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Abstract. The increasing availability of relational data has contributed
to a growing reliance on network-based representations of complex sys-
tems. Over time, these models have evolved to capture more nuanced
properties, such as the heterogeneity of relationships, leading to the
concept of multilayer networks. However, the analysis and evaluation
of methods for these structures is often hindered by the limited avail-
ability of large-scale empirical data. As a result, graph generators are
commonly used as a workaround, albeit at the cost of introducing sys-
tematic biases. In this paper, we address the inverse-generator problem
by inferring the configuration parameters of a multilayer network gener-
ator, mABCD, from a real-world system. Our goal is to identify parameter
settings that enable the generator to produce synthetic networks that
act as digital twins of the original structure. We propose a method for
estimating matching configurations and for quantifying the associated
error. Our results demonstrate that this task is non-trivial, as strong in-
terdependencies between configuration parameters weaken independent
estimation and instead favour a joint-prediction approach.

Keywords— Complex Systems, Digital Twins, Inverse Graph Modelling, mABCD,
Multilayer Networks.

1 Introduction

Complex networked systems are typically represented by graphs constructed from rela-
tional data. This representation facilitates the encapsulation of topological characteris-
tics, such as relationship structures, connectivity patterns, or node centralities, which
are not readily apparent at first glance [g].

To accurately characterise dynamics in complex networked systems, it is necessary
to adopt an approach that differentiates between the various types of relationships
present. A natural way to achieve this is through the use of multilayer networks [15], a
system defined as a collection of ¢ layers, where each layer represents a distinct mode of
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interaction encoded by its corresponding graph. The resulting dynamics are governed
not only by intra-layer edges, describing interactions within a given relationship type,
but also by inter-layer couplings, which connect the same entity across different layers.
This structure enables modeling of complex spreading mechanisms that are obscured
in monoplex representations [6].

Understanding the topology of a system and the interplay between the relation-
ships it contains is critical for designing effective intervention policies. For instance,
in simplified models of human interactions, immunisation strategies (such as node re-
moval or fact-checking) typically target high-degree hubs [2I]. However, in multilayer
systems, the most influential actors are often not the hubs within individual layers,
but rather multiplex bridges, that is, nodes with moderate intra-layer connectivity but
high “participation coefficients” across layers. These actors facilitate the spillover of
misinformation from fringe, weakly moderated communities (e.g., 4chan) into main-
stream discourse (e.g., X or Facebook). Consequently, observing the system through
a multilayer lens reveals that resilience in one layer can mask catastrophic fragility in
the coupled system. A misinformation cascade that appears sub-critical (dying out) on
one platform may be sustained by activity on another, creating a hysteresis loop where
the false belief becomes endemic despite platform-specific moderation efforts.

While empirical analysis of real-world datasets is foundational, it faces severe lim-
itations when dissecting the complex dynamics of multilayer systems. Real-world mul-
tilayer data is often sparse, proprietary, or plagued by missing links, and crucially, it
represents only a single, static realisation of a dynamic process. One cannot “rewind”
the internet to see how a misinformation campaign would have unfolded if the user
base were 50% larger or if the moderation algorithm were different. To overcome these
constraints, researchers must turn to synthetic network generation, that is, creating
artificial yet statistically realistic graphs that serve as controllable laboratories for sim-
ulation. The primary utility of these synthetic environments lies in their flexibility. By
employing generative random graph models, one can systematically vary topological
parameters to isolate their effects on dynamical processes.

This approach culminates in the concept of the “digital twin” [23]. Digital twins
for complex networked systems provide a dynamic virtual counterpart to real-world
networks, enabling continuous monitoring, simulation, and prediction of system be-
haviour. Their defining strength lies in real-time data exchange between the physical
system and its digital representation, allowing the model to evolve as the network
evolves. By integrating simulation, optimisation, data analytics, and machine learning,
digital twins capture both the structure and the dynamics of interconnected systems
such as social networks, cyber-physical systems, and blockchain-based architectures.
This makes them uniquely suited to exploring scenarios that have never occurred, de-
tecting anomalies, and supporting informed decision-making in complex, distributed
environments. Even on the simplest level of modelling, a digital twin is not merely a
random graph, but a synthetic replica carefully calibrated to match the specific sta-
tistical properties of a target real-world system (such as its degree distribution and
distribution of community sizes, etc.). Therefore, the modelling paradigm they convey
makes them a powerful approach for understanding and managing complex systems.

While the utility of “digital twins” is clear, constructing one that faithfully mim-
ics a specific real-world system remains a formidable mathematical challenge. This is
fundamentally an inverse problem: given an observed set of real-world statistics, one
must infer the precise combination of generative parameters that produces a matching
graph. In multilayer systems, this difficulty is compounded by the curse of dimen-
sionality. A model rich enough to capture the nuance of real systems, accounting for
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intra-layer topology and inter-layer interdependence, inevitably possesses a vast pa-
rameter space. Developing robust, algorithmic frameworks to automatically calibrate
these high-dimensional synthetic models to empirical data is not just a technical re-
finement; it is a necessary frontier for making network science predictive rather than
merely descriptive.

In this paper, we aim to shed light on this problem by proposing a modular ap-
proach for inferring the parameters of the mABCD generator from an observed real-world
network. In particular, we investigate whether decomposing the task into a sequence
of analytical and optimisation sub-problems constitutes a viable strategy. Our results
indicate that the proposed approach establishes a strong baseline that could be difficult
to surpass. Nevertheless, the experiments suggest that jointly predicting all configura-
tion parameters within a single optimisation procedure may yield superior performance,
which delineates an interesting yet challenging new research direction.

The remainder of the paper is organised as follows. Sec. [2] briefly describes the
fundamental concepts underpinning the work; in particular, operating principles of
the mABCD model. Sec. [3] presents the parameter estimation framework and introduces
the discrepancy measures used to quantify approximation error. Sec. [4] discusses the
experimental results, while Sec. [§] concludes the paper.

2 Preliminaries

In order to address the problem studied in this paper, we first introduce the funda-
mental concepts used throughout. In particular, we briefly review multilayer networks,
outline the general concept for the configuration inference task, and describe the syn-
thetic graph generator employed.

2.1 Multilayer networks

As stated in the introduction, heterogeneity of complex networked systems is a crucial
property which cannot be neglected. Therefore, the problem tackled in this work aims
to take into account this property by utilising multilayer networks. Following [15], we
formalise the concept of a multilayer network below. Nevertheless, before we do this,
we clarify that for a given n € N = {1,2,...}, [n] is used to denote the set consisting
of the first n natural numbers, that is, [n] = {1,2,...,n}.

Definition 1 (Multilayer network). A multilayer network can be described as a
quadruple G = ([n],[{],V, E), where [n] is a set of n actors, [{] is a set of layers,
V C[n] x [f] is a set of nodes, EC J;c[Vi x Vi] is a set of edges.

When analysing Def. [I] one can note that it is in line with the understanding of
multilayer networks as collections of graphs, where each layer G; = (V;, E;) is spanned
on a subset of actors existing in the system (v;) within the relationship (layer) i € [¢].
For instance, in a system comprising interactions on various social platforms, [n] would
denote humans active on the Internet, [{] social platforms, V would be a set of all
accounts in the systems, i.e. nodes, where node v = (a, ¢;) € V represents an actor a in
layer ¢;, e.g., a LinkedIn profile of a citizen John Smith. On the other hand, the network
could be decomposed into £ interdependent graphs from different social systems.
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2.2 Complex Networked System Analysis with Twinning Approach

Utilising the example already introduced in Sec. [I} a conceptual framework guiding
the problem is presented here. Suppose one is to evaluate several “what-if” scenarios
that cover interventions on a social network to design effective strategies to control
misinformation spread, given an initial dataset of ground truth interactions on the
platform.

On the grounds presented in Sec. [I} a twin-based framework can be introduced,
as shown in Fig. [I] It assumes that the analysed real-world multirelational system is
encoded into a configuration file for a synthetic graph generator, which can then be
used for further modelling. By altering selected parameters of the generator, one can
explore a variety of what-if scenarios and construct adjusted “digital twins” that re-
flect possible modifications of the original system. These can be evaluated under the
assumed spreading regime, allowing an assessment of which topology is optimal from
the perspective of a given influence control task (e.g., maximisation). For instance,
one can rigorously test hypotheses by scaling the network size to observe asymptotic
behaviours, increasing edge density to identify percolation thresholds, or introducing
additional layers to simulate the emergence of new communication channels. This ca-
pability is essential for establishing causal links between network structure and process
outcomes, something that is impossible with observational data alone.

Original Network Digital Twin
mABCD
Configuration IS =D
Retrieval SemET, Greph
”””” Generator
Score
§ Error A - § Error B Information | | -
IZ> Diffusion I:> spreading
SCH Simulator HSEEES
spreading g ErrorC
config.

Topological Diffusion
Disturbances Disturbances

Fig. 1: Spread control pipeline utilising the configuration retrieval approach to
create adjusted twins of the evaluated system. The process begins by determining
the parameters of mABCD that match the analysed system. Its digital twin is
then generated and evaluated under the appropriate dynamics. Note that the
pipeline’s efficacy depends on addressing inherent errors.

The most important factor affecting the validity of the approach involves three
types of errors. The first one arises in the configuration retrieval process. For models
allowing rich modelling space (like mABCD), this task is non-trivial, as some parameters
cannot be directly inferred from the network and need to be estimated (e.g., a com-
munity breakdown). The second type of error relates to imperfections of the synthetic
graph generator, as the produced network may deviate from the specified configura-
tion. Finally, the third type of error arises in the simulation of information diffusion,
since spreading models remain only approximations of real-world processes. Addressing
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these errors is essential to ensure the pipeline’s correctness. Given the size of the task,
we aim to address the first of the presented errors in this work.

Configuration retrieval can be carried out in different ways depending on needs and
availabilities. The most natural approach is to estimate each parameter independently
by designing appropriate algorithms and metrics to quantify estimation quality. This,
however, is not the only method. Another, perhaps complementary, natural way of
measuring the “distance” between the original network G and its produced twin G
would be to embed both graphs in the same high-dimensional space and use the distance
between the two representations to measure the quality (Open Problem 1). Given the
recent advancements in machine learning, this approach also feels natural, and some
fast algorithms were recently introduced [7]. Nevertheless, approaching the problem
without trying the more straightforward methods deprives us of a reliable baseline.
Therefore, this paper tackles the problem from the former position.

2.3 The Synthetic Network Generators — mABCD

Synthetic graph generators with explicit community structure play a central role in
the development and evaluation of analysis methods for complex networked systems,
particularly in settings where large-scale empirical datasets with reliably annotated
ground-truth communities are scarce. To address this limitation, several benchmark
models have been proposed to generate artificial networks that resemble real-world sys-
tems while retaining full control over their structural properties. A prominent example
is the LFR benchmark model [I8J17], which allows for heterogeneous degree distribu-
tions and community sizes and has become a standard tool for evaluating community
detection algorithms.

More recently, the Artificial Benchmark for Community Detection (ABCD) model [12]
has been introduced as a scalable [I0] and theoretically tractable alternative to LFR.
Undirected variants of ABCD generate networks with comparable structural properties,
while offering improved computational performance and greater flexibility in interpo-
lating between well-defined community structure and random graphs [10]. Owing to
these properties, ABCD has been extensively analysed from a theoretical perspective,
including studies of its modularity behaviour [11] and self-similarity properties [3]. The
modular design of the model has further enabled a range of extensions, including out-
liers [13], overlapping communities [2], hypergraphs [14], and, most relevant to this
work, multilayer networks [I6]. The multilayer extension, mABCD, generalises the ABCD
framework to systems in which multiple interaction layers jointly shape network dy-
namics. Rather than aiming to exactly reproduce a specific empirical network, mABCD
is intended to generate ensembles of multilayer graphs that preserve key structural
characteristics of a target system, and can therefore be interpreted as coarse-grained
digital twins of complex networked systems.

In this work, we adopt mABCD as the synthetic generator underlying our experimental
analysis. Therefore, to focus on the aspects most relevant to the configuration inference
problem considered here, a brief review of its core principles is necessary. In principle,
the mABCD network generation comprises of six subsequent phases. The process is
governed by global and local (independent for each layer) parameters (Tab. . which
affect various properties of the model, see Sec. [3] for details.

The first five steps are carried out independently for each of the £ layers, while
the sixth one binds the generated graphs into a single multilayer network. In the first
phase, the so-called active nodes (i.e., those that will not be isolated) are determined.
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Table 1: Global and local parameters of mABCD.

Parameter Range Description

Global parameters

n N Number of actors

l N Number of layers

d N Dimension of reference layer

R [0, 1]¢%¢ Inter-layer edge correlation matrix

Local parameters (independent for each layer)

i (0,1] Fraction of active actors

Ti [-1,1] Correlation coefficient between degrees and labels

i [0,1] Correlation strength between communities and the
reference layer

i (2,3) Power-law degree distr. with exponent ~;

0i N Min. degree at least §;

Ay N (1 <9d; < A; < n) Max. degree at most A;

Bi (1,2) Power-law community size distr. with exponent f;

Si N Min community size at least s;

S N (0 < s; < S; <n) Max community size at most S;

& (0,1) Level of noise

Each active node is endowed its degree in the second step. During the third step,
communities are created and populated with nodes based on the latent layer, which is
implicitly generated by the routine to serve as a proxy for actors’ features that typically
shape connections in complex networked systems. Phase four focuses on connecting
nodes within other members of the same community as well as establishing inter-
community (i.e., background) connections. These graphs are subsequently simplified
to remove possible self-loops and multiedges while preserving the intended structural
properties. The final phase performs a series of edge rewirings to achieve the targeted
edge correlations between each pair of layers. For a detailed description, please see [16].

3 Proposed mABCD Configuration Retrieval Method

Suppose that we are given a multilayered network following Def. [ Our goal is to
generate a digital twin, a multilayered network G generated by mABCD with associated
graphs G; = (V,, El) for i € [¢], that mimics the original network G as best as possible.
In order to do it, one needs to appropriately select the parameters of the mABCD model
and then measure the “success”, i.e., how close G to G is. We will measure the success
by computing a divergence score D(G”7 G); the smaller the score, the better the fit is
obtained.

As already noted, mABCD consists of several parameters, but not all of them are
used directly to model the target network’s properties. Some should be treated rather
like hyperparameters, by manipulating which the accuracy of transforming a given
configuration setup into the final network can be controlled. These were intentionally
omitted in Sec. [2:3] as they are out of our interest due to a loose connection with
the structural properties of the produced network, but we acknowledge them to show
the complexity of the problem. In the proposed approach, we fix them to the values
recommended in [I6].
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The remaining mABCD parameters (Tab. explicitly provide expected structural
properties of the network and can be grouped by their proximity. Based on the obser-
vation, we propose a method that can independently predict each parameter group by
leveraging an algorithmic approach. The only exemption is 7, which cannot be feasi-
bly estimated as it employs the latent layer used to model actor features — neither
returned by the model nor available in real-world networks. That is why a solution-
search-browsing technique was employed, i.e., the Bayesian optimisation.

Parameters such as n, ¢, §;, and A; are trivial to extract from G. Similarly, the
fraction of active actors is easy to obtain: ¢ = [Vi[/|U,¢(q Vil-

Dimension of reference layer (d). Communities in mABCD are independently
generated in each layer, but the desired correlations are obtained via a hidden, low-
dimensional geometric reference layer. Nodes close to each other in the reference layer
end up in the same community with a larger probability. In particular, the dimension
of a reference layer d affects many properties of the generated network. However, it
seems not so easy to guess the right value so we leave it as a parameter that eventually
can be tuned for the best outcome, that is, the smallest divergence score D(G’, G).
Understanding the influence of this hyperparameter and selecting the optimal value is
left as an open problem (Open Problem 2).

This geometric approach to community structure is justified by the fact that latent
geometric spaces are widely believed to shape complex networks (e.g., social media
networks shaped by users’ opinions, education, knowledge, interests, etc.). These latent
spaces have been successfully employed for many years to model and explain network
properties such as self-similarity [20], homophily, and aversion [9]. For more details, we
direct the reader to the survey [4] or the book [I9].

Inter-layer edge correlation (R). To measure correlations between edges in
different layers, we define R, a £ X ¢ matrix in which elements r; ; € [0,1] (¢,5 € [€])
capture correlation between edges present in layers ¢ and j. For any i,5 € [{], let Ef
be the set of edges that are present in layer ¢, involving actors that are also active in

layer j. Entries 7;; in R are computed using the following formula:

|E] N E}|
min{| B, | E1]}

Tij

If min{|E?|, |EX|} = 0, then we leave r; ; undefined.

Note that r;,; = 1 for any ¢ € [{] and 7;; = 7;; for 1 < i < j < £. The maximum
value of 1 is attained when edges in one of the layers form a subset of edges in the
other layer. The minimum value of 0 is attained when the two sets of edges in the
corresponding layers are completely disjoint.

Extracting A = R from the original network G is straightforward. The mABCD model
aims to produce a synthetic network with the desired edge correlation matrix A, but
this is not guaranteed, and some small error always occurs. Let B be the corresponding
edge correlation matrix for the obtained digital twin G. The divergence score is simply
the normalised to [0, 1] Frobenius norm between the two matrices:

A 7HA_BHF7 1 o h)2 — i Qi — bi:)2
Pu(0) = 2Bl = [ 3 (- —\/(g) S (o — b

ijell) 2) 1<i<j<e
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Correlation coefficient between degrees and labels (7;). This family of
parameters models correlations between sequences of node degrees that are active in
two different layers. The mABCD model assumes that the labels of actors and nodes rep-
resenting them are natural numbers. The parameter 7; € [—1, 1] models the correlation
between these labels and the corresponding degree sequence in layer .

To estimate 7;, which relies on the ordering of actor labels, we first sort nodes with
respect to their total degree (sum of degrees over all layers), breaking ties randomly if
needed; that is, the node with the highest total degree is assigned label n, the highest
possible label. Then, for any ¢ € [¢], we compute the Kendall rank correlation coefficient
7; between these labels and the corresponding degree sequence in layer i. Moreover,
only nodes with a positive degree are taken into account to obtain the correlation value
in order to reduce the noise. In particular, inactive nodes are ignored as they should
be.

To measure the quality of the fit, one can compute the matrix A = (a;;), where
aij € [—1,1] is the Kendall rank correlation coefficient between layers ¢ and j for the
real network G. Clearly, only nodes that are active in both layers (i.e., nodes in V;NVj)
are considered. Once a digital twin is generated, matrix B is computed analogously,
but this time for the twin G. As before, the divergence score is simply the (normalised)
Frobenius norm between the two matrices:

A A-B 1
D-(G,G) = I e _ — Z (ai; — bij)2.

; \/46(6_ 1) - 4(2) 1<i<j<t

Correlation strength between communities and the reference layer
(r;). This family of parameters models correlations between communities formed by
nodes that are active in two different layers. These parameters seem to be the most
challenging to retrieve, as we do not have access to the latent biscuit-like reference layer
used during network generation. However, once a digital twin is generated, one can
easily measure the success by computing the corresponding divergence score DT(G, G).
The relationship between the parameters r; and the divergence score is not clear, but
one can minimise DT(G, G) by efficiently searching the parameter space.

The proposed method for predicting r bases on the access to the previously es-
timated remaining part of the mABCD configuration and the A matrix of the original
network. The objective function creates a given number of candidate twins according
to the evaluated r supplemented by the already known rest of the parameters. Next,
it computes a B matrix for each of them and returns the mean divergence score D,
over them. This value is then minimised during the Bayesian optimisation process. By
sequentially evaluating the objective function at values of r selected based on the out-
comes of previous evaluations, the method seeks to identify the best-matching value
of r. The implementation employed, provided by the skopt library, accounts for the
non-deterministic behaviour of mABCD by incorporating Gaussian noise into the surro-
gate model. A typical optimisation trajectory for fitting 7 is shown in Fig. [2}

Let us then concentrate on the divergence score. For each layer ¢ € [¢] in the real
network G, we independently run some stable clustering algorithm (in experiments, the
Greedy Modularity Optimisation [5]) to get a partition P; that identifies its community
structure. Then, one can compute the matrix A = (a;;), where a;; € [0,1] is the
adjusted mutual information (AMI) between partitions P; and P; induced by nodes
that are active in both layers, that is, partitions induced by V; N V;. Matrix B is
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Fig.2: A typical optimisation trajectory projected on 92 space of r obtained
during the experimental part. Note the trade-off between exploration and ex-
ploitation that the employed method preserves, by which it avoids getting stuck
in local minima.

computed analogously but for the twin G and the divergence score is defined as follows:

DT(G, G) = M = \/i Z (aij — bij)2.

\/m (2) 1<i<j<e

Degree distributions (v;,d;, A;). This family of parameters models the degree
sequences in the corresponding layers. Among them, only the retrieval of «; is non-
trivial, as it involves the general challenge of fitting an observed distribution to a specific
model. To estimate this parameter, we employ the powerlaw library [I], implicitly
assuming that the degree distribution follows a power-law.

The mABCD model generates, by design, sequences following a power-law with param-
eters provided as the input. Hence, the only discrepancy between the original network
G and its synthetic digital twin G comes from fitting the power-law distribution into
a given real network degree sequence. To measure the quality of the fit, we might use
the Kolmogorov—Smirnov test. This test is a nonparametric statistical test used to de-
termine if a sample comes from a specific distribution (one-sample) or if two samples
come from the same distribution (two-sample) by measuring the maximum difference
between their cumulative distribution functions (CDFs). In our scenario, it implies the
following divergence score of the distribution from the real network from the theoretical
distribution: |

. 1 N; (k) koo x Vidx
D, (G, G) Y z'ez[é] kel[%i)ii] N;(6;) f;o r—Yidr |’

where N;(k) is the number of nodes of degree at least k in layer i (as a result, as usual,
we ignore inactive nodes in this layer).

For this short paper, for simplicity, we assume that the degree sequence of a real
multilayered network G is close to a power law. But not all networks have degree
sequences of this nature. To solve this issue, the mABCD model is flexible and allows
the degree sequences to be directly injected into the model. Since mABCD is using the
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classical configuration model to generate edges in each layer, with this more advanced
option, the degree sequence of the digital twin G would match ezactly the original
network G. We leave an implementation of this extension into our framework and an
investigation of its consequences on the quality of the digital twin for the future (Open
Problem 3).

Distributions of community sizes (8;, s;, S;). The next family of parameters
governs distributions of community sizes in the corresponding layers. Recall that we
already extracted the community structure in each layer i € [¢] of the real network G
by running some stable clustering algorithm, partitions P;. We may now compute the
corresponding sequences of community sizes and extract the values of s; and S; from
these sequences. Following the same procedure as for dealing with the degree distri-
butions, one can estimate the parameters §; and measure the success by computing
the corresponding divergence score Dg((G, G). As before, we leave it for future work to
investigate how much one gains if the sequence of community sizes is directly injected
into the mABCD model (Open Problem /).

Level of noise (¢;). Finally, to estimate the layer-wise noise level between com-
munities, we again analyse the community structure P; of each network layer ¢ € [£].
For each layer ¢ of the original multilayered network G, the parameter ¢; is extracted
by simply looking at the fraction of inter-community edges (edges connecting nodes
from different parts of the partition P;) relative to the total number of edges in the
layer ¢. The mABCD model aims to preserve this property, but some very small error could
be introduced. More importantly, the model preserves the level of noise between the
ground-truth partition, which might not be exactly the same as the partition found
by the clustering algorithm (especially for noisy graphs). Hence, once the twin G is
generated, we extract the associated parameters él and compute the divergence score:

D(G,6) = 7 S (&~ &),
i€l

Cumulative Divergence Score. The parameters of mABCD affect some important
properties of multilayered networks; hence, it is desired for the digital twin G to match
these properties as best as possible. For each parameter of the model, we introduced
above some natural ways to measure how well the corresponding property is preserved
via their divergence scores. To estimate an overall quality of the digital twin, one needs
to somehow combine these scores. Their definitions guarantee that each of the scores
is in [0,1], but they are not comparable. Hence, before we develop a framework for
generating good digital twins, we need to come up with a good measure of quality that
combines all aspects together (Open Problem 5).

4 Experiments

To test the proposed configuration retrieval method, two experiments using the goodness-
of-fit framework proposed in Sec. [3] were performed. In both experiments, a real-world
multilayer network, namely Freebase [22], was employed. The network consists of £ = 3
layers and includes 3,492 actors. The numbers of nodes in the consecutive layers are
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3,479, 2,091, and 1,865, respectively. The corresponding numbers of edges per layer
are 129,097, 7,099, and 5,948. The mean degree is 75.41, and the average closeness
centrality is 0.1.

4.1 Experiment 1 — Dimensionality of the Reference Layer d

The objective of the first experiment was to evaluate the influence of the dimension of
the reference layer (d) on the divergence scores between the original network and its
produced twins. As such, the estimation procedure was performed independently for
four different values of d, i.e. d € {1,2,4,8}. Note that it directly affects the Bayesian
optimisation component of the proposed method that is used to estimate r.

10°

100.

Divergence Score

T r s
Divergence Metric

Fig. 3: Divergence scores (log scale) for configuration retrieval with fixed d = 2k
dimension, k € {0, 1, 2,3}; estimation with tuned r and loss D, (G, G).

Fig. [3| presents a comparison of the average values of the corresponding divergence
metrics across the tested d. The scores associated with v, 3, £, and 7 remain virtually
unchanged, as expected, since these parameters were fixed during the optimisation
of r. Their stability only confirms the reproducibility of the proposed approach. In
contrast, a pronounced effect of d is observed for the AMI-based interlayer correlation
(r), resulting in non-monotonic divergence values with respect to increasing d, which is
consistent with the hypothesis of parameter interdependence. Nevertheless, the lowest
divergence is attained for d = 2, which coincides with the design choice recommended
by the authors of mABCD.

An additional, perhaps less anticipated, effect of a high d value is the increased di-
vergence in edge correlation (R). The increasing misalignment of communities between
layers, when comparing the original network to the digital twin, creates unfavourable
conditions for efficient link rewiring (phase 6 of the mABCD process). It should also be
noted that relatively high values of v and S can stem from the non necessarily power-
law-like distribution of degrees and communities in Freebase. A potential improvement
for that could be injecting sequences of them directly into mABCD and, by that, to pass
over some of its phases.



12 Michat Czuba et al.

4.2 Experiment 2 — Configuration Retrieval Methods

The objective of the second experiment was to evaluate various mABCD configuration
retrieval methods within the Bayesian framework outlined in Sec. [B] Specifically, we
are interested in the following research question. Does increasing the fidelity of the
produced twin in one measured dimension trade off for a decrease in other scores (Open
Problem 6)7 To make a step toward this direction, we investigated whether a specific
Bayesian tuning configuration exists that outperforms the others across all divergence
dimensions.

Based on the considerations, four configuration retrieval runs were executed with
the following specifications:

1. decision variable r with loss based on D,.(G, G);

2. decision variables r and 7 with loss based on D,(G, Q);

3. decision variables r and 7 with loss based on D, (G, G);

4. decision variables r and 7 with loss based on (D,.(G,G) + D~ (G, G))/2.

Based on the outcomes of Experiment 1, we set d = 2 for all configuration retrieval
specifications. Subsequently, ten digital twins were generated for each set of derived
mABCD parameters, and the divergence metrics were calculated (Fig. E[)

10°

Divergence Score

Estimation Method
1 Tunedr; lossr
[ Tuned r+T; loss r
[ Tuned r+T; loss T
I Tuned r+T; loss r+T

T r Y B 13
Divergence Metric

Fig. 4: Divergence scores for four configuration estimation methods; fixed d = 2.

The resulting scores for 7, 3, and £ once again validate correct implementation of
the configuration retrieval: their minimal variation is attributed to the stochastic nature
of mABCD and the community extraction algorithm. More significant findings, consistent
with expectations, are observed in the divergence metrics D, (G, G) and D,.(G, G). Both
scores are minimised when the optimisation technique targets the corresponding loss
function (either D, (G, G) or D,.(G,G)). However, a trade-off is evident in the form
of increased divergence for the alternative metric. This is particularly pronounced for
the 7-based loss method, which achieves a divergence score of 0.0071, compared to an
average of 0.0701 across other specifications. Conversely, for the DT(G‘, G) criterion, the
T-based loss yields 0.2469, indicating suboptimal performance compared to the average
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of 0.0438 for other losses. Interestingly, expanding the set of decision variables from a
single r to include both 7 and 7 (while maintaining D, (G, G) loss) does not decrease
the Dr(é7 () score, but notably exacerbates the D, (é, G). This phenomenon may be
attributed to the curse of dimensionality and insufficient exploration of the parameter
space. Variations in the R score are difficult to attribute definitively; however, given
their small magnitude, it can be concluded that the specific choice of decision variables
and loss functions has a negligible impact on edge correlation fidelity.

To complement the analysis of Experiment 2, we present the loss trajectories for
the optimisation model utilising both r and 7 as decision variables. Fig. |5| illustrates
the instantaneous loss calculated at each iteration of the search. It should be noted
that we report D, (G, G), D,.(G,G), and (D.(G, G) + D, (G, G))/2 for each loss used as
the objective function in the optimisation problem. Consistent reductions in the loss
associated with the primary objective are observable, highlighting the efficacy of the
Bayesian optimisation. Conversely, the trajectories for the non-target criterion predom-
inantly oscillate around the average, indicating that any reduction in the alternative
loss occurs incidentally rather than through directed optimisation.

Optimized for loss r Optimized for loss T Optimized for loss r+T
10° 10° 10°
A
x
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Iteration

Fig.5: D, (G, G), D,(G,G), and (D,(G,G) + D, (G, G))/2 scores as functions of
the optimisation step in finding the best matching r or 7.

5 Conclusions

In this work, we discussed a problem of configuration retrieval for multilayer networks
with the synthetic network generator — mABCD. Addressing that issue is vital for twin-
ning complex networked systems and opens new possibilities for graph-based data
augmentation in machine learning applications.

The main contribution of this study is the proposal of a method for creating statis-
tically faithful network twins from empirical multilayer datasets. We also introduce sev-
eral divergence measures for assessing the quality of parameter estimation. The method
is evaluated on a real-world network representing cooperation within the movie indus-
try. The results provide preliminary evidence supporting the validity of the proposed
approach; however, a key finding is that independent parameter estimation techniques
encounter intrinsic accuracy limits, as the configuration parameters collectively deter-
mine the structural properties of networks generated by mABCD. This observation nat-
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urally motivates the development of joint prediction methods as a promising direction
for future work.

Nevertheless, as this work is rather a perspective paper, we left readers with six
Open Problems that can serve as a roadmap for deeper investigation and which (we
believe) will open a fruitful discussion.

OP-1 assessing whether utilising deep embedding methods for joint-parameter esti-
mation is feasible;

OP-2 understanding the influence of the hyper-parameter d and selecting its optimal
value;

OP-3 handling networks with degree sequences that do not follow the power-law by
injecting them into mABCD;

OP-/4 handling networks with community size sequences that do not follow the power-
law by injecting them into mABCD;

OP-5 providing a cumulative divergence score, a scalar value which encapsulates all
structural discrepancies between the original network and the digital twin;

OP-6 assess if increasing the fidelity of the produced twin with respect to one param-
eter trades off with a decrease in other scores.
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Code and Data The methods presented in this manuscript have been implemented
in Python. The source code and installation instructions are available at: https://gi
thub.com/network-science-lab/mabcd-for-digital-twins.
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