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Abstract

We investigate the linear chromatic number χlin(G(n, p)) of the binomial random
graph G(n, p) on n vertices in which each edge appears independently with probability
p = p(n). For a graph G, χlin(G) is defined as the smallest k such that G admits a
k-colouring with the property that every path P in G receives a colour which appears
on only one vertex of P . For dense random graphs (np → ∞ as n → ∞), we show
that asymptotically almost surely χlin(G(n, p)) ≥ n(1 − O((np)−1/2)) = n(1 − o(1)).
Understanding the order of the linear chromatic number for subcritical random graphs
(np < 1) and critical ones (np = 1) is relatively easy. However, supercritical sparse
random graphs (np = c for some constant c > 1) remain to be investigated.

1 Introduction

Let G = (V,E) be a graph and let ϕ : V → {1, . . . , k} be an assignment of k colours to the
vertices of G. We say that ϕ is a proper k-colouring if for each {v, w} ∈ E, ϕ(v) ̸= ϕ(w).
The chromatic number of G, denoted χ(G), is the smallest positive integer k such that a
proper k-colouring of G exists.

Given a colouring ϕ and subset S ⊆ V , we say that a vertex v ∈ S is a centre for S if ϕ(v)
is distinct from ϕ(w) for all w ̸= v in S. A centred k-colouring of G is a k-colouring of G
such that for every connected subgraph H ⊆ G, V (H) has a centre. The centred chromatic
number χcen(G) is the smallest k such that a centred k-colouring of G exists. Observe that
a centred colouring is necessarily proper, since each edge {v, w} ∈ E comprises a connected
subgraph of G. Hence we have the inequality χ(G) ≤ χcen(G).

The centred chromatic number is an important and natural graph parameter that has
been introduced under numerous names in the literature: rank function [21], vertex ranking
number (or ordered colouring) [8], weak colouring number [12]. Its study was systematically
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undertaken by Nešetřil and Ossona de Mendez under the name of tree-depth [18]. The notion
of tree-depth is related to the one of tree-width. The tree-width of a graph can be seen as a
measure of closeness to a tree, while the tree-depth takes also into account the diameter of
the tree. Both serve as important measures of sparsity of a graph [19, 20].

A linear k-colouring of G is a k-colouring such that every subgraph of G that is a path
has a centre. The corresponding linear chromatic number χlin(G) is defined in the obvious
way. A linear colouring is necessarily proper, as each edge {v, w} ∈ E is a path of length
one. On the other hand, a centred colouring is necessarily linear, since path subgraphs are
connected. Therefore, we have χ(G) ≤ χlin(G) ≤ χcen(G). (In other works, e.g., [27], the
term linear colouring has been used to refer to proper colourings with the property that the
subgraph induced any pair of colour classes is a disjoint union of paths. This is distinct from
the meaning here.)

The linear chromatic number was introduced by Kun, O’Brien, Pilipczuk, and Sulivan [15]
who were motivated by finding efficiently-computable approximations of tree-depth in the
class of bounded expansion graphs. The authors of [15] provide a family of graphs that
contains, for every ϵ > 0, a graph G with χcen(G) > (2 − ϵ)χlin(G) and based on that they
stated the following, quite bold, conjecture:

Conjecture 1.1 ([15]). For all graphs G, χcen(G) ≤ 2χlin(G).

We are far away from proving this conjecture. The only class of graphs for which centred
chromatic number is known to be bounded by a linear function of linear chromatic number
is the class of bounded degree trees [15, Theorem 4]. Currently the best upper bound is
proved by Bose, Dujmović, Houdrouge, Javarsineh, and Morin [5] who were able to prove
that

χcen(G) ≤ χlin(G)10
(

log(χlin(G))
)O(1)

.

This result improved the bound proved by Czerwiński, Nadara, and Pilipczuk [6] (they
reduced the exponent from 190 to 19) which, in turn, improved the original bound by Kun
at al. [15] (with exponent 190). Bose at al. [5] provide further evidence in support of the
conjecture by establishing that, if G is a k × k pseudo-grid, then χcen(G) = O(χlin(G)).

In this paper, we investigate the binomial random graph G(n, p) that is formally defined
as a distribution over the class of graphs with the set of nodes [n] := {1, . . . , n} in which
every pair {i, j} ∈

(
[n]
2

)
appears independently as an edge in G with probability p. Note

that p = p(n) may (and usually does) tend to zero as n tends to infinity. Most results in
this area are asymptotic by nature. We say that G(n, p) has some property asymptotically
almost surely (or a.a.s.) if the probability that G(n, p) has this property tends to 1 as n goes
to infinity. For more about this model see, for example, [4, 11, 10].

The binomial random graph G(n, p) is notoriously a good candidate for constructing
counterexamples to conjectures that seem to be false, including the seminal result of Erdős
from 1959 [9] that “many consider [to be] one of the most pleasing uses of the probabilistic
method, as the result is surprising and does not appear to call for nonconstructive techniques”
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(see [3]). The girth of a graph is the size of its shortest cycle. Erdős showed in [9] that for
any k and ℓ there exists a graph G with girth more than ℓ and χ(G) > k.

Alternatively, one can investigate random graphs to support various conjectures that
seem to be true. In particular, G(n, p) with p = 1/2 yields a uniform distribution of (labeled)
graphs on n vertices, so showing that a given conjecture holds a.a.s. for G(n, 1/2) is equivalent
to proving that almost all graphs satisfy the conjecture. Many open problems are supported
by such statements including the following, clearly biased, small sample of results of this
flavour: Meyniel’s conjecture [24, 25], Tutte’s conjecture [26], and Jaeger’s conjecture [7].

The results presented in this paper for dense binomial random graphs G(n, p) (that is, in
the regime when np → ∞) support Conjecture 1.1. Our main theorem is the following.

Theorem 1.2. Let ω = ω(n) ≤ n be any function that tends to infinity as n → ∞, and let
p = ω/n. Then, the following holds a.a.s.:

χlin(G(n, p)) ≥ n− 510n√
ω

.

In our proofs, we did not try to optimize the constants. Since χlin(G) ≤ χcen(G) and, triv-
ially, χcen(G) ≤ n, Theorem 1.2 implies that a.a.s. χlin(G(n, p)) = (1 + o(1))χcen(G(n, p)) =
(1 + o(1))n. In particular, we conclude that Conjecture 1.1 holds for almost all graphs.

Supporting Conjecture 1.1 is a nice implication but understanding the behaviour of the
linear chromatic number for G(n, p) seems to be interesting on its own. In particular, our
result implies the lower bound for the centred chromatic number of dense binomial random
graphs proved in [22], where it was shown that χcen(G(n, ω/n)) ≥ n−O (n/

√
ω) a.a.s.

Investigating the linear chromatic number for very sparse random graphs, before the
giant component is formed, is relatively easy. We have the following theorem:

Theorem 1.3. If c ∈ (0, 1) then, a.a.s.,

χlin(G(n, c/n)) = log2 log n + O(1).

If c = 1, then, a.a.s.,

1

3
log2 n + O(1) ≤ χlin(G(n, c/n)) ≤ 2

3
log2 n + ω

where ω = ω(n) is an arbitrarily slowly growing function.

With very minor modifications, the proof of [22, Theorem 1.2] shows that the bounds in
Theorem 1.3 above also hold a.a.s. for χcen(G(n, c/n)) (and in fact we use the result of [22]
to prove Theorem 1.3.) Thus, Conjecture 1.1 holds a.a.s. in the subcritical regime, and holds
“in the limit” a.a.s. in the critical regime, in the sense that a.a.s.

lim sup
n→∞

χcen(G(n, c/n))

χlin(G(n, c/n))
≤ 2.
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On the other hand, supercritical sparse random graphs (when p = c/n for some constant
c > 1) remain to be investigated. The proof of our main result, Theorem 1.2, can be adjusted
to show that a.a.s. χlin(G(n, c/n)) = Θ(n), provided that c is large enough. However, there
seems to be no hope to apply the current argument to prove it for any c > 1. Maybe a.a.s.
χlin(G(n, c/n)) = o(n) for some c > 1? That would show that Conjecture 1.1 is false, since
a.a.s. χcen(G(n, c/n)) = Θ(n) for any c > 1.

The paper is structured as follows. We first provide a high level sketch of the proof of
the main theorem, Theorem 1.2 (see Subsection 1.1). Section 2 is devoted to the proof of
Theorem 1.2. Observations that prove Theorem 1.3 can be found in Section 3.

1.1 Sketch of the Proof of Theorem 1.2

The starting point of the proof is an idea from the paper of Alon, McDiarmid, and Reed [2]
on acyclic colourings. Let x = x(n) ∈ (0, 1) and consider any colouring of the vertices of
G(n, p) which uses as most (1−x)n colour classes. By removing at most one vertex from each
class, we can make the sizes of all classes even. Since we remove at most (1 − x)n vertices,
a set S of size at least xn remains. Vertices in S are necessarily in even classes and so of
size at least 2. In particular, colours that were initially present only one time disappeared.
Finally, we (arbitrarily) pair the vertices within each colour class, resulting in at least xn/2
pairs of vertices, where each pair is a subset of a single colour class. Let P be the set of pairs
formed at this step.

We call a path in G(n, p) bad if it has no centre, and observe that any path on vertices
from S which visits each pair of P either exactly twice or not at all is bad. To show that
the coloring we started with is not linear, we seek a bad path for the pairing P . Maybe in
each pairing P there is always a short bad path? The answer is ‘no’—it is relatively easy to
construct a large set of pairs with no short bad paths a.a.s. Alternatively, one might simply
look for a Hamilton path on the vertices in S. This also turns out to be too much to ask
for as, in general, the subgraph of G(n, p) induced by the vertices in S may not even be
connected. Indeed, there are many isolated vertices in G(n, p) for p below the threshold for
connectivity p̄ = log n/n so this subgraph can have many isolated vertices.

However, something slightly weaker turns out to be true. By repeatedly removing pairs
of vertices in S which contain a vertex of small degree until no such pairs remain, we reach a
subset S ′ ⊆ S and a sub-pairing P ′ ⊆ P . (This procedure is reminiscent of the construction
of the k-core of the subgraph induced by S.) Provided that x is large enough, one can
show that, a.a.s., not too many pairs are removed and that the resulting set S ′ induces
a connected subgraph with good expansion. Using the now-standard rotation-extension
technique of Pósa [23], it can then be shown that this subgraph has a Hamilton path a.a.s.
Since P ′ ⊆ P , any such path is bad, and hence the colouring we started with is a.a.s. not
linear.
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2 Dense Case: np → ∞ (Proof of Theorem 1.2)

We will use the following specific instances of Chernoff’s bound. Let X ∈ Bin(n, p) be a
random variable distributed according to a Binomial distribution with parameters n and p.
Then, a consequence of Chernoff’s bound (see e.g. [11, Theorem 2.1]) is that for any t ≥ 0
we have

Pr(X ≥ EX + t) ≤ exp

(
− t2

2(EX + t/3)

)
(1)

Pr(X ≤ EX − t) ≤ exp

(
− t2

2EX

)
. (2)

We define a set-pairing to be a pair (S,P) where S ⊆ [n] is a set of even size and P is a
set of the form

{{v1, v2}, {v3, v4}, . . . , {v|S|−1, v|S|}}
where v1, v2, . . . , v|S| is some ordering of the vertices of S. Given set-pairings (S,P) and
(S ′,P ′), we say that (S ′,P ′) ⊆ (S,P) if and only if S ′ ⊆ S and P ′ ⊆ P .

Throughout this section, ω = ω(n) will denote a function of n which grows to infinity
arbitrarily slowly and satisfies ω ≤ n so that p = ω/n ≤ 1. Recall that for a graph G on
vertex set [n] and S ⊆ [n], we let G[S] denote the subgraph of G induced by the vertices
in S.

Let (S,P) be a set-pairing and let G be a graph on vertex set [n]. For a given k ≥ 0 we
define the k-core of (S,P) in G, denoted CG

k (S,P) to be the maximal induced subgraph of
G[S] with minimum degree at least k and such that if v ∈ V (CG

k (S,P)) and {v, w} ∈ P , then
w ∈ V (CG

k (S,P)). Note that any maximal subgraph satisfying these conditions is necessarily
unique, else a larger subgraph satisfying the same conditions could be constructed by taking
a union. Thus the definition is unambiguous (though the k-core may be empty). Moreover,
to find the k-core of (S,P) one may repeatedly remove vertices of degree less than k (together
with their partners in P) until there is no vertex of degree less than k.

The key feature of CG
k (S,P) is that it respects the original pairing P : for any {v, w} ∈ P ,

either both v and w are in the k-core, or neither of them is. In this subsection, we establish
some properties of k-cores of set pairings (S,P) in the binomial random graph G(n, p). When
the host graph is clear from context, we simply write Ck(S,P).

We will first show that k-cores are large (Subsection 2.1) and have good expansion prop-
erties (Subsection 2.2). The results in these two subsections are adaptations of similar results
in [14, Section 3] to the present application. These observations, combined via sprinkling
with the rotation-extension technique of Pósa, imply that the corresponding k-cores have
Hamilton paths (Subsection 2.3).

2.1 k-cores are Large

Our first lemma shows that, a.a.s., for every set-pairing (S,P) with |S| ≥ cn/
√
ω, the core

C|S|p/3(S,P) in G(n, p) has at least |S|/2 vertices.
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Lemma 2.1. Let p = ω/n, c > 0, and let G = G(n, p). Then, a.a.s. for every set-pairing
(S,P) with |S| ≥ cn/

√
ω, there exists a set-pairing (S ′,P ′) ⊆ (S,P) such that |S ′| ≥ |S|/2

and the subgraph G[S ′] has minimum degree at least |S|p/3.

Proof. First, fix a set-pairing (S,P) with |S| ≥ cn/
√
ω = Ω(

√
n). We build a sub set-pairing

(S ′,P ′) using the following simple algorithm. Set S0 = S and P0 = P . For i = 0, 1, 2, . . . , if
G[Si] contains a vertex of degree less than |S|p/3, then let vi+1 be the smallest such vertex,
and let wi+1 be its partner such that {vi+1, wi+1} ∈ Pi; set Si+1 = Si \ {vi+1, wi+1} and
Pi+1 = Pi \ {{vi+1, wi+1}}. If no vertex of degree less than |S|p/3 exists in G[Si] (which is
trivially true if Si = ∅), then the algorithm terminates after i steps.

Let T = T (S,P) be the termination time of the algorithm and let S ′ = ST . If T < |S|/2,
then clearly G[S ′] is a subgraph of G(n, p) on |S| − 2T vertices of minimum degree at least
|S|p/3. To prove the lemma, we will show that a.a.s. T (S,P) ≤ |S|/4 for all set-pairings
(S,P) with |S| ≥ cn/

√
ω.

For each i ≥ 1, let Bi = {v1, v2, . . . , vi}, where the vj’s are as defined in the algorithm.
By construction, we have |E(Bi, Si)| < i · |S|p/3. Suppose that T > |S|/4. Then, at step
t = ⌊|S|/4⌋ of the algorithm, we find disjoint sets Bt and St of sizes ⌊|S|/4⌋ = (1+o(1))|S|/4
and |S| − 2⌊|S|/4⌋ = (1 + o(1))|S|/2, respectively, such that

|E(Bt, St)| <
⌊
|S|
4

⌋
· |S|p

3
≤ |S|2ω

12n
.

The preceding shows that for any set-pairing (S,P) with |S| ≥ cn/
√
ω, the event

{T (S,P) > |S|/4} implies the existence of a pair of disjoint sets P,Q ⊆ [n] such that

|P | = ⌊|S|/4⌋, |Q| = |S| − 2⌊|S|/4⌋, and |E(P,Q)| < |S|2ω
12n

. Thus,

Pr

 ⋃
(S,P)

{
T (S,P) >

|S|
4

} ≤ Pr

(⋃
P,Q

{
|E(P,Q)| < s2ω

12n

})
, (3)

where the union on the left is taken over all set-pairings with |S| ≥ cn/
√
ω and the union

on the right is over all disjoint P,Q with |P | = ⌊s/4⌋, |Q| = s− 2 ⌊s/4⌋, and s ≥ cn/
√
ω.

Consider a fixed pair of disjoint sets P,Q of sizes ⌊s/4⌋ and s− 2⌊s/4⌋, respectively, for
some s ≥ cn/

√
ω. The cut size |E(P,Q)| is the binomial random variable X ∼ Bin(|P ||Q|, p)

with mean

E[X] = |P ||Q|p = (1 + o(1))
s2ω

8n
.

From Chernoff’s bound (2) applied with t = E[X] − s2ω
12n

= (1 + o(1))E[X]/3, we then get

Pr

(
|E(P,Q)| < s2ω

12n

)
≤ exp

{
−(1 + o(1))

E[X]

18

}
= exp

{
−(1 + o(1))

s2ω

144n

}
≤ exp

{
− s2ω

150n

}
≤ exp

{
−cs

√
ω

150

}
,
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where the second equality holds for n sufficiently large, and in the final equality we use the
fact that s ≥ cn/

√
ω. For a given s, the number of choices for the sets P and Q is at most

(
n

⌊s/4⌋

)(
n

s− 2 ⌊s/4⌋

)
≤ nO(1)

(
4ne

s

)s/4(
2ne

s

)s/2

= nO(1)

(
2

4
3ne

s

) 3s
4

.

(The nO(1) factor is the price paid for getting rid of ceilings; the constant implied in the O(·)
notation does not depend on s.) Using the fact that s ≥ cn/

√
ω, the right-hand side above

is at most

nO(1)

(
2

4
3
√
ωe

c

) 3s
4

= exp

{
(1 + o(1))

3s

8
logω

}
≤ exp

{
s logω

2

}
.

(The inequality holds for n sufficiently large.) Thus, the probability that there exist disjoint
sets P,Q of sizes ⌊s/4⌋ and s− 2⌊s/4⌋, respectively, such that |E(P,Q)| ≤ s2ω

12n
is at most

exp

{
−cs

√
ω

150
+

s logω

2

}
= exp

{
−cs

√
ω

150

(
1 − 75 logω

c
√
ω

)}
≤ exp

{
−cs

√
ω

200

}
.

(As always, the inequality holds for n sufficiently large.) It follows that

Pr

(⋃
P,Q

{
|E(P,Q)| ≤ s2ω

12n

})
≤

n∑
s=⌈cn/

√
ω⌉

exp

{
−cs

√
ω

200

}
≤ ne−Ω(n) = o(1).

Based on (3), we conclude that a.a.s. T (S,P) ≤ |S|/4 for all set-pairings (S,P) with |S| ≥
cn/

√
ω. This completes the proof of the lemma.

2.2 k-cores are Good Expanders

The previous lemma, Lemma 2.1, shows that, a.a.s., for every set-pairing (S,P) with |S| ≥
2cn/

√
ω, the core C|S|p/3(S,P) in G(n, p) has at least |S|/2 ≥ cn/

√
ω vertices. By defini-

tion, the minimum degree of C|S|p/3(S,P) is at least |S|p/3 ≥ |V (C|S|p/3(S,P))|p/3. Our
next lemma implies that a.a.s. for every set-pairing (S,P) with |S| ≥ 2cn/

√
ω, the core

C|S|p/3(S,P) in G(n, p) is a good expander.

Lemma 2.2. Let p = ω/n and c > 0. The following properties hold a.a.s.:

i) For any subgraph H of G(n, p) on at least cn/
√
ω vertices with δ(H) ≥ |V (H)|p/3, we

have |NH(X) \X| > 2|X| for every X ⊆ V (H) with |X| ≤ |V (H)|/45.

ii) Every induced subgraph H of G(n, p) with δ(H) ≥ |V (H)|p/3 on at least cn/
√
ω vertices

is connected.

7



Proof. We begin with i). Suppose that there is a subgraph H of G(n, p) on s ≥ cn/
√
ω ver-

tices with minimum degree at least sp/3 that fails the expansion condition in the statement.
Let X ⊆ V (H) be a subset of vertices with |X| ≤ s/45 and such that |NH(X) \X| ≤ 2|X|.
Then, NH(X) \X is contained in some Y ⊆ V (H), disjoint from X, with |Y | = 2|X|. In H,
there are at most

(|X|
2

)
+ |X||Y | ≤ 5

2
|X|2 possible edges incident with X. At least

δ(H)|X|
2

≥ sp|X|
6

=
sω|X|

6n

of these edges must be present in H, and hence also in G(n, p). Writing |X| = j ≤ s/45, the
probability that this occurs for a given pair of sets X and Y is at most(⌊5

2
j2
⌋⌈

sωj
6n

⌉)p⌈sωj/6n⌉ ≤ (15ejn

sω
p

)⌈sωj/6n⌉

≤
(

15ej

s

)sωj/6n

.

For s ≥ cn/
√
ω, let Bs be the event that there exists a subgraph H of G(n, p) with s

vertices and minimum degree at least sp/3 such that the expansion condition in the statement
of the lemma fails. We have

Pr(Bs) ≤
⌊s/45⌋∑
j=1

(
n

j

)(
n

2j

)(
15ej

s

)sωj/6n

≤
⌊s/45⌋∑
j=1

[
1

4

(
ne

j

)3(
15ej

s

)sω/6n
]j

≤
⌊s/45⌋∑
j=1

[
1

4

(
ne

j

)3(
15ej

s

)c
√
ω/6
]j

, (4)

where in the final inequality we use that 15ej/s < 1 for j ≤ ⌊s/45⌋ and that s ≥ cn/
√
ω.

We will show that the last sum above is o(1/n) uniformly in s. This will suffice to finish the
proof of part i), since it implies that

Pr

 n⋃
s=⌈cn/

√
ω⌉

Bs

 ≤
n∑

s=⌈cn/
√
ω⌉

Pr(Bs) = n · o(1/n) = o(1).

Now, we bound the sum (4). We remark first that, since ω ≤ n, we have s ≥ cn/
√
ω =

c
√
n and, in particular, s ≫ log n. We will split the sum (4) into two parts corresponding

to j ≤ ⌊log n⌋ and, respectively, j > ⌊log n⌋.
For 1 ≤ j ≤ ⌊log n⌋, we have

1

4

(
ne

j

)3(
15ej

s

)c
√
ω/6

≤ (ne)3

4

(
15e log n

c
√
n

)c
√
ω/6

=: g(n).

8



where in the inequality we use that 1 ≤ j ≤ log n and s ≥ c
√
n. It is easy to see that

g(n) = o(1/n), and hence

⌊logn⌋∑
j=1

[
1

4

(
ne

j

)3(
15ej

s

)c
√
ω/6
]j

≤
⌊logn⌋∑
j=1

(g(n))j = O(g(n)) = o(1/n).

For ⌊log n⌋ + 1 ≤ j ≤
⌊

s
45

⌋
, observe that

1

4

(
ne

j

)3(
15ej

s

)c
√
ω/6

=
(15e2)3

4

(n
s

)3(15ej

s

)c
√
ω/6−3

≤ (15e2)3

4

(√
ω

c

)3(
15e

45

)c
√
ω/6−3

:= h(n).

Now, h(n) = exp {O(logω) − Ω(
√
ω)} = exp {−Ω(

√
ω)} = o(1), and hence for n large

enough, h(n) < 1/3 < 1/e and so we have

⌊s/45⌋∑
j=⌊logn⌋+1

[
1

4

(
ne

j

)3(
15ej

s

)c
√
ω/6
]j

≤
∞∑

j=⌊logn⌋+1

(h(n))j = O
(
(h(n))logn

)
= O((1/3)logn) = o(1/n).

Thus, we conclude that for s ≥ cn/
√
ω, the sum (4) is o(1/n), uniformly in s. This completes

the proof of part i).

For ii), let H be an induced subgraph on s ≥ cn/
√
ω vertices with δ(H) ≥ |V (H)|p/3.

By part i), we may assume that H does not have a component with s
45

or fewer vertices. If H
has more than one component of size greater than s/45, then we find a pair of disjoint sets
of ⌈s/45⌉ vertices each which induce no edges between them in G(n, p). (The assumption
that H is induced is necessary here.) The probability of finding such sets is at most(

n

⌈s/45⌉

)2

(1 − p)⌈s/45⌉
2 ≤ O(ω)

(
45ne

s

)2s/45

e−s2ω/452n

≤ O(ω)

(
45e

√
ω

c

)2s/45

e−cs
√
ω/452

= exp

{
−cs

√
ω

452

(
1 −O

(
logω√

ω

))}
≤ exp

{
−cs

√
ω

502

}
,

with the final inequality holding for n large enough. Thus, the probability that there exists
an induced subgraph H on s ≥ cn/

√
ω vertices with multiple components of size greater

than s/45 is at most

n∑
s=⌈cn/

√
ω⌉

exp

{
−cs

√
ω

502

}
≤ ne−Ω(n) = o(1).
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We conclude that a.a.s., every induced subgraph H of G(n, p) on at least cn/
√
ω vertices

with δ(H) ≥ |V (H)|p/3 is connected. This finishes part ii) of the proof and so the proof of
the lemma is finished.

2.3 Sprinkling and Pósa Rotations

The main result in this section is the following.

Theorem 2.3. Let p = ω/n and G = G(n, p). Then, a.a.s., for all set-pairings (S,P) with
|S| ≥ 510n/

√
ω, there is a nonempty sub-pairing (S ′,P ′) ⊆ (S,P) such that G[S ′] has a

Hamilton path.

Before we prove Theorem 2.3, let us show that Theorem 1.2 follows from it.

Proof of Theorem 1.2. Let p = ω/n. Let ϕ : [n] → {1, 2, . . . , c} be a colouring of the vertices
of G(n, p) with c ≤ n − 510n/

√
ω colour classes. We construct a set-pairing (S(ϕ),P(ϕ))

associated to ϕ as follows. For each j ∈ {1, 2, . . . , c}, if |ϕ−1(j)| is odd, let v be the smallest
vertex in ϕ−1(j) and set Sj := ϕ−1(j) \ {v}; otherwise, let Sj := ϕ−1(j).

For each j such that sj := Sj > 0, let vj1 , vj2 , . . . , vjsj be the vertices of Sj in increasing

order, and define the pairing Pj := {{vj1 , vj2}, {vj3 , vj4}, . . . , {vjsj−1 , vjsj }}. Finally, define

the set-pairing (S(ϕ),P(ϕ)) by

S(ϕ) :=
c⋃

j=1

Sj and P(ϕ) :=
c⋃

j=1

Pj.

Note that

|S(ϕ)| =

∣∣∣∣∣
c⋃

j=1

Sj

∣∣∣∣∣ =
c∑

j=1

|Sj| ≥
c∑

j=1

(|ϕ−1(j)| − 1) = n− c ≥ 510n√
ω

.

If ϕ is a linear colouring of G(n, p), then (S(ϕ),P(ϕ)) cannot contain any nonempty sub-
pairing (S ′(ϕ),P ′(ϕ)) with a Hamilton path. But, by Theorem 2.3 and the fact that |S(ϕ)| ≥
510n/

√
ω, a.a.s. (S(ϕ),P(ϕ)) contains such a sub-pairing, regardless which colouring ϕ with

at most n − 510n/
√
ω colour classes is considered. Thus, we conclude that a.a.s. no linear

colouring of G(n, p) with at most n− 510n/
√
ω colour classes exists, and hence a.a.s.

χlin(G(n, p)) > n− 510n√
ω

,

which finishes the proof of Theorem 1.2.

It remains to prove Theorem 2.3. To that end, we will use the rotation-extension tech-
nique of Pósa [23]. This procedure requires a two-round exposure of the edges of G(n, p).
That is, to generate the random graph for a given p, we choose two values 0 ≤ p1, p2 ≤ p
such that p = p1+p2−p1p2, then generate independent random graphs G(n, p1) and G(n, p2).

10



It is easy to see that the graph obtained by taking the union of G(n, p1) and G(n, p2), and
collapsing any double edges into single edges is distributed as G(n, p). In our case, p = ω/n,
and we can take p1 = ω

2n
and p2 = ω

2n
+ ϵ ≥ ω

2n
, where ϵ = O((ω/n)2).

Rather than giving a full explanation of the technique here, we refer instead to the
treatment in [10, Chapter 6]. The crucial lemma is the following, which is a straightforward
consequence of [13, Corollary 2.10]:

Lemma 2.4. Let r be a positive integer, and let G = (V,E) be a connected graph in which
every subset X ⊆ V of size |X| ≤ r satisfies |N(X) \ X| > 2|X|. Suppose that the longest
path in G has h ≤ |V | − 2 edges. Then there are at least r2/2 non-edges of G such that the
addition of any one of them results in a graph G′ whose longest path has at least h+ 1 edges.

In the light of the above lemma, we will call a graph H good if H is connected and
satisfies |N(X) \X| > 2|X| for every X ⊆ V (H) with |X| ≤ |V (H)|/45.

We will use the following observation.

Lemma 2.5. Let G1 be any simple graph on vertex set [n]. Sample G(n, p2) and consider
G = G1 ∪ G(n, p2), collapsing double edges if needed. Then, the following property holds
a.a.s.: for all subsets S ⊆ [n] with |S| ≥ 255n/

√
ω such that G1[S] is good, G[S] contains a

Hamilton path.

Proof. Consider a set S ⊆ [n] of size |S| ≥ 255n/
√
ω that induces a good subgraph H =

G1[S]. Using Lemma 2.4, we will greedily build a Hamilton path on the vertices in S as the
edges of G(n, p2) are exposed one-by-one. For a graph G, define λ(G) to be the number of
edges in a longest path in G.

Let {e1, e2, . . . , er} be the edges in G(n, p2) which join pairs of vertices in S, listed in a

random order. Note that r is distributed as Bin
((|S|

2

)
, p2

)
, which has mean asymptotic to

|S|2p2/2 ≥ 2552n/4. Using Chernoff’s bound (2), it is easy to show that r ≥ |S|2p2/4 with
probability 1 − o(2−n). We condition on this outcome, and henceforth assume r ≥ |S|2p2/4.
Note that we only exposed the number of edges in G(n, p2) that fall into the set S; the
locations of these edges are still unexposed.

For 1 ≤ j ≤ r, inductively define Hj = Hj−1 ∪ {ej}, where we take H0 = H. Since we
assume H is good, and adding edges to a good graph preserves the property of being good,
Hj is good for all j.

Now, fix j ≥ 0 and condition on the outcome of Hj (there is no conditioning necessary
for j = 0, when we simply have H0 = H). Suppose that λ(Hj) < |S| − 1, that is, Hj does

not have a Hamilton path. By Lemma 2.4, there exists a set Bj of at least |S|2
2·(45)2 = |S|2

4050

non-edges of Hj such that if ej+1 ∈ Bj, then we have λ(Hj+1) ≥ λ(Hj) + 1. The edge ej+1

is uniformly distributed over pairs of vertices in S which are not in the set {e1, e2, . . . , ej}.

Crudely, there are at most
(|S|

2

)
such pairs. Since none of the pairs in Bj are in {e1, e2, . . . , ej}

by definition, we therefore have

Pr(ej+1 ∈ Bj | e1, e2, . . . , ej) ≥
(
|S|
2

)−1 |S|2

4050
≥ 1

2025
,
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given that λ(Hj) < |S|−1. Clearly, if λ(Hj) = |S|−1, then λ(Hj+1) = |S|−1 as well. So for
any 0 ≤ j ≤ r − 1, either Hj has a Hamilton path, or the length of a longest path increases
by at least 1 from Hj to Hj+1 with probability at least 1/2025, independently of the history
up to time j. Thus, for as long as Hj has no Hamilton path, λ(Hj) stochastically dominates
a Binomial random variable with mean j/2025. In particular,

Pr(Hr has no Hamilton path) ≤ Pr(λ(Hr) < |S| − 1)

≤ Pr

(
Bin

(
r,

1

2025

)
< |S| − 1

)
. (5)

Conditioned on r ≥ |S|2p2/4, the Bin(r, 1
2025

) random variable has mean

r

2025
≥ 1

2025

|S|2p2
4

≥ 1

16200

(
255n√

ω

)2
ω

n
> 4n,

where in the last inequality we use the fact that 255 > 2
√

16200 ≈ 254.558. By Chernoff’s
bound (2) with t = r

2025
− n > 3

4
· r
2025

,

Pr

(
Bin

(
r,

1

2025

)
< |S| − 1

)
≤ Pr

(
Bin

(
r,

1

2025

)
< n

)
≤ exp

{
− 9

32
· r

2025

}
≤ exp

{
−9n

8

}
= o(2−n),

and so Pr(Hr has no Hamilton path) = o(2−n) as well by (5).

In summary, we have shown that, conditioned on r ≥ |S|2p2/4, the subgraph Hr = G[S]
contains a Hamilton path with probability 1−o(2−n). Since r ≥ |S|2p2/4 also with probability
1−o(2−n), it follows that Pr(G[S] has no Hamilton path) = o(2−n). A union bound over the
at most 2n choices for the set S completes the proof of the lemma.

Now, we can finish the proof of Theorem 2.3.

Proof of Theorem 2.3. By Lemma 2.1, applied to G(n, p1) with p1 = p/2 = (ω/2)/n, a.a.s.,
for every set pairing (S,P) with

|S| ≥ (255
√

2)n√
ω/2

=
510n√

ω
,

there exists a set-pairing (S ′,P ′) ⊆ (S,P) such that |S ′| ≥ |S|/2 ≥ 255n/
√
ω and the

subgraph G[S ′] has minimum degree at least |S|p1/3 ≥ |S ′|p1/3. By Lemma 2.2, applied
again to G(n, p1), a.a.s. every induced subgraph H of G(n, p1) on at least

(255/
√

2)n√
ω/2

=
255n√

ω

12



vertices with δ(H) ≥ |V (H)|p1/3 is good.
Combining the two above observations together, we establish that a.a.s. in G(n, p1), for

every set-pairing (S,P) with |S| ≥ 510n/
√
ω, there exists an induced subgraph that is good

and has at least 255n/
√
ω vertices. Then, by Lemma 2.5, a.a.s. each of these subgraphs

becomes Hamiltonian after adding the edges from G(n, p2). This finishes the proof of the
theorem.

3 Sparse Case: np ≤ 1 (Proof of Theorem 1.3)

In this section, we give some results about χlin(G(n, p)) in the regime p = c/n, c ≤ 1. These
results are implied directly by the arguments of Perarnau and Serra from [22], where the
centred chromatic number of G(n, p) is studied under the name of tree-depth. The relevant
result therein is the following.

Theorem 3.1 ([22] Theorem 1.2). The following hold a.a.s.:

χcen(G(n, c/n)) =

{
Θ(log log n) c ∈ (0, 1)

Θ(log n) c = 1.

Though not stated explicitly in the paper, it is clear upon closer examination that the
arguments of [22] also give the constants implied by the Θ-notation in Theorem 3.1. In
particular, their arguments directly imply

1

2
log2 log n + O(1) ≤ χcen(G(n, c/n)) ≤ log2 log n + O(1) (6)

a.a.s. when c ∈ (0, 1) and

1

3
log2 n + O(1) ≤ χcen(G(n, c/n)) ≤ 2

3
log2 n + ω (7)

when c = 1, where ω = ω(n) is an arbitrarily slowly growing function of n.
Since χlin(G) ≤ χcen(G) for any graph G, the upper bounds in (6) and (7) also hold

for χlin(G(n, p)). As we will see, the techniques used in [22] to prove the lower bounds in
(6) and (7) apply equally well to linear colourings, and thus these bounds hold as well for
χlin(G(n, p)). Moreover, a result from [16] actually gives an improvement to the lower bound
in the subcritical case which removes the 1/2 factor from the leading term. With these
considerations we are able to deduce Theorem 1.3.

Let us make a few observations before beginning the proof. First, for any graph G, since
any linear colouring of G is necessarily a linear colouring of every subgraph of G, we have

χlin(G) ≥ max
H⊆G

χlin(H), (8)
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where the maximum is taken over all subgraphs H of G. Next, observe that any connected
subgraph of the path on k vertices Pk is necessarily a path, and hence linear and the centred
colourings are equivalent on a path:

χcen(Pk) = χlin(Pk). (9)

Finally, it is well known, and easy to show, that

χcen(Pk) = ⌊log2 k⌋ + 1. (10)

Together, (8), (9), and (10) imply that for any graph G and any component C of G, we
have

χlin(G) ≥ log2(diam(C)). (11)

Observation (11) is all we need to complete the proof of Theorem 1.3.

Proof of Theorem 1.3. Recall that we only need to show the lower bounds on χlin(G(n, c/n));
the upper bounds are implied by (6) and (7).

For c < 1, the diameter of the largest component in G(n, c/n) is typically of order
√

log n,
but there are components of smaller cardinality with diameter of order log n (see [16]). We
conclude that a.a.s. χlin(G(n, c/n)) ≥ log2 log n+O(1) by (11). (Note that this also improves
the lower bound in (6) proved in [22].)

Similarly, for c = 1, the diameter of the largest component in G(n, 1/n) is known to be
typically of order n1/3 (see [17]) implying that a.a.s. χlin(G(n, c/n)) ≥ 1

3
log2 n + O(1).

Let us mention that for c > 1, a.a.s. G(n, c/n) contains a path of length Ω(n) (see, for
example, [1]) and so a.a.s. χlin(G(n, c/n)) = Ω(log n). In fact, the non-existence of linear
colouring is clearly a monotonic property so the same bound is implied by the fact that a.a.s.
χlin(G(n, 1/n)) = Ω(log n).
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[10] Alan Frieze and Micha l Karoński. Introduction to random graphs. Cambridge University
Press, 2016.

[11] Svante Janson, Tomasz  Luczak, and Andrzej Ruciński. Random graphs. John Wiley &
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