)\{e} (not necessarily in the recycle list) and attempt to rewire these two edges.
We save the result only if the rewiring does not lead to any further self-loops or multi-edges,
otherwise we give up. In either case, we then move to the next edge in the recycle list.

3. After we attempt to rewire every edge in the recycle list, we check to see if the new recycle
list is smaller. If yes, we repeat step 2 with the new list. If no, we give up and move all of
the “bad” edges from the community graph to the background graph.

We then rewire the background graph Gi
n,0 in the same way as the community graphs, with the slight

variation that we also add edge e to recycle if e forms a multi-edge with an edge in a community
graph or, as mentioned previously, if e was moved to the background graph as a result of giving up
during the rewiring phase of its community graph. At the end of Phase 5, we have a simple graph
Gi

n representing the i-th layer of a multilayer network.

Phase 6: Correlations Between Edges in Various Layers

During this last phase, we continue performing a series of rewiring (in batches) with the goal of
creating a multilayer network with the correlations between edges in various layers (as defined in
Subsection 3.1) to be as close to the desired matrix R (provided as one of the parameters of the
model) as possible. It is important to highlight the fact that during this phase, not only do the
degrees of the involved nodes not change, but the community degrees stay the same (as well as the
background ones). Hence, in particular, the level of noise stays the same.

We run t independent batches of operations (by default, t = 100). Before every batch, we
re-compute the (empirical) correlation matrix R̂ for the current multilayer network (Gi

n : i ∈ [ℓ])
and compare it with the desired matrix R. We select an entry ij at random with the probability
proportional to the discrepancy between the empirical and the desired values. In other words, we
select a pair (i, j) (1 ≤ i < j ≤ ℓ) with probability

pij =
|r̂ij − rij |∑

1≤r<s≤ℓ |r̂rs − rrs|
.

15



We attempt to rewire ⌈ϵmin{|Ej
i |, |Ei

j |}⌉ of edges in each batch with the goal to bring r̂ij closer

to rij (by default, ϵ = 0.05). Recall that Ej
i can be viewed as the set of edges in layer i that are

between actors that are active in layer j (and, trivially, also active in layer i since inactive actors
form isolated nodes), see Equation 1.

Suppose first that r̂ij < rij , that is, the correlation between layer i and layer j is smaller than
what we wished for. Each of the attempts does the following. Randomly select one of the two
graphs, Gi

n or Gj
n, and call it primary. Then, pick a random edge uv from the primary graph

between actors that are active in both layers. Our goal is to try to introduce edge uv in the other
graph (call it secondary) unless it is already there, in which case we simply finish this attempt
prematurely. If u and v belong to one of the communities in the secondary graph (say to the
community C), then we take u′ to be a random neighbour of u in C (if there are any), take v′

to be a random neighbour of v in C (again, if there are any). If u, v, u′, v′ are four distinct nodes
and there is no edge u′v′ in the secondary graph, then we remove the two edges uu′ and vv′ and
introduce two new edges uv and u′v′. If anything goes wrong, then we simply finish prematurely
and move on to another attempt. If u and v are from two different communities in the secondary
graph, then the procedure is exactly the same, but this time, our goal is to select four nodes, each
from a different community. Specifically, we try to pick a random neighbour u′ of u outside of the
communities u or v belong to. Then, we try to pick a random neighbour v′ of v outside of the
communities u, v, or u′ belong to. If the four selected nodes are different and there is no edge u′v′

in the secondary graph, we do the rewiring.
Suppose now that r̂ij > rij , that is, the correlation between layer i and layer j is larger than

what we wished for. As before, during each attempt, we randomly make one of the two graphs,
Gi

n, Gj
n, to be primary and the second one to be secondary. Then, pick a random edge uv from the

intersection of the two graphs. Our goal is to try to remove edge uv from the secondary graph. If
u and v belong to one of the communities in the secondary graph (say to the community C), then
we take a random edge u′v′ from C. If u, v, u′, v′ are four distinct nodes and there are no edges
uu′ nor vv′ in the secondary graph, then we remove the two edges uv and u′v′ and introduce two
new edges uu′ and vv′. As before, if anything goes wrong, then we simply finish prematurely and
move on to another attempt. If u and v are from two different communities in the secondary graph,
then we pick a random edge u′v′ from the secondary graph with the property that all four nodes
belong to different communities. We try to rewire the two edges, making sure that no multi-edges
get created.

The goal of the sequence of t batches is to bring the (empirical) correlation matrix R̂ closer to
the desired matrix R. Unfortunately, fixing one entry of R may affect the other entries. Hence, it
is not guaranteed that the best solution is found after exactly t batches. To take this into account,
we track the quality of the multilayer networks (Gi

n : i ∈ [ℓ]) at the beginning of each bath (via L2

norm between R̂ and R) and the final network is the one of the t networks that performed best.

Implementation

The algorithm is implemented in Julia programming language, a high-level, general-purpose dy-
namic programming language, designed to be fast and productive. Source code and installation
instructions are available on mABCD GitHub repository5. The Python ports are available as

5https://github.com/KrainskiL/MLNABCDGraphGenerator.jl

16

https://github.com/KrainskiL/MLNABCDGraphGenerator.jl


well6.

5 Properties of the mABCD Model

In this section, to justify mABCD model design and to highlight important features, we provide
various experiments to investigate some important properties of the model.

Correlations Between Nodes Degrees

Recall that in Phase 2 of the mABCD model, independently for all layers, each active node
associated with an actor a ∈ [n] independently generates a normally distributed random variable
Xa = N(a/n, σ) for some fixed value of the variance σ. In the first experiment, we independently
generate the degree distributions for various values of σ ∈ [0, 20]. We compute the Kendall rank
correlation coefficient between actors’ labels a and the corresponding random variables Xa.

To see how quickly the process converges, we compare the results for the number nodes n in
{103, 104, 105, 106} and all actors being active—see Figure 4 (Left). To see how close the coefficients
are to their asymptotic limit (as n → ∞), we also look at the difference between the values for
n ∈ {103, 104, 105} and the ones for n = 106—see Figure 4 (Right). The differences are rather small,
even for n as small as 1,000. Of course, there are some natural fluctuations, but they are rather
insignificant compared to the expectation. It justifies our design of the algorithm. In practice,
based on the experiments with n = 106 (that are saved and accessible by the algorithm), one can
select an appropriate value of the parameter σ that is expected to produce the desired Kendall rank
correlation coefficients τ . With such a choice of σ, generating 20 independent sequences is enough
to make sure that one of them is very close to the desired value of τ .

Figure 4: Left: Kendall rank correlation coefficients between actors’ labels and generated
random variables Xa = N(a/n, σ) for various values of n. Right: Difference between Kendall
rank correlation coefficients for small values of n and the ones for n = 1,000,000.

In the second experiment, we generate the degree sequences for n = 1,000 actors in 5 layers. The
desired correlations between the actors’ labels and the order of the corresponding random variables

6https://github.com/anty-filidor/spreading-vs-mln-structure

17

https://github.com/anty-filidor/spreading-vs-mln-structure


Xa is fixed to be (τi) = (1.0, 0.5, 0.0,−0.5,−1.0) and not all the actors are active in all layers:
(qi) = (1.0, 0.9, 0.8, 0.7, 0.6). The degree sequence for active nodes is independently generated in
each layer with the following parameters: γi = 2.5, δi = 5, ∆i = 50.

We repeat the above experiment 100 times. The experimental means and standard deviations of
the corresponding Kendall τ correlations between the hidden labels of active actors and generated
random variables Xa are (1.0, 0.5, 0.0,−0.5,−1.0) and, respectively, (0.0, 0.001, 0.002, 0.001, 0.0),
very close to the desired sequence (1.0, 0.5, 0.0,−0.5,−1.0). We also computed correlations between
sequences of Xa as well as degree sequences in all

(
5
2

)
pairs of layers (on nodes that are active in

both layers). The experimental means are reported in Figure 5 for sequences of Xa (Left) and
for degree sequences (Right). As expected, both matrices contain similar values, and correlations
behave as expected. For example, layers 4 and 5 are negatively correlated with the labels of actors
(−0.5 and −1.0, respectively) and so are positively correlated with each other (0.5 and 0.537 in the
two corresponding correlations).

Figure 5: The average value of Kendall τ rank correlation (over 100 repetitions) between
sequences of random variables Xa (Left) and degree sequences (Right) in two layers. Corre-
lations are computed on nodes that are active in both layers.

The third and final experiment in this subsection is merely a sanity check, as this property is
enforced in the model by design. We generate degree sequences for three layers with n = 100,000
actors in each, all of them being active (q = 1). The minimum and the maximum degrees are fixed
to be δ = 5, ∆ = 316 ≈

√
n across the three layers, but the power-law exponents vary: (γi) =

(2.2, 2.5, 2.8). For a given integer k, let f(k) be the experimental cumulative degree distribution,
that is, f(k) is the fraction of nodes of degree at least k. For a given set of parameters, the
theoretical cumulative degree distribution is equal to

f̂(k) =

∑∆
i=k i

−γ∑∆
i=δ i

−γ
.

We show that the experimental degree distributions are very close to the desired, theoretical, ones
— see Figure 6 (Left) for the cumulative degree distributions of the three layers.

18



Figure 6: Left: Empirical (dots) and theoretical (dashes) log-log cumulative degree distri-
butions for three degree sequences: n = 100 000, δ = 5,∆ = 316. Right: Empirical (dots)
and theoretical (dashes) log-log cumulative community sizes distributions for three sizes se-
quences: n = 100 000, s = 10, S = 1 000.

Correlations Between Partitions

Recall that in Phase 4 of the mABCD model, active nodes in each layer are independently par-
titioned into communities of given sizes. The sequences of community sizes can be substantially
different across layers, and the process itself is random. However, the underlying geometry of the
reference layer (that is used for all of the layers) ensures that the generated partitions are correlated.

In the first experiment, we verify how different values of the parameter β (power-law exponent
for the community sizes) affect the AMI between two partitions, the first one generated with
parameter β1 and the second one generated with parameter β2—see Figure 7. The difference is
very small, with a slightly larger correlation obtained for small values of β. We also check how the
choice of the dimension d affects the AMI. Not surprisingly, a larger correlation is obtained for
dimension d = 1, but the 2-dimensional reference layer still produces strong correlations.

Figure 7: The average value of AMI (over 500 repetitions) between two partitions generated
with β1 and, respectively, β2: n = 1000, s1 = s2 = 8, S1 = S2 = 32; d-dimensional reference
layer was used: (left) d = 1, (right) d = 2.

19



We also experiment with the parameter q (fraction of active nodes) and obtain similar con-
clusions — see Figure 8. It seems that the AMI slightly decreases as min{q1, q2} decreases. The
AMI is more sensitive with respect to parameter S (the upper bound for community sizes) —
see Figure 9. As expected, the correlation decreases in highly imbalanced scenarios; one of the
partitions has many small communities, whereas the second one has a few large ones.

Figure 8: The average value of AMI (over 100 repetitions) between two partitions generated
with q1 and, respectively, q2: n = 1,000, s1 = s2 = 8, S1 = S2 = 32, β1 = β2 = 1.5;
d-dimensional reference layer was used: (left) d = 1, (right) d = 2. Only common active
nodes are kept in both layers.

Figure 9: The average value of AMI (over 500 repetitions) between two partitions generated
with S1 and, respectively, S2: n = 1,000, s1 = s2 = 8, β1 = β2 = 1.5; d-dimensional reference
layer was used: (left) d = 1, (right) d = 2.

In the second experiment, we check how the correlation strength parameter r affects the AMI
between the two layers — see Figure 10. It was introduced to provide a smooth transition between
the maximum possible correlation (with r = 1) and completely random partitions (with r = 0).
Our experiments confirm this desired property and show that the AMI is quite stable even for
small networks on n = 1,000 nodes.

20



Figure 10: The average value of AMI ± 1 standard deviation (over 10 repetitions) between
two partitions generated with different values of r (x-axis): n = 1,000, β1 = β2 = 1.5; d-
dimensional reference layer was used: (left) d = 1, (right) d = 2.

In the third experiment, we generate partitions of n = 1,000 actors in 5 layers. As before,
not all the actors are active in all layers: (qi) = (0.6, 0.7, 0.8, 0.9, 1.0). We test different values for
the distribution of the community sizes: (βi) = (1.1, 1.3, 1.5, 1.7, 1.9), (si) = (8, 24, 40, 56, 72), and
(Si) = (32, 48, 64, 80, 96). More importantly, we test different values of the correlation strength
between communities and the reference layer: (ri) = (0.0, 0.25, 0.5, 0.75, 1.0). The experiment is
repeated 100 times, and the experimental means of the AMI between

(
5
2

)
pairs of partitions are

reported in Figure 11. As expected, the partition of active actors in the first layer (with r1 = 0.0)
is not correlated with any other partition. Moreover, the values of AMI increase together with the
corresponding correlation strengths.

Figure 11: The average AMI value between pairs of partitions and in generated mABCD
models as a function of β, s, S, q, r (over 100 repetitions); d-dimensional reference layer was
used: (left) d = 1, (right) d = 2. Only common active nodes are kept in compared layers.

In the fourth and final experiment in this subsection, we generate sequences of community sizes
with different distributions. There are n = 100,000 actors in each of the three layers, all of them

21



being active (q = 1). The minimum and the maximum community size is fixed to be s = 10 and
S = 1000 across the three layers, but the power-law exponents vary: (βi) = (1.2, 1.5, 1.8). We
show that the experimental community sizes distributions are very close to the desired ones — see
Figure 6 (Right) for the cumulative community sizes distributions of the three layers.

Correlations Between Edges in Various Layers

In this subsection, we investigate the performance of Phase 6 of the process generating mABCD.
Recall that in this phase, in each of the t batches, we carefully rewire a random fraction of edges
in one of the layers with the goal to bring the empirical correlation matrix R̂ closer to the desired
matrix R. However, because of the very rich dependence structure between layers (associated with
various objects: degree sequences, partitions into communities) and the fact that some nodes are
inactive, it is not clear that the desired correlations can be achieved.

We selected 4 real-world networks (ckmp, l2-course, lazega, and timik), extracted their proper-
ties (such as degree sequences, community sizes sequences, noise ratio, correlations; see Section 6.2
for more details on how it can be done), and created corresponding mABCD networks mimicking
these real-world networks. To provide a good fit to real-world networks we injected exact degree se-
quences (and therefore active nodes) into the algorithm. As the ground-truth community structure
is not known, we used Louvain algorithm to generate community sizes sequence, estimated power
law exponent for each layer, and used extrema of community sizes as input to synthetic graph.
The convergence to the desired correlation matrix R between edges in various layers is presented
in Figure 12. The default parameters for the number of batches (t = 100) and the fraction of edges
rewired (ϵ = 0.05) were tested (right column) but we also checked other set of parameters with the
same total number of rewires, namely, t = 500 and ϵ = 0.01.

There is no visible difference between the two scenarios which justifies the default parametriza-
tion: the smaller number of batches yields a faster algorithm as the algorithm needs to recompute
the empirical correlation matrix R̂ at the beginning of each batch. In general, the process con-
verges quite quickly: the L2 norm between R̂ and R decreases rapidly. However, there are some
fluctuations and the final network is not necessarily the best one. This, again, justifies the design
of the algorithm that keeps the best network generated during the process.

Speed

One of the reasons why the original ABCD model was developed was the fact (pointed out by
the industry partners we worked with back then) that other synthetic random graph models with
community structure are inherently slow. Keeping this concern in mind, the design of the ABCD
model aims to generate networks fast. Indeed, after careful preprocessing (that is very fast), ABCD
is essentially a union of independent copies of the configuration model. In two minutes, on a typical
laptop, one can generate networks on n = 1.5 · 221 nodes. The experiments reported in the section
were executed on Macbook Air M1 (2020) with macOS v15.5.

The mABCD model is clearly much more complicated than the original ABCD, but it builds
on fast ingredients of ABCD. Not surprisingly, Phase 6 (switching edges to get the desired correla-
tions between edges in various layers) is the most time-consuming phase. Moreover, it is clear that
the more layers, the longer the process is. In two minutes, one can generate mABCD networks on
n = 216 = 65,536 nodes. However, without Phase 6, in the same time one can produce much larger

22



Figure 12: Changes in edge correlation between layers (solid) compared to the desired cor-
relation (dashed). Grey thick line represents the L2 distance between the desired and the
empirical correlation matrices (∥R− R̂∥2).

23



networks on n = 220 = 1,048,576 nodes — see Figure 13. The percentage breakdown is presented
in Figure 14.

Finally, we have compared the speed of mABCD model to the multilayerGM framework [6];
see Section 2.1 for more details. The results are presented in Figure 15 and Table 4, and indicate
that for the same setup, mABCD is roughly 10 times faster for small networks (1,024 nodes),
and the difference in speed quickly increases with the network size (for a two-layer network with
32,768 nodes mABCD is 310 times faster). Since generating one five-layer network with 32,768
nodes took more than one hour for multilayerGM, and we repeated experiments ten times for
each combination of node and layer, we stopped our comparison there.

Figure 13: The average (± 1 std) execution time of mABCD (in log-log scale) with Phase 6
(dashes) and without it (solid) for n = 2k nodes, k ∈ {10, 11, . . . , 20}, and ℓ ∈ {2, 3, 4, 5}
layers; 10 repetitions for each combination.

Figure 14: Percentage breakdown of the execution time between phases of the algorithm:
with Phase 6 included n = 216 (Left) and with Phase 6 excluded, ℓ = 5 (Right).

6 Using mABCD for Spreading Phenomena Analysis

To demonstrate the applicability of the mABCD synthetic network in relevant fields, we present
three use cases from the area of spreading phenomena analysis. These experiments aim to illus-

24



Figure 15: The average (± 1 std) execution time (in log-log scale) for multilayerGM
framework (dashes) and mABCD model (solid) for n = 2k nodes, k ∈ {10, 11, ..., 15}, and
ℓ ∈ {2, 3, 4, 5} layers; 10 repetitions for each combination.

Table 4: The average execution time (in seconds) of multilayerGM (first) and mABCD
(second) algorithms for varying number of nodes n and number of layers ℓ; ratio of execution
times in brackets.

n ℓ=2 ℓ=3 ℓ=4 ℓ=5

1,024 0.65/0.03 (22) 0.98/0.06 (16) 1.31/0.11 (12) 1.67/0.17 (10)
2,048 2.44/0.07 (33) 3.71/0.16 (24) 4.84/0.27 (18) 6.00/0.43 (14)
4,096 11.01/0.22 (50) 16.30/0.46 (36) 21.83/0.80 (27) 27.27/1.26 (22)
8,192 55.46/0.62 (90) 82.99/1.29 (64) 110.85/2.33 (48) 137.93/3.72 (37)

16,384 274.03/1.73 (158) 410.23/3.69 (111) 545.92/6.70 (82) 681.25/10.59 (64)
32,768 1,533.2/4.9 (310) 2,290.1/10.5 (219) 3,051.3/18.6 (164) 3,817.6/29.2 (131)

trate the usefulness of the introduced framework and to provide guidance for conducting similar
experiments. In general, the problem which we aim to tackle is how the topological features of the
network affect the spread of influence in multilayer networks. To do so, we are using mABCD to
generate various networks where one feature changes while the remaining ones remain unchanged.
This allows us to asses how a single feature affects the spreading process. It is worth noting that
the problems depicted below can also be regarded as standalone research outlines within a broader
context beyond the examples presented here. Before describing the experiments, we first discuss
the employed methodology, as they are conducted in a similar manner.

6.1 Scope and Methodology

The experimental part consists of several steps. First, we select a real-world network to serve as a
baseline; specifically, we decided to use the timik network (see Table 1), due to its large size which
helps minimize sampling errors (typical to any graph generator). Then, a set of configuration
parameters for this network are estimated. Having done so, we are able to manipulate specific

25



parameters and generate synthetic networks that can be considered derivatives of the original
network. It is worth noting that the idea of utilizing a real network stems from the need to
bring the experiments closer to real-world conditions. In the context of spreading phenomena, one
can imagine that, as the baseline network represents a real-world system, its artificially generated
variants using the mABCD model can correspond to possible configurations of such a system,
resembling the impact of certain policies imposed on it. For instance, since the employed network
(timik) represents interactions on an online social platform, its artificial counterpart generated with
an adjusted ∆i parameter may reflect the effect of a policy that regulates the maximal number of
friends allowed. Thus, by comparing spreading on the original network and its derivative, we assess
the consequences of counterfactual scenarios that affect the construction of the evaluated system.

To ensure a fair comparison of spreading effectiveness, only graphs generated by mABCD are
evaluated. Consequently, instead of simulating spread on the original real-world network, its “digital
twin” is employed. Based on the estimated configuration parameters (adjusted for minimum degree
and minimum community size to remain within the capabilities of the framework), 20 instances of
the network are generated using mABCD. Spread is then simulated on generated networks under a
selected range of spreading regimes that produce non-trivial dynamics; that is, the network neither
saturates too rapidly nor inhibits the initiation of spreading.

Each experiment involves manipulating a single parameter of the mABCD model, with the
aim of evaluating networks that differ from the baseline by only that feature. Similarly to the
baseline graph, we generated 20 multilayer networks per each set of configuration parameters to
mitigate the randomness inherent in mABCD. Diffusion is then simulated on these networks
using the same spreading conditions as for the “digital twin” of the real-world network. Since
the employed spreading model is also nondeterministic, each simulation was repeated 30 times to
reduce the influence of random effects. Finally, the diffusion effectiveness observed in the modified
and original networks is compared to assess the influence of the parameter under investigation on
the spreading process.

As the influence spreading mechanism, we utilize the Independent Cascade Model [26] (ICM),
extended to the multilayer scenario (MICM). This adaptation draws upon a similar rationale to
that used in extending the related Linear Threshold Model (LTM), as described by [58]. Consistent
with their approach, we regard actors as the principal entities in the diffusion process, while their
corresponding nodes across various layers serve a supplementary function. In the original ICM,
the probability that an active agent will activate its inactive neighbour is controlled by a single
parameter, π̇, with each activation attempt occurring only once. Our modification introduces
an additional parameter, δ̇, termed the protocol function, which dictates how activation signals
from different layers are combined to establish the actor’s overall state. Activation of the actor
(and all its layer-specific nodes) occurs only if the protocol condition is fulfilled; if not, the actor
remains inactive even if some layer-specific nodes receive positive activation signals. We examine
two extreme cases for δ̇: the AND protocol, where activation requires positive signals from all
layers representing the actor; and the OR protocol, where activation in any single layer suffices.

At this point it is worth noting that, in contrast to the ICM, employing its well-known counter-
part in the experimental part, the LTM [28], can lead to unstable results. This is due to the way
mABCD generates graphs, namely, it aims to capture community structure (i.e., global proper-
ties) rather than local ones. As a result, graphs generated with mABCD contain groups of nodes
that induce denser subgraphs compared to the global density, but locally neighbourhoods still re-
semble tree structure, as there are very few short cycles. By contrast, real networks do not exhibit

26



this local behaviour; they contain many short cycles, even triangles. Consequently, diffusion in
mABCD-generated networks under the LTM, which relies on a threshold mechanism requiring a
certain number of active neighbours to activate a given node, can either quickly die out or abruptly
saturate the network, with no parameter range that produces gradual, stable spreading. On the
other hand, the mechanism inherent to the ICM is “immune” to this tree-like local structure, as it
focuses on individual edges rather than the entire neighbourhood of a given node.

Finally, the metric used to compare the effectiveness of spreading was gain [18]. It quantifies
the total network coverage achieved by initiating the diffusion from a seed set S0. Specifically, it is
computed as the proportion of actors activated during the diffusion process, excluding the initial
seeds, relative to the total number of activatable actors (i.e., those not in S0):

Γ =
|S∞ − S0|
|A− S0|

, Γ ∈ [0, 1].

In summary, the experimental methodology adopted in this study comprises the following steps:
(1) selecting a real-world network; (2) obtaining a set of configuration parameters of the model
for the network; (3) generating 20 network instances serving as “digital twins” of the real-world
network; (4) simulating diffusion under a predefined regime; (5) manipulating a specific parameter
of the configuration model; (6) generating 20 network instances based on the modified configuration;
(7) simulating diffusion under the same predefined regime; (8) comparing the diffusion dynamics
to assess how the evaluated parameter influences spreading efficiency.

The simulations described in this chapter were conducted on a workstation running Ubuntu
20.04.4 LTS with kernel version 6.5.3-arch1-1, equipped with 376 GB of RAM and an Intel(R)
Xeon(R) Gold 6238 CPU @ 2.10 GHz (x86 64 architecture). The source code was written in
Python 3.12 utilizing mABCD v1.0, networkx v3.3 [29], and network-diffusion v0.18 [19], with
particular attention to reproducibility. All scripts, data, and results are publicly available at Github
repository7.

6.2 Extracting Configuration Parameters from Real Networks

To describe how the configuration parameters are retrieved from real-world networks, we first refer
the reader to Section 4.3, as the notation used below follows that section closely. Furthermore, we
do not elaborate here on how the values of n, ℓ, q, δ, and ∆ are obtained, as they are straightforward
and can be directly extracted from the processed network.

As for the more complicated parts of the mABCD framework, we begin with R. This param-
eter is denoted in a form of matrix of pairwise edge correlations. We estimate it using directly an
approach described in Section 3.1, especially with equations (1) and (2).

The mABCD model assumes that the labels of actors and nodes representing them follow the
natural numbers. However, in real networks, labels may take various other forms. This aspect
affects the estimation of τ , which relies on the natural ordering of actor labels. To address this in
retrieving τ , we first convert the node labels in the first layer (layers are sorted alphabetically) so
as to maximize the correlation between node degrees and their assigned labels; that is, the node
with the highest degree is assigned the highest identifier. These re-organized labels are then used
to compute the correlations in the remaining layers. Moreover, only nodes with a positive degree
are taken into account to obtain the correlation value in order to reduce the noise.

7https://github.com/anty-filidor/spreading-vs-mln-structure

27

https://github.com/anty-filidor/spreading-vs-mln-structure


The parameter r is the most challenging to retrieve, as we do not have access to the latent
biscuit-like reference layer used during the network generation process. To address this, we apply
a coarse estimation of this parameter. Specifically, as it was done before, we select the first layer in
alphabetical order and apply the Louvain algorithm to identify its community structure, which is
then treated as the reference partition. Subsequently, we detect the community structure in each
layer of the network and compute the layer-specific value ri as the AMI between the layer’s partition
and the reference partition. Since the alphabetically first layer is always used as the reference, its
r value will be large. Due to the non-deterministic nature of the Louvain algorithm [9], this value
will not be exactly 1, but it should be close to it.

Among the degree-oriented properties, only the retrieval of γ is non-trivial, as it involves the
general challenge of fitting an observed distribution to a specific model. To estimate this parameter,
we employ the powerlaw library [1], implicitly assuming that the degree distribution follows a
power-law and is not better described by any other distribution type.

The next group of parameters (β, s, and S) concerns layer-specific community structural prop-
erties. At this stage, we again employ the Louvain algorithm [9] to obtain a partition of the nodes
into communities on each layer of the network. Then, a value of β is estimated by applying the
powerlaw library [1] to the sequence of community sizes. The values of s and S are likewise derived
from this sequence.

Finally, to estimate the layer-wise noise level between communities, we again analyze the com-
munity structure on each network layer. For each ξi, we compute the fraction of inter-community
edges relative to the total number of edges in the given layer.

The implementation of the mABCD framework also includes parameters that do not directly
reflect properties of the generated network, but instead serve as variables controlling the generation
process. In the subsequent experiments, we use a fixed set of such parameters. Specifically, the
dimensionality of the latent reference layer is set to d = 2. The maximum number of iterations
for sampling both degrees and community sizes is set to 1,000. For the rewiring step, we use 0.05
as the proportion of edges to be rewired in each batch, and 100 as the total number of rewiring
batches.

It is worth noting that, like any artificial model, mABCD accepts only a feasible range of
configuration values. Therefore, after retrieving the parameters for timik, we tailored them to fit
within the constraints of the framework. Specifically, values of γ were limited so as not to exceed
3.0, the minimum value of δ was set to 10, and s to 50. Let us note that the code to extract all
parameters mentioned above from any network is also present in the previously mentioned GitHub
repository, so even inexperienced user can generate a “digital twin” of any real network.

6.3 Experiments

Having introduced the outline of the experimental methodology, we now turn to the description
of the experiments. To demonstrate the capabilities of mABCD, we selected three use cases,
each designed to shed light on a different aspect of the relationship between network geometry and
spreading phenomena. Specifically, we evaluate the impact of the noise level between communities,
network compression, and inter-layer community correlation.

28



Effect of Noise Level Between Communities

The first experiment conducted aimed to answer the following question: how does the inter-
community noise level (ξ) impact information spreading? Intuitively, we expected higher ξ values
to facilitate the information dissemination and lower ones to suppress it. Indeed, the lower val-
ues of ξ could create “echo chambers”, closed environments where actors are primarily exposed
to information and opinions that reinforce their existing beliefs, potentially leading to increased
fragmentization. On the other hand, dissemination might still occur through other layers. Hence,
the situation for multilayered networks is more complex and interesting compared to single-layer
ones.

Following this hypothesis, we generated four types of networks with modified values of ξ as
follows: series 2 with ξi = 1.00, series 3 with ξi = 2ξitimik

, series 4 with ξi = 0.5ξitimik
, and series 5

with ξi = 0.01. In other words, two types of networks exhibit extreme inter-community noise levels
across all layers, while the remaining two have intermediate values, determined proportionally to
those of the baseline. We then selected a spreading regime for the baseline networks (i.e., “digital
twins” of timik, denoted as series 1 ). Specifically, we used the Neighbourhood Size Discount [18] to
select seeds, and considered two sets of parameters for each protocol function: (δ̇, π̇, s) ∈ {AND}×
{0.15, 0.2, 0.25, 0.3}×{1, 3, 5, 7} and (δ̇, π̇, s) ∈ {OR}×{0.03, 0.05, 0.07, 0.09}×{1, 5, 10, 15}, where
δ̇ and π̇ denote the parameters of the MICM (see Section 6.1), while s refers to the seed set budget,
expressed as a percentage of the number of actors constituting a given network.

The results indicate that the impact of the noise level between communities on diffusion effec-
tiveness depends on the spreading parameters. Specifically, all three variables — δ̇, π̇, and s —
contribute in distinct ways. Therefore, we first briefly discuss the influence of each parameter and
subsequently present detailed results for the subset of configurations in which manipulating ξ yields
the most pronounced effect. The complete set of results is available in the code repository.

The impact of the protocol function is significant: for the less restrictive one (OR), the noise
level barely affects the diffusion characteristics (up to 0.0052 of Γ obtained for baseline). The trend
is contrary to the initial assumptions — namely, reducing ξ improves spreading. One possible
explanation could be that low values of ξ help with spreading information within one community in
one layer and multilayer structure is responsible for spreading to other communities. By contrast,
the differences observed for δ̇ = AND were more pronounced: up to an order of magnitude larger
than for OR (particularly in networks with decreased inter-community noise levels). Nonetheless, at
this level of analysis, there was no clear trend regarding the impact of ξ on spreading effectiveness for
this protocol function. Results obtained for both protocol functions indicate that higher activation
probability (π̇) corresponds to a reduced impact of ξ, i.e. the results converge towards those of
the baseline. Regarding the seed set budget size, for δ̇ = AND, lower budgets lead to larger
differences with the baseline results, and the results begin to align with the noise level: higher noise
yields greater gain. For OR, however, different trends were observed. In this case, for the diffusion
triggered with higher budgets, the impact of ξ was more visible, although the relative differences
with series 1 remained still small (up to 0.0062 of baseline Gain).

Finally, we turn to the set of parameters for which manipulating ξ produces the most pronounced
effects. To this end, we selected following spreading conditions: the lowest evaluated budget for
the AND protocol and the highest for the OR protocol. These configurations are listed in Table 5.
As can be observed, the impact of ξ on spreading effectiveness differs significantly between the two
diffusion regimes. When the protocol function is more restrictive, increasing the inter-community
noise enhances information spread. The trend is even more pronounced when noise is suppressed:

29



in such cases, the diffusion coverage may decrease by up to 25%. This outcome aligns with our
initial intuition. Since the AND protocol imposes stricter conditions, it becomes easier to activate
a given actor when it is more strongly connected at the global level. Consequently, the process
can “reach” more distant nodes and has a greater chance of persisting. In contrast, when the OR
protocol is applied, the effect of modifying ξ is reversed, albeit considerably weaker. A possible
explanation is that, when communities are more clearly separated, the diffusion tends to remain
within them initially and only later extends outward. Furthermore, due to the lenient nature of the
OR protocol, the process is less likely to die out prematurely, which may account for this behaviour.

Table 5: Change in Γ achieved through MICM-driven spreading in networks generated with
mABCD with varying inter-community noise levels, relative to the results obtained on the
baseline network (resembling timik).

δ̇ π̇
ξi

0.01 0.50ξitimik
ξitimik

2.00ξitimik
1.00

A
N
D

0.15 -0.1668 -0.0392 0.0000 0.0352 0.0397
0.20 -0.2440 -0.0450 0.0000 0.0254 0.0290
0.25 -0.2339 -0.0183 0.0000 0.0049 0.0041
0.30 -0.1706 -0.0066 0.0000 0.0017 0.0018

O
R

0.03 0.0104 0.0088 0.0000 -0.0120 -0.0154
0.05 0.0046 0.0033 0.0000 -0.0049 -0.0059
0.07 0.0020 0.0013 0.0000 -0.0022 -0.0026
0.09 0.0009 0.0008 0.0000 -0.0009 -0.0010

Effect of Changes in Network Size

With the second experiment, we aimed to address one of the fundamental questions in the domain
of social network analysis: is it possible to compress a network in such a way that it preserves
its topology while being smaller? Our goal was to examine this issue in the context of spreading
phenomena. Specifically, we were interested in whether manipulating the number of actors, while
preserving all other structural properties of the network (as dictated by the configuration model
underlying mABCD), would result in different diffusion characteristics. It is worth noting that the
approach adopted in this study can be considered novel, as most existing work reduces graphs using
dedicated compression techniques rather than by explicitly employing standalone graph generators
(for a comprehensive review, see [52]).

In order to address this question, we generated four series of networks, each differing only in
the number of actors, while preserving the remaining configuration model parameters from the
baseline. The series were defined as follows: n = 1.5ntimik (series 6 ), n = 1.25ntimik (series 7 ),
n = 0.75ntimik (series 8 ), and n = 0.50ntimik (series 9 ). Hence, two of the network types can
be considered as upsampled, while the other two represent downsampled versions of the baseline.
Regarding the spreading model, we applied the same parameter settings as in the first experiment
(see Section 6.3).

In contrast to the first experiment, the trends observed in the results are consistent and clear
when analyzed with respect to the protocol function, activation probability, and seeding budget.

30



Therefore we move directly to Table 6, which presents these results aggregated over the MICM
parameters; nevertheless, grouping by other variables produces similar patterns. The results are
shown in the same format as in Section 6.3, i.e., as the average relative difference in Γ obtained by
each network series with respect to the baseline. It is noteworthy that, since Γ accounts for network
size, it is reasonable to compare this metric across diffusion processes conducted on networks with
different numbers of actors.

Table 6: Change in Γ achieved through MICM-driven spreading in networks generated with
mABCD with varying number of actors, relative to the results obtained on the baseline
network (resembling timik).

δ̇ π̇
n

0.50ntimik 0.75ntimik ntimik 1.25ntimik 1.50ntimik

A
N
D

0.15 -0.0011 0.0016 0.0000 0.0911 0.0949
0.20 -0.0003 0.0005 0.0000 0.0793 0.0808
0.25 -0.0001 -0.0000 0.0000 0.0428 0.0432
0.30 0.0002 0.0001 0.0000 0.0202 0.0202

O
R

0.03 -0.0006 -0.0011 0.0000 0.0522 0.0542
0.05 -0.0002 -0.0003 0.0000 0.0341 0.0353
0.07 -0.0001 -0.0001 0.0000 0.0231 0.0237
0.09 0.0001 0.0000 0.0000 0.0163 0.0168

As one can note, for both protocol functions and across all evaluated activation probabilities,
downsampling the network does not disturb spreading effectiveness (the differences are minimal).
From the other hand, when the network gets upsampled, we observe slight, but non-negligible
changes, in the diffusion — the more upsampled the network is, the higher Γ change we observe.
However, the disparities are not as big as in the results from Section 6.3. At this point, one might
wonder why network downsampling does not alter the spreading trend, while upsampling does. A
possible explanation lies in the average degree of the evaluated networks, as this parameter has a
substantial impact on the effectiveness of diffusion under the MICM. We observe that downsampling
has little effect on the average degree, whereas upsampling increases it by approximately 0.9 (from
around 20.2 to 21.1). Consequently, in the upsampled graphs, the diffusion process may be more
effective due to this slight increase in connectivity, especially when the seed set is selected using a
heuristic that prioritizes central actors rather than selects them at random.

Effect of Inter-layer Community Correlation

The final experiment aimed to evaluate whether spreading is more effective in networks where the
communities are strongly correlated. The mABCD framework allows control over this property,
albeit indirectly, via the ri parameter. (Recall that this parameter governs the extent to which
the communities in layer i are correlated with the latent reference layer, where spatial proximity
influences community assignment, i.e., actors located closer together are more likely to be placed
in the same group; see Section 4.4 for more details). To this end, we intended to simulate a
case in which information begins to diffuse from actors who are central in only one of the several
types of relationships represented in the network, while manipulating community correlations on

31



the remaining layers. For instance, consider a situation in which a group of department heads
returns from an overseas business trip, having contracted a disease. As leaders, they occupy central
positions within the company network and communities formed by their teams. Subsequently,
the disease begins to spread not only through work-related contacts but also through encounters
in other spheres of life. By manipulating the r parameter, we wanted to reflect the extent to
which these relationships overlap with the professional one, and to assess whether it influences the
effectiveness of spreading.

As in the previous experiments, the networks were also generated according to the configuration
derived from timik. All of them had the r value on the first layer set to 1.000 in order to comply
with the assumed seed selection scenario. However, they differed in the r values on the remaining
layers, as follows. Two series were generated to represent stronger community correlations: series
10 with r2 = r3 = 1.000, and series 11 with r2 = r3 = 0.667. Additionally, networks with weaker
correlations were generated: series 12 with r2 = r3 = 0.333, and series 13 with r2 = r3 = 0.001.
The spreading conditions applied were the same as in the previous experiments, with one difference
in the seed selection method. Specifically, instead of employing a heuristic that considers actors’
representations across all network layers, we modified it to consider only the first layer (which
is maximally correlated with the latent layer used in network generation). Consequently, the
Neighbour Size Discount heuristic was reduced to its baseline version designed for single-layer
networks: Degree Centrality Discount [16] and with that method a seed set was selected.

After executing the simulations, we obtained the results. As in the previous experiments, we
initially analyzed them separately with respect to δ̇, π̇, and s. Across all of these parameters, no
significant differences in spreading were observed, even though the propagation process could be
initiated and sustained for several simulation steps. To maintain clarity, we present the results
aggregated over s in Table 7. As can be seen, the relative difference in Γ with respect to the
timik ’s “digital twin” (series 1 ) remains consistently very small across the evaluated network series.
This suggests that, under the considered spreading model, manipulating r does not substantially
influence propagation effectiveness.

Table 7: Change in Γ achieved through MICM-driven spreading in networks generated with
mABCD with varying correlation strength between communities and the reference layer,
relative to the results obtained on the baseline network (resembling timik).

δ̇ π̇
r2, r3

0.001 0.333 ritimik
0.667 1.000

A
N
D

0.15 0.0007 0.0007 0.0000 0.0009 0.0015
0.20 0.0016 0.0001 0.0000 0.0019 0.0022
0.25 0.0010 -0.0003 0.0000 0.0003 0.0006
0.30 0.0002 -0.0006 0.0000 -0.0004 -0.0002

O
R

0.03 -0.0002 -0.0006 0.0000 -0.0010 -0.0011
0.05 -0.0002 -0.0002 0.0000 -0.0004 -0.0002
0.07 -0.0001 -0.0001 0.0000 -0.0002 -0.0002
0.09 -0.0000 0.0001 0.0000 -0.0000 -0.0000

The reason for this may lie in the operational principles of the MICM and the corresponding
geometric characteristics of the generated networks. Given that the effectiveness of spreading under

32



this model depends primarily on local structures (such as degree or clustering coefficient) networks
with similar values for these properties are expected to exhibit comparable diffusion dynamics.
This appears to be the case in the considered example: manipulating r does not significantly affect
either the degree distribution and the clustering coefficient (for reference, see the detailed analysis
available in the GitHub repository). Consequently, the propagation proceeds in a similar manner
across the evaluated networks.

7 Conclusions

In this work, we have presented mABCD, a framework for generating multilayer networks with
community structure and inter-layer relationships. We hope it addresses the existing gap in the
field through its highly customizable configuration options and efficient algorithmic design. Fur-
thermore, we release its implementation in Julia, along with Python ports, to make mABCD
accessible to the broader research community. As mABCD builds upon the well-established gen-
erator introduced in [34], it can be regarded as a new member of the ABCD family. In addition to
outlining the essential components of the model, we have validated its properties, demonstrating
that mABCD produces stable results and outperforms its closest competitors in both efficiency
and usage flexibility.

The paper also shows potential applications of the highly customizable network generation
process, illustrated in the context of studying spreading phenomena. Through three experiments,
we examined whether and how selected parameters of the mABCD configuration model contribute
to diffusion effectiveness. The results are nuanced rather than clear-cut. While there is a consistent
trend with respect to the number of actors, the level of inter-community noise affects diffusion
depending on the imposed regime. Finally, the strength of correlation between groups appears to
have little influence on information spread. Altogether, these findings suggest that the proposed
framework is capable of supporting the analysis of spreading processes in multilayer networks, albeit
up to certain extend.

Future work may proceed in two directions. The first concerns the ABCD model itself, which
could be extended to other types of networks, such as temporal ones. The second relates to the
experiments involving spreading phenomena. In this context, it would be valuable to evaluate how
other parameters of mABCD influence the dynamics of spreading processes. However, a more
important and promising direction is the development of a metric for quantifying the difference
between a real-world network and its “digital twin” generated by mABCD. Such a method could
open a new avenue for influence maximization studies, as it would allow results and conclusions to
be more directly related to real-world systems.

Data availability The datasets generated during and/or analysed during the current study
and source code are available in following GitHub repositories: https://github.com/KrainskiL/
MLNABCDGraphGenerator.jl, https://github.com/anty-filidor/spreading-vs-mln-structure.
Access to the DVC remote will be granted upon reasonable request.

33

https://github.com/KrainskiL/MLNABCDGraphGenerator.jl
https://github.com/KrainskiL/MLNABCDGraphGenerator.jl
https://github.com/anty-filidor/spreading-vs-mln-structure


Funding This research was partially supported by the National Science Centre, Poland, under
Grant no. 2022/45/B/ST6/041458, the Polish Ministry of Education and Science within the pro-
gramme “International Projects Co-Funded”, and the EU under the Horizon Europe, grant no.
101086321 OMINO. Views and opinions expressed are, however, those of the authors only and
do not necessarily reflect those of the National Science Centre, Polish Ministry of Education and
Science, the EU or the European Research Executive Agency.

Conflict of interest The authors declare no competing interests.

Ethics approval This study did not involve any experiments on humans or animals, and there-
fore did not require ethical approval, clinical trial registration, or patient consent.

Materials from other sources This study does not contain any material reproduced from
other sources that required permission.

References

[1] Jeff Alstott, Ed Bullmore, and Dietmar Plenz. powerlaw: A python package for analysis of
heavy-tailed distributions. PLOS ONE, 9(1):1–11, 01 2014. doi:10.1371/journal.pone.

0085777.

[2] Samin Aref, Hriday Chheda, and Mahdi Mostajabdaveh. The Bayan algorithm: Detecting
communities in networks through exact and approximate optimization of modularity. arXiv
preprint arXiv:2209.04562, 2022.

[3] Albert-László Barabási. Network science. Cambridge University Press, 2016. URL: http:
//barabasi.com/networksciencebook/.

[4] Jordan Barrett, Ryan DeWolfe, Bogumi l Kamiński, Pawe l Pra lat, Aaron Smith, and François
Théberge. The artificial benchmark for community detection with outliers and overlapping
communities (abcd+o2). In International Workshop on Modelling and Mining Networks, pages
125–140. Springer, 2025.

[5] Jordan Barrett, Bogumi l Kamiński, Pawe l Pra lat, and François Théberge. Self-similarity of
communities of the ABCD model. Theoretical Computer Science, 1026:115012, 2025.

[6] Marya Bazzi, Lucas GS Jeub, Alex Arenas, Sam D Howison, and Mason A Porter. A frame-
work for the construction of generative models for mesoscale structure in multilayer networks.
Physical Review Research, 2(2):023100, 2020.

[7] Edward A Bender and E Rodney Canfield. The asymptotic number of labeled graphs with
given degree sequences. Journal of Combinatorial Theory, Series A, 24(3):296–307, 1978.

[8] Michele Berlingerio, Michele Coscia, and Fosca Giannotti. Finding and characterizing com-
munities in multidimensional networks. In 2011 international conference on advances in social
networks analysis and mining, pages 490–494. IEEE, 2011.

8https://multispread.pwr.edu.pl/

34

https://doi.org/10.1371/journal.pone.0085777
https://doi.org/10.1371/journal.pone.0085777
http://barabasi.com/networksciencebook/
http://barabasi.com/networksciencebook/
https://multispread.pwr.edu.pl/


[9] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. Fast
unfolding of communities in large networks. Journal of statistical mechanics: theory and
experiment, 2008(10):P10008, 2008.

[10] Béla Bollobás. A probabilistic proof of an asymptotic formula for the number of labelled
regular graphs. European Journal of Combinatorics, 1(4):311–316, 1980.

[11] Piotr Bródka. A method for group extraction and analysis in multilayer social networks. arXiv
preprint arXiv:1612.02377, 2016.

[12] Piotr Bródka, Anna Chmiel, Matteo Magnani, and Giancarlo Ragozini. Quantifying layer
similarity in multiplex networks: a systematic study. Royal Society open science, 5(8):171747,
2018.

[13] Piotr Bródka, Micha l Czuba, Bogumi l Kamiński,  Lukasz Kraiński, Pawe l Pra lat, and François
Théberge. The multilayer artificial benchmark for community detection (mabcd). In Interna-
tional Workshop on Modelling and Mining Networks, pages 172–188. Springer, 2025.

[14] Piotr Bródka, Tomasz Filipowski, and Przemys law Kazienko. An introduction to community
detection in multi-layered social network. In Information Systems, E-learning, and Knowledge
Management Research: 4th World Summit on the Knowledge Society, WSKS 2011, Mykonos,
Greece, September 21-23, 2011. Revised Selected Papers 4, pages 185–190. Springer, 2013.

[15] Alessio Cardillo, Jesús Gómez-Gardeñes, Massimiliano Zanin, Miguel Romance, David Papo,
Francisco del Pozo, and Stefano Boccaletti. Emergence of network features from multiplex-
ity. Scientific Reports, 3(1344):1–6, 2 2013. URL: https://www.nature.com/articles/

srep01344, doi:10.1038/srep01344.

[16] Wei Chen, Yajun Wang, and Siyu Yang. Efficient influence maximization in social networks. In
Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’09, page 199–208, New York, NY, USA, 2009. Association for Computing
Machinery. doi:10.1145/1557019.1557047.

[17] James Coleman, Elihu Katz, and Herbert Menzel. The diffusion of an innovation among
physicians. Sociometry, 20(4):253–270, 1957. URL: http://www.jstor.org/stable/2785979.

[18] Micha l Czuba and Piotr Bródka. Rank-refining seed selection methods for budget constrained
influence maximisation in multilayer networks under linear threshold model. Social Network
Analysis and Mining, 15(1):46, 2025. URL: https://link.springer.com/article/10.1007/
s13278-025-01454-7, doi:10.1007/s13278-025-01454-7.

[19] Micha l Czuba, Mateusz Nurek, Damian Serwata, Yu-Xuan Qi, Mingshan Jia, Katarzyna
Musial, Rados law Michalski, and Piotr Bródka. Network diffusion – framework to simulate
spreading processes in complex networks. Big Data Mining And Analytics, pages 1–13, 2024.
doi:10.26599/BDMA.2024.9020010.

[20] Manlio De Domenico, Andrea Lancichinetti, Alex Arenas, and Martin Rosvall. Identifying
modular flows on multilayer networks reveals highly overlapping organization in intercon-
nected systems. Phys. Rev. X, 5:011027, 3 2015. URL: https://link.aps.org/doi/10.

1103/PhysRevX.5.011027, doi:10.1103/PhysRevX.5.011027.

35

https://www.nature.com/articles/srep01344
https://www.nature.com/articles/srep01344
https://doi.org/10.1038/srep01344
https://doi.org/10.1145/1557019.1557047
http://www.jstor.org/stable/2785979
https://link.springer.com/article/10.1007/s13278-025-01454-7
https://link.springer.com/article/10.1007/s13278-025-01454-7
https://doi.org/10.1007/s13278-025-01454-7
https://doi.org/10.26599/BDMA.2024.9020010
https://link.aps.org/doi/10.1103/PhysRevX.5.011027
https://link.aps.org/doi/10.1103/PhysRevX.5.011027
https://doi.org/10.1103/PhysRevX.5.011027


[21] Mark E Dickison, Matteo Magnani, and Luca Rossi. Multilayer social networks. Cambridge
University Press, Cambridge, England, UK, 7 2016. doi:10.1017/CBO9781139941907.

[22] Hoda Eldardiry and Jennifer Neville. Multi-network fusion for collective inference. In Pro-
ceedings of the Eighth Workshop on Mining and Learning with Graphs, MLG ’10, page 46–54,
New York, NY, USA, 2010. Association for Computing Machinery. doi:10.1145/1830252.

1830259.

[23] Amr Elsisy, Aamir Mandviwalla, Boleslaw K. Szymanski, and Thomas Sharkey. A net-
work generator for covert network structures. Information Sciences, 584:387–398, 2022.
URL: https://www.sciencedirect.com/science/article/pii/S0020025521010884, doi:
10.1016/j.ins.2021.10.066.

[24] Santo Fortunato. Community detection in graphs. Physics reports, 486(3-5):75–174, 2010.

[25] Santo Fortunato and Marc Barthelemy. Resolution limit in community detection. Proceedings
of the national academy of sciences, 104(1):36–41, 2007.

[26] Jacob Goldenberg, Barak Libai, and Eitan Muller. Talk of the Network: A Complex Systems
Look at the Underlying Process of Word-of-Mouth. Marketing Letters, 12(3):211–223, August
2001. doi:10.1023/A:1011122126881.

[27] Jeffrey Gottfried. Americans’ social media use. Pew Research Center, 31, 2024.

[28] Mark Granovetter. Threshold models of collective behavior. American journal of sociology,
83(6):1420–1443, 1978. URL: http://www.jstor.org/stable/2778111.

[29] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Exploring network structure, dynam-
ics, and function using networkx. In Gaël Varoquaux, Travis Vaught, and Jarrod Millman,
editors, Proceedings of the 7th Python in Science Conference, pages 11 – 15, Pasadena, CA
USA, 2008. URL: https://aric.hagberg.org/papers/hagberg-2008-exploring.pdf.

[30] Paul W Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. Stochastic blockmodels:
First steps. Social networks, 5(2):109–137, 1983.

[31] Yuming Huang, Ashkan Panahi, Hamid Krim, and Liyi Dai. Community detection and im-
proved detectability in multiplex networks. IEEE Transactions on Network Science and En-
gineering, 7(3):1697–1709, 2019.

[32] Jaros law Jankowski, Rados law Michalski, and Piotr Bródka. A multilayer network dataset
of interaction and influence spreading in a virtual world. Scientific Data, 4(1):170144, 2017.
doi:10.1038/sdata.2017.144.

[33] Bogumi l Kamiński, Bartosz Pankratz, Pawe l Pra lat, and François Théberge. Modularity of
the ABCD random graph model with community structure. Journal of Complex Networks,
10(6):cnac050, 2022.

[34] Bogumi l Kamiński, Pawe l Pra lat, and François Théberge. Artificial benchmark for community
detection (ABCD) - Fast random graph model with community structure. Network Science,
pages 1–26, 2021.

36

https://doi.org/10.1017/CBO9781139941907
https://doi.org/10.1145/1830252.1830259
https://doi.org/10.1145/1830252.1830259
https://www.sciencedirect.com/science/article/pii/S0020025521010884
https://doi.org/10.1016/j.ins.2021.10.066
https://doi.org/10.1016/j.ins.2021.10.066
https://doi.org/10.1023/A:1011122126881
http://www.jstor.org/stable/2778111
https://aric.hagberg.org/papers/hagberg-2008-exploring.pdf
https://doi.org/10.1038/sdata.2017.144


[35] Bogumi l Kamiński, Pawe l Pra lat, and François Théberge. Mining Complex Networks. Chap-
man and Hall/CRC, 2021. doi:10.1201/9781003218869.

[36] Bogumi l Kamiński, Pawe l Pra lat, and François Théberge. Artificial benchmark for community
detection with outliers (ABCD+o). Applied Network Science, 8(1):25, 2023.

[37] Bogumi l Kamiński, Pawe l Pra lat, and François Théberge. Hypergraph artificial benchmark
for community detection (h–ABCD). Journal of Complex Networks, 11(4):cnad028, 2023.

[38] Bogumi l Kamiński, Tomasz Olczak, Bartosz Pankratz, Pawe l Pra lat, and François Théberge.
Properties and performance of the ABCDe random graph model with community structure.
Big Data Research, 30:100348, 2022.

[39] Maurice G Kendall. A new measure of rank correlation. Biometrika, 30(1-2):81–93, 1938.

[40] Mikko Kivelä, Alex Arenas, Marc Barthelemy, James P Gleeson, Yamir Moreno, and Mason A
Porter. Multilayer networks. Journal of Complex Networks, 2(3):203–271, 07 2014. doi:

10.1093/comnet/cnu016.

[41] Andrea Lancichinetti and Santo Fortunato. Benchmarks for testing community detection
algorithms on directed and weighted graphs with overlapping communities. Physical Review
E, 80(1):016118, 2009.

[42] Andrea Lancichinetti, Santo Fortunato, and Filippo Radicchi. Benchmark graphs for testing
community detection algorithms. Physical review E, 78(4):046110, 2008.

[43] Matteo Magnani, Obaida Hanteer, Roberto Interdonato, Luca Rossi, and Andrea Tagarelli.
Community detection in multiplex networks. ACM Computing Surveys (CSUR), 54(3):1–35,
2021.

[44] Matteo Magnani, Luca Rossi, and Davide Vega. Analysis of multiplex social networks with r.
Journal of Statistical Software, 98:1–30, 2021.

[45] Elisa Omodei, Manlio De Domenico, and Alex Arenas. Characterizing interactions in online
social networks during exceptional events. Frontiers in Physics, 3:59, 2015.

[46] Günce Keziban Orman and Vincent Labatut. A comparison of community detection algorithms
on artificial networks. In Discovery Science: 12th International Conference, DS 2009, Porto,
Portugal, October 3-5, 2009 12, pages 242–256. Springer, 2009.

[47] A Roxana Pamfil, Sam D Howison, Renaud Lambiotte, and Mason A Porter. Relating mod-
ularity maximization and stochastic block models in multilayer networks. SIAM Journal on
Mathematics of Data Science, 1(4):667–698, 2019.

[48] Micha l B Paradowski, Nicole Whitby, Micha l Czuba, and Piotr Bródka. Peer interaction
dynamics and second language learning trajectories during study abroad: A longitudinal in-
vestigation using dynamic computational social network analysis. Language Learning, 2024.

[49] Adrian Popiel, Przemys law Kazienko, and Tomasz Kajdanowicz. Muneg — the framework
for multilayer network generator. In 2015 IEEE/ACM International Conference on Advances
in Social Networks Analysis and Mining (ASONAM), pages 1316–1323, 2015. doi:10.1145/

2808797.2808902.

37

https://doi.org/10.1201/9781003218869
https://doi.org/10.1093/comnet/cnu016
https://doi.org/10.1093/comnet/cnu016
https://doi.org/10.1145/2808797.2808902
https://doi.org/10.1145/2808797.2808902


[50] Luca Rossi and Matteo Magnani. Towards effective visual analytics on multiplex and multilayer
networks. Chaos, Solitons & Fractals, 72:68–76, 2015. Multiplex Networks: Structure, Dy-
namics and Applications. URL: https://www.sciencedirect.com/science/article/pii/
S0960077914002422, doi:10.1016/j.chaos.2014.12.022.

[51] Tom A. B. Snijders, Philippa E. Pattison, Garry L. Robins, and Mark S. Handcock. New
specifications for exponential random graph models. Sociological Methodology, 36(1):99–153,
2006. doi:10.1111/j.1467-9531.2006.00176.x.

[52] Qingyun Sun, Ziying Chen, Beining Yang, Cheng Ji, Xingcheng Fu, Sheng Zhou,
Hao Peng, Jianxin Li, and Philip S. Yu. Gc-bench: An open and uni-
fied benchmark for graph condensation. In A. Globerson, L. Mackey, D. Bel-
grave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang, editors, Advances in Neu-
ral Information Processing Systems, volume 37, pages 37900–37927. Curran Associates,
Inc., 2024. URL: https://proceedings.neurips.cc/paper_files/paper/2024/file/

42ed003e72eab5136e3d2fdbef4b8d7b-Paper-Datasets_and_Benchmarks_Track.pdf.

[53] Lei Tang, Xufei Wang, and Huan Liu. Community detection via heterogeneous interaction
analysis. Data mining and knowledge discovery, 25:1–33, 2012.

[54] Alexander Tarvid. Stimulation model–a multilayer social network generator. In 2017 The
European Modeling and Simulation Symposium, pages 433–438, 2017. URL: https://www.
msc-les.org/proceedings/emss/emss2017/emss2017_433.html.

[55] Nguyen Xuan Vinh, Julien Epps, and James Bailey. Information theoretic measures for clus-
terings comparison: is a correction for chance necessary? In Proceedings of the 26th annual
international conference on machine learning, pages 1073–1080, 2009.

[56] Nicholas C Wormald. Generating random regular graphs. Journal of algorithms, 5(2):247–280,
1984.

[57] Nicholas C Wormald et al. Models of random regular graphs. London Mathematical Society
Lecture Note Series, pages 239–298, 1999.

[58] Yaofeng Desmond Zhong, Vaibhav Srivastava, and Naomi Ehrich Leonard. Influence spread in
the heterogeneous multiplex linear threshold model. IEEE Transactions on Control of Network
Systems, 9(3):1080–1091, 2022. URL: https://ieeexplore.ieee.org/document/9454288,
doi:10.1109/TCNS.2021.3088782.

38

https://www.sciencedirect.com/science/article/pii/S0960077914002422
https://www.sciencedirect.com/science/article/pii/S0960077914002422
https://doi.org/10.1016/j.chaos.2014.12.022
https://doi.org/10.1111/j.1467-9531.2006.00176.x
https://proceedings.neurips.cc/paper_files/paper/2024/file/42ed003e72eab5136e3d2fdbef4b8d7b-Paper-Datasets_and_Benchmarks_Track.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/42ed003e72eab5136e3d2fdbef4b8d7b-Paper-Datasets_and_Benchmarks_Track.pdf
https://www.msc-les.org/proceedings/emss/emss2017/emss2017_433.html
https://www.msc-les.org/proceedings/emss/emss2017/emss2017_433.html
https://ieeexplore.ieee.org/document/9454288
https://doi.org/10.1109/TCNS.2021.3088782

	Introduction
	Related Work
	Existing Synthetic Models

	Design Assumptions
	Correlations Between Layers
	Examples of Multilayer Networks
	Assumed Functionalities

	The mABCD Model
	Power-law Distribution
	The Configuration Model
	Parameters of the mABCD Model
	The mABCD Construction

	Properties of the mABCD Model
	Using mABCD for Spreading Phenomena Analysis
	Scope and Methodology
	Extracting Configuration Parameters from Real Networks
	Experiments

	Conclusions

