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Abstract. We present two ways to measure the simplicial nature of a
hypergraph: the simplicial ratio and the simplicial matrix. We show that
the simplicial ratio captures the frequency, as well as the rarity, of sim-
plicial interactions in a hypergraph while the simplicial matrix provides
more fine-grained details. We then compute the simplicial ratio, as well as
the simplicial matrix, for 10 real-world hypergraphs and, from the data
collected, hypothesize that simplicial interactions are more and more de-
liberate as edge size increases. We then present a new Chung-Lu model
that includes a parameter controlling (in expectation) the frequency of
simplicial interactions. We use this new model, as well as the real-world
hypergraphs, to show that multiple stochastic processes exhibit different
behaviour when performed on simplicial hypergraphs vs. non-simplicial
hypergraphs.
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1 Introduction

Many datasets that are typically represented as graphs would be more accurately
represented as hypergraphs. For example, in the graph representation of a collab-
oration dataset, authors are represented as vertices and an edge exists between
two vertices if the corresponding authors wrote a paper together [21]. Using this
representation, it is impossible to distinguish between a three-author paper and
three separate two-author papers. In contrast, when we represent a collabora-
tion dataset as a hypergraph we can clearly distinguish between a three-author
paper (a single hyperedge) and three separate two-author papers (three distinct
hyperedges). Hypergraph representations have proven to be useful for studying
collaboration datasets [8], protein complexes and metabolic reactions [6], and
many other datasets that are traditionally represented as graphs [19]. More-
over, after many years of intense research using graph theory in modelling and
mining complex networks [5, 7, 11, 20], hypergraph theory has started to gain
considerable traction [1–4, 13, 10, 12]. It is becoming clear to both researchers
and practitioners that higher-order representations are needed to study datasets
involving higher-order interactions [3, 15, 23, 19].
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Similar to hypergraph representations, simplicial complexes provide another
way to represent datasets with higher-order interactions and, in some cases, it
is not clear what the better model is for a given dataset [14, 24, 25]. The notion
of simpliciality was first introduced by Landry, Young and Eikmeier in [17] as a
way of describing how closely a hypergraph resembles its simplicial closure. In
their work, they discover that many hypergraphs built from real-world data, al-
though not actually simplicial complexes, resemble their simplicial closures more
closely than random hypergraphs. In a similar but distinct study, LaRock and
Lambiotte in [18] find that real-world hypergraphs often contain more instances
of hyperedges contained in other hyperedges than in random hypergraphs. The
results found in these two papers suggest that real-world hypergraphs are orga-
nized in a way where many of the small hyperedges live inside larger hyperedges.
In our work, we pursue this idea further and define a ratio and a matrix for hy-
pergraphs, which we call the simplicial ratio and simplicial matrix respectively,
based on the number of instances of hyperedges inside other hyperedges com-
pared to that of a null model.

1.1 Notation

For the duration of the paper, we use the terms graph and edge in lieu of hyper-
graph and hyperedge.

A graph G is a pair (V (G), E(G)) where V (G) is a set of vertices and E(G)
is a collection of edges, i.e., a collection of subsets of vertices. We insist that
∅ /∈ E(G) for any graph G. In general, for a graph G and edge e ∈ E(G), it is
acceptable that |e| = 1. In this paper, however, we forbid such edges and consider
only edges of size at least 2. We write [n] := {1, . . . , n} and typically label the
vertices in G as [n]. A subgraph of a graph G is any graph H = (V (H), E(H))
with V (H) ⊆ V (G) and E(H) ⊆ E(G) (note that, as H is itself a graph, any
edge e ∈ E(H) contains only vertices in V (H)). For e ∈ E(G), write |e| for the
size of e and, for each positive integer k, define

Ek(G) := {e ∈ E(G), |e| = k} .

If Ek(G) = E(G) for some k > 0, then we call G a k-uniform graph. Note that,
for any graph G, the graph Gk := (V (G), Ek(G)) is a k-uniform subgraph of G,
and

G =
⋃
k>0

Gk ,

and thus every graph is the edge-disjoint union of uniform subgraphs.

1.2 Measures for simpliciality

In [17], Landry, Young and Eikmeier establish three distinct measures quantify-
ing how close a graph is to a simplicial complex. The first measure they establish
is the simplicial fraction. Given a graph G, let S ⊆ E(G) be the set of edges
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such that e ∈ S if and only if |e| ≥ 3 and, for all f ⊆ e with |f | ≥ 2, f ∈ E(G).
Then the simplicial fraction of G, written σSF(G), is defined as

σSF(G) :=
|S|∣∣∣⋃k≥3 Ek(G)

∣∣∣ .
In words, σSF(G) is the proportion of edges of size at least 3 in E(G) that satisfy
downward closure.

The second and third measures Landry, Young and Eikmeier establish are
the edit simpliciality and the face edit simpliciality, respectively. For a graph G,
define the k-closure, written Gk, as the graph (V (Gk), E(Gk)) where

V (Gk) = V (G),

E(Gk) =
{
e ⊆ V (G)

∣∣∣ |e| ≥ k and e ⊆ f for some f ∈ E(G)
}
.

Then the edit simpliciality of G, written σES(G), is defined as

σES(G) :=
|E(G)|
|E(G2)|

.

Thus, 1−σES(G) is the (normalized) number of additional edges needed to turn
G into its 2-closure. Similarly, the face edit simpliciality of G, written σFES(G),
is the average edit simpliciality across all induced subgraphs defined by maximal
edges (edges not contained in other edges) in

⋃
k≥3 Ek(G).

Using the three measures defined above, Landry, Young and Eikmeier show
that real-world graphs are significantly more simplicial than graphs sampled
from random models. However, they also note some unique short-comings of
each measure. In the following example, we show an additional short-coming
that is shared among all three measures, namely, that none of the measures are
good indicators of how common it is to see edges inside of other edges in the
graph.

Example 1. Let G1 and G2 be as shown in Figure 1. There is a clear, strong
simplicial structure in G1, and there is clearly no simplicial structure in G2.
However, in both graphs, the simplicial fraction is 0 (none of the edges satisfy
downward closure). Moreover, the edit simpliciality of G1 is 4/57 ≈ 0.07 and of
G2 is 3/41 ≈ 0.07. Likewise, the face edit simpliciality of G1 is 4/57 ≈ 0.07 and
of G2 is

1

3

(
1

26
+

1

11
+

1

4

)
≈ 0.13 .

Thus, G1 and G2 are equally simplicial according to the simplicial fraction and
edit simpliciality and, more strikingly, G1 is less simplicial than G2 according
to the face edit simpliciality.
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Fig. 1. (left) a graph G1 with 6 vertices and 4 edges, and (right) a graph G2 with 10
vertices and 3 edges. We have σSF(G1) = 0, σES(G1) ≈ 0.07, σFES(G1) ≈ 0.07, and
σSF(G2) = 0, σES(G2) ≈ 0.07, σFES(G2) ≈ 0.13.

2 A new approach to simpliciality

We aim to quantify a graph based on the frequency and rarity of edges inside
other edges when compared to a null model. Thoughout this section, as well as
the remainder of the paper, we reference the Hypergraph Chung-Lu model and
we write Ĝ ∼ CL(G) to mean Ĝ is sampled as a Chung-Lu model based on
G. We give an algorithm for building this model, conditioned on the number of
edges, in the journal version of the paper, and point the reader to [9] for a full
description of the model.

2.1 The simplicial ratio

For a graph G, a simplicial pair in G is a pair of distinct edges e1, e2 ∈ E(G)
with e1 ⊂ e2. Let sp (G) be the number of simplicial pairs in G.

Let G be a graph and let Ĝ ∼ CL(G) conditioned on Ĝ having no multiset
edges. Then the simplicial ratio, denoted by σSR (G), is defined as

σSR (G) := sp (G)
/
E
[
sp

(
Ĝ
)]

,

if E
[
sp

(
Ĝ
)]

> 0, and σSR (G) := 1 otherwise.

Remark 1. If E
[
sp

(
Ĝ
)]

= 0 then it is necessarily the case that sp (G) = 0, since

it is always true that P
(
Ĝ = G

)
> 0. Moreover, if sp (G) = 0 and E

[
sp

(
Ĝ
)]

=

0 then the number of simplicial pairs is as expected and so we define σSR (G) = 1.

Remark 2. We have mentioned already that the sizes of the edges in a simplicial
pair are important. For this reason, we condition on Ĝ ∼ CL(G) having no
multiset edges (edges containing multiple instances of the same vertex).

Remark 3. We approximate E
[
sp

(
Ĝ
)]

rather than compute this expectation

exactly. For a graph G, computing E
[
sp

(
Ĝ
)]

is quite difficult as we discuss in

the open problems presented in the journal version of this paper.

Recalling Example 1, we have that sp (G1) = 6 and E
[
sp

(
Ĝ
)]

≈ 4.3, mean-

ing σSR (G1) ≈ 1.4, whereas sp (G2) = 0 and E
[
sp

(
Ĝ2

)]
≈ 0.2 > 0, meaning

σSR (G2) = 0. Thus, the simplicial ratio can clearly distinguish G1 and G2.
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2.2 The simplicial matrix

For a graph G, write sp (G, i, j) for the number of simplicial pairs (e1, e2) in G
with |e1| = i and |e2| = j with i < j. Then, letting Ĝ ∼ CL(G) conditioned on
having no multiset edges, the simplicial matrix of G, denoted by MSR (G), is the
partial matrix with cell (i, j) equalling

MSR (G, i, j) :=
sp (G, i, j)

E
[
sp

(
Ĝ, i, j

)]
whenever i < j and G contains edges of size i and of size j (and substituting
0 if there are no simplicial pairs of this type), and with cell (i, j) being empty
otherwise.

We will see in Section 3 that the simplicial matrix reveals information about
real-world graphs that the simplicial ratio alone does not. In particular, a hypoth-
esis we make in this paper, as suggest by these matrices, is that the composition
of an edge in a real-world network becomes more dependent on simpliciality as
the edge size increases.

Let us again revisit Examples 1. We have

MSR (G1) ≈


∅ ∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ 3.8 1.7 1
∅ ∅ ∅ ∅ 2.4 1
∅ ∅ ∅ ∅ ∅ 1
∅ ∅ ∅ ∅ ∅ ∅

 MSR (G2) ≈


∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ 0 0
∅ ∅ ∅ ∅ 0
∅ ∅ ∅ ∅ ∅

 .

The simplicial matrix for G1 unpacks the information about its simplicial inter-
actions. Indeed, the simplicial ratio simply tells us that the number of simplicial
pairs is 1.4 times more than expected. On the other hand, the simplicial matrix
tells us that all 3 simplicial pairs involving the edge of size 6 are to be expected,
whereas the other three simplicial pairs are at least somewhat surprising.

3 Empirical results

We compute the simplicial ratio and simplicial matrix for the same 10 graphs
that were analysed in [17]. The graphs are taken from [16] and full descriptions
can be found there. The datasets are

– three proximity-based networks: contact-primary-school, contact-high-school
and, hospital-lyon,

– two email networks: email-enron and email-eu,
– three biological networks: diseaseome, disgenenet and ndc-substances, and
– two misc. networks: congress-bills and tags-ask-ubuntu.

For each graph, we restrict to edges of sizes 2, 3, 4 and 5, and we restrict to
the largest connected component if the graph is not connected. Additionally, we
throw away multi-edges.
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3.1 The data

We first show Table 1 which includes the simplicial ratios, as well as the number
of vertices and edges, for each graph. Then, in Figure 2 we show the simplicial
matrix of each graph. For readability we show only the non-empty cells of the
partial matrices.

G |V (G)| |E(G)| [|E2|, |E3|, |E4|, |E5|] σSR (G)

disgenenet 469 232 [53, 77, 61, 41] 15.99

ndc-substances 1468 2661 [973, 695, 505, 488] 10.30

diseasome 372 256 [131, 80, 23, 22] 6.46

contact-h.s. 326 2680 [1733, 842, 99, 6] 6.16

email-enron 142 1325 [808, 316, 138, 63] 5.20

congress-bills 1236 1455 [526, 365, 316, 248] 4.88

email-eu 958 21307 [13k, 5k, 2k, 1k] 4.74

contact-p.s. 242 2480 [997, 1364, 116, 3] 1.89

hospital-lyon 75 1535 [947, 539, 48, 1] 0.97

tags-ask-ubuntu 3021 145053 [28k, 52k, 39k, 25k] 0.69

Table 1. The simplicial ratio of 10 real networks and the corresponding bottom-up
simplicial ratio and top-down simplicial ratio for the 7 temporal networks. The graphs
are ordered according to σSR (G), from largest to smallest.

3.2 Analysis

Simplicial ratio We see that that biology networks are, on average, more sur-
prisingly simplicial than contact-based networks and email networks. In contrast,
it was shown in [17] that contact-based networks are the closest to their simpli-
cial closures and biological networks are furthest from theirs. In fact, comparing
the ranks of the 3 existing measures (sf, es, fes) and the ranks from our simplicial
ratio (sr), we get the following Kendall correlation values.

sf es fes sr

sf 1.000 0.706 0.989 -0.539
es 0.706 1.000 0.722 -0.535
fes 0.989 0.722 1.000 -0.556
sr -0.539 -0.535 -0.556 1.000

These values show that our ranking system is, quite substantially, negatively cor-
related with the ranking systems in [17]. While there are likely many factors con-
tributing to this negative correlation, one strong factor is edge density. Indeed,
the three biology networks, disgenenet, ndc-substances, and diseasome, are very
sparse graphs, with disgenenet and diseasome having fewer edges than vertices.
On the other hand, the three contact based graphs, contact-h.s., contact-p.s.,
and hospital-lyon, are quite dense.
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Fig. 2. The simplicial matrix of 10 real networks, as well as the cell-wise average matrix,
restricted to edges of size 2, 3, 4, and 5. For each graph G, only non-empty cells of
MSR (G) are shown. The value of a cell is replaced with “> 1k” whenever the value is
above 1000.

Simplicial matrix An immediate take-away from these matrices is that sim-
plicial interactions become more surprising as edge size increases. Although this
feature is interesting, there is at least a partial explanation for this phenomenon,
namely, that sparse Chung-Lu graphs (and many other sparse random graphs
with independent edge generation) are quite unlikely to generate any simplicial
pairs unless at least one of the edges involved is of size 2.

4 A model that incorporates simpliciality

We define a random graph model, called the simplicial Chung-Lu model, that
generalizes the Chung-Lu hypergraph model defined in [10]. We present the
model in full detail in the journal version of this paper. Here, we give a high
level summary of the model.

1. Along with the usual input parameters of the Chung-Lu model, we also
require a parameter q ∈ [0, 1].

2. Iteratively to construct an edge, we decide if it is a “normal” edge, or a
simplicial edge, based on a q-weighted coin flip.
– If the coin flip is successful, we construct a new edge e by sampling a

previously constructed edge e′ and creating a simplicial pair (e, e′).
– If the coin flip is unsuccessful, we construct a new edge as per the usual

Chung-Lu model.
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5 Experiments

5.1 Descriptions of the experiments

We perform two experiments on the 10 real networks and on the corresponding
simplicial Chung-Lu graphs for varying q ∈ {0, 0.5, 1}. The experiments are
outlined below.

Giant component growth with random edge selection: We choose a uni-
form random order for E(G) and track the size of the largest component as edges
are added to G according to a random ordering.

Information diffusion from a single source: We initialize a function w0 :
V (G) → [0, 1] with w0(v) = 0 for all vertices, except for one randomly chosen
vertex v∗ which has w0(v∗) = 1. Then, in round i+ 1, we choose a random edge
e and, for each v ∈ e, set wi+1(v) = w(e)/|e|, where w(e) =

∑
u∈e w(u) (keeping

wi+1(v) = wi(v) for all v /∈ e). We track the Wasserstein-1 distance (also known
as the “earth mover’s distance” [22]) between wi and the uniform distribution
w∞ : V (G) → 1/|V (G)|.

Insisting on connected graphs These experiments, and in particular the two
diffusion experiments, are highly dependent on connectivity. The real graphs
are restricted to their largest component, and so we insist that the random
graphs are also connected. To achieve this, we modify the simplicial Chung-Lu
model and insist that incoming edges must connect disjoint components, until
the point the graph is connected when we continue generating edges as normal.
A full description of this algorithm is presented in the journal version of this
paper.

5.2 The results

Here, we will show the results for the two graphs: hospital-lyon and dis-
genenet. Recall that the hospital-lyon graph has a simplicial ratio of ap-
proximately 0.97, whereas the disgenenet graph has a ratio of approximately
15.99. The full collection of results can be found in the journal version.

Experiment 1: random growth In this first experiment we see the following.
For hospital-lyon the real graph grows in a near identical way to the random
model with q = 0 and q = 0.5, whereas the random model with q = 1 grows
much slower. In contrast, for disgenenet the real graph grows most similarly
to the random model with q = 1 whereas the random model with q = 0.5 grows
slightly faster, and for q = 0 even faster still. Of course, these graphs have very
different growth behaviour due to the difference in edge densities. Nevertheless,
this result suggests that the high simplicial ratio of disgenenet plays a role
in slowing down the growth of the graph, whereas the low simplicial ratio of
hospital-lyon leads it to grow as quickly as a classical Chung-Lu model.
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Fig. 3. Giant component size (normalized by the number of vertices) vs. number of
edges added in the random growth process on the hospital-lyon graph (left) and the
disgenenet graph (right). The curve is the point-wise average across 10000 indepen-
dent experiments: for the real graph the edges are resampled each time, and for the
random models the entire graphs are resampled each time.

Fig. 4. Wasserstein distance to uniform vs. number of rounds in the single-source
diffusion process on the hospital-lyon graph (left) and the disgenenet graph (right).
The curve is the point-wise average across 10000 independent experiments: for the real
graph the chosen edges per round, as well as the location of the initial vertex with
weight 1, are resampled each time, and for the random models the entire graphs are
resampled each time.

Experiment 2: single-source diffusion This experiment suggests that infor-
mation diffusion is slower on highly simplicial graphs vs. non-simplicial graphs.
We note, however, that the diffusion process on hospital-lyon is still slower
than that of a random model with q = 0.5. Surely there are more features of
this real graph not captured by random models that contribute to the slower
diffusion time.
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