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Abstract

The Artificial Benchmark for Community Detection (ABCD) graph is a random
graph model with community structure and power-law distribution for both degrees
and community sizes. The model generates graphs similar to the well-known LFR
model but it is faster and can be investigated analytically. In this paper, we show that
the ABCD model exhibits some interesting self-similar behaviour, namely, the degree
distribution of ground-truth communities is asymptotically the same as the degree dis-
tribution of the whole graph (appropriately normalized based on their sizes). As a
result, we can not only estimate the number of edges induced by each community but
also the number of self-loops and multi-edges generated during the process. Under-
standing these quantities is important as (a) rewiring self-loops and multi-edges to keep
the graph simple is an expensive part of the algorithm, and (b) every rewiring causes
the underlying configuration models to deviate slightly from uniform simple graphs on
their corresponding degree sequences.

Keywords— Random graphs, Complex networks, Configuration model, ABCD, Community
structure, Self-similarity, Power-law

1 Introduction

One of the most important features of real-world networks is their community structure, as it reveals
the internal organization of nodes [9, 17]. In social networks communities may represent groups by
interest, in citation networks they correspond to related papers, in the Web graph communities are
formed by pages on related topics, etc. Identifying communities in a network is therefore valuable
as this information helps us to better understand the network structure.
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Unfortunately, there are very few datasets with ground-truth communities identified and la-
belled. As a result, there is need for synthetic random graph models with community structure
that resemble real-world networks to benchmark and tune clustering algorithms that are unsuper-
vised by nature. The LFR (Lancichinetti, Fortunato, Radicchi) model [23, 22] is a highly popular
model that generates networks with communities and, at the same time, allows for heterogene-
ity in the distributions of both node degrees and of community sizes. It became a standard and
extensively used method for generating artificial networks.

A similar synthetic network to LFR, the Artificial Benchmark for Community Detection
(ABCD) [16] was recently introduced and implemented1, including a fast implementation2 that
uses multiple threads (ABCDe) [20]. Undirected variants of LFR and ABCD produce graphs
with comparable properties but ABCD/ABCDe is faster than LFR and can be easily tuned to
allow the user to make a smooth transition between the two extremes: pure (disjoint) communities
and random graphs with no community structure. Moreover, it is easier to analyze theoretically—
for example, in [15] various theoretical asymptotic properties of the ABCD model are investigated
including the modularity function that, despite some known issues such as the “resolution limit”
reported in [10], is an important graph property of networks in the context of community de-
tection. Finally, the building blocks in the model are flexible and may be adjusted to satisfy
different needs. Indeed, the original ABCD model was recently adjusted to include potential
outliers (ABCD+o) [18] and extended to hypergraphs (h–ABCD) [19]3. In the context of this
paper, the most important of the above properties is that the ABCD model allows for theoretical
investigation of its properties.

The ABCD model is used by practitioners but, for the reasons mentioned above, it also gains
recognition among scientists. For example, [1] suggests to use Adjusted Mutual Information (AMI)
between the partitions returned by various algorithms with the ground-truth partitions of syntheti-
cally generated random graphs, ABCD and LFR. In particular, they use both models to compare
30 community detection algorithms, mentioning that being directly comparable to LFR, ABCD
offers additional benefits including higher scalability and better control for adjusting an analogous
mixing parameter.

Another important aspect of complex networks is self-similarity and scale invariance which are
well-known properties of certain geometric objects such as fractals [24]. Scale invariance in the
context of complex networks is traditionally restricted to the scale-free property of the distribution
of node degrees [2] but also applies to the distributions of community sizes [12, 8], degree-degree
distances [32], and network density [5]. Unfortunately, the definition of “scale free” has never
reached a single agreement [7, 13] but many experiments provide a statistical significance of these
claims such as the experiment on 32 real-world networks that have a wide coverage of economic,
biological, informational, social, and technological domains, with their sizes ranging from hundreds
to tens of millions of nodes [32].

In search for more complete self-similar descriptions, methods related to the fractal dimension
are considered that use box counting methods and renormalization [27, 11, 21]. However, the main
issue is that complex networks are still not well defined in a proper geometric sense but one may,
for example, introduce the concept of hidden metric spaces to overcome this problem [26].

1https://github.com/bkamins/ABCDGraphGenerator.jl/
2https://github.com/tolcz/ABCDeGraphGenerator.jl/
3https://github.com/bkamins/ABCDHypergraphGenerator.jl
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For the context of community structure of complex networks, let us highlight one interesting
study of the network of e-mails within a real organization that revealed the emergence of self-similar
properties of communities [12]. Such experiments suggest that there is some universal mechanism
that controls the formation and dynamics of complex networks.

In this paper, we show that the ABCD model exhibits self-similar behaviour: each ground-truth
community inherits power-law degree distribution from the distribution of the entire graph (see
Theorem 3.1), that is, the power-law exponent as well as the minimum degree of this distribution
are preserved. On the other hand, as in all self-similarities mentioned above, some renormalization
needs to be applied. In our case, the distribution is truncated so that the maximum degree,
corrected by the noise parameter ξ (see Section 2 for its formal definition), does not exceed the
community size.

The above observation, interesting and desired on its own, has some immediate implications
that are of interest too. Firstly, we can easily compute the expected volume of each community (see
Corollary 3.2). Secondly, and more importantly, we can investigate how many self-loops and multi-
edges are constructed during the generation process of ABCD (see Theorem 3.3). Understanding
this quantity is crucial for two reasons. Firstly, removing these self-loops and multi-edges to obtain
a simple graph is a time consuming part of the construction algorithm. Secondly, as the ABCD
construction involves several implementations of the well-known configuration model, the number
of self-loops and multi-edges is directly correlated to how “skewed” the final graph is, i.e., more
self-loops and multi-edges lead to distributions that are further away from being uniform. We speak
about this second reason in more detail in Section 2.4.

The paper is structured as follows. In Section 2, we formally define the ABCD model and
state one known result about the said model. The main results are presented in Section 3. Then, in
Section 4, we present results of simulations that highlight properties that are proved in this paper
and show their practical implications. Next, the main result (Theorem 3.1) and its applications
(Corollary 3.2 and Theorem 3.3) are proved in Section 5. Finally, some open problems are presented
in Section 6.

A preliminary version of this paper will be published in the proceedings of WAW 2024 [3].

2 The ABCD Model

In this section we introduce the ABCD model. Its full definition, along with more detailed expla-
nations of its parameters and features, can be found in [16]. We restate the main components of
the ABCD model here to ensure completeness of the exposition in this article. More accurately,
we outline a version of the ABCD model that was studied extensively in [15]. In the coming
description, all choices made (the truncated power-law, the parameters, etc.) match those in [15].
In fact, there is much flexibility in the ABCD model, and we suspect that our results carry over to
this more flexible setting. However, we choose to study the version of the ABCD model presented
in [15] so that (a) we can use previously established results, and (b) we can simplify the statements
of our main results.
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2.1 Notation

For a given n ∈ N := {1, 2, . . .}, we use [n] to denote the set consisting of the first n natural
numbers, that is, [n] := {1, 2, . . . , n}.

Our results are asymptotic by nature, that is, we will assume that n → ∞. For a sequence
of events (En, n ∈ N), we say En holds with high probability (w.h.p.) if P (En) → 1 as n →
∞ . We say that En holds with extreme probability (w.e.p.) if P (En) = 1 − exp(−Ω(log2 n)) . In
particular, if there are polynomially many events and each holds w.e.p., then w.e.p. all of them
hold simultaneously. To combine this notion with other asymptotic standard notation such as O(·)
and o(·), we follow the conventions in [31].

Power-law distributions will be used to generate both the degree sequence and community sizes
so let us formally define it. For given parameters γ ∈ (0,∞), δ,∆ ∈ N with δ ≤ ∆, we define a
truncated power-law distribution P (γ, δ,∆) as follows. For X ∼ P (γ, δ,∆) and for k ∈ N with
δ ≤ k ≤ ∆,

P (X = k) =

∫ k+1
k x−γ dx∫ ∆+1
δ x−γ dx

.

2.2 The Configuration Model

The well-known configuration model is an important ingredient of the ABCD generation process
so let us formally define it here. Suppose then that our goal is to create a graph on n nodes
with a given degree distribution d := (di, i ∈ [n]), where d is a sequence of non-negative integers
such that m :=

∑
i∈[n] di is even. We define a random multi-graph CM(d) with a given degree

sequence known as the configuration model (sometimes called the pairing model), which was
first introduced by Bollobás [6]. (See [4, 29, 30] for related models and results.)

We start by labelling nodes as [n] and, for each i ∈ [n], endowing node i with di half-edges.
We then iteratively choose two unpaired half-edges uniformly at random (from the set of pairs of
remaining half-edges) and pair them together to form an edge. We iterate until all half-edges have
been paired. This process yields Gn ∼ CM(d), where Gn is allowed self-loops and multi-edges and
thus Gn is a multi-graph.

2.3 Parameters of the ABCD Model

The ABCD model is governed by the following eight parameters.

Parameter Range Description

n N Number of nodes

γ (2, 3) Power-law degree distribution with exponent γ
δ N Min degree as least δ

ζ
(

0, 1
γ−1

]
Max degree at most nζ

β (1, 2) Power-law community size distribution with exponent β
s N \ [δ] Min community size at least s
τ (ζ, 1) Max community size at most nτ

ξ (0, 1) Level of noise
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2.4 The ABCD Construction

We will use A = A(n, γ, δ, ζ, β, s, τ, ξ) for the distribution of graphs generated by the following
5-phase construction process.

Phase 1: creating the degree distribution

In theory, the degree distribution for an ABCD graph can be any distribution that satisfies (a) a
power-law with parameter γ, (b) a minimum value of at least δ, and (c) a maximum value of at
most nζ . In practice, however, degrees are i.i.d. samples from the distribution P

(
γ, δ, nζ

)
.

For Gn ∼ A, write dn = (di, i ∈ [n]) for the chosen degree sequence of Gn with d1 ≥ · · · ≥ dn.
Finally, to ensure that

∑
i∈[n] di is even, we decrease d1 by 1 if necessary; we relabel as needed to

ensure that d1 ≥ d2 ≥ · · · ≥ dn. This potential change has a negligible effect on the properties we
investigate in this paper and we thus only present computations for the case when d1 is unaltered.

Phase 2: creating the communities

We next assign communities to the ABCD model. When we construct a community, we assign
a number of vertices to said community equal to its size. Initially, the communities will form an
empty graph. Then, in Phases 3, 4 and 5, we handle the construction of edges using the degree
sequence established in Phase 1.

Similar to the degree distribution, the distribution of community sizes must satisfy (a) a power-
law with parameter β, (b) a minimum value of s, and (c) a maximum value of nτ . In addition, we
also require that the sum of community sizes is exactly n. Again, we use a more rigid distribution
in practice: communities are generated with sizes determined independently by the distribution
P (β, s, nτ ). We generate communities until their collective size is at least n. If the sum of com-
munity sizes at this moment is n + k with k > 0 then we perform one of two actions: if the last
added community has size at least k + s, then we reduce its size by k. Otherwise (that is, if its size
is c < k + s), then we delete this community, select c old communities and increase their sizes by
1. This again has a negligible effect on the analysis and we thus only present computations for the
case when community sizes are unaltered.

For Gn ∼ A, write L for the (random) number of communities in Gn and write Cn = (Cj , j ∈
[L]) for the chosen collection of communities in Gn with |C1| ≥ · · · ≥ |CL| (again, let us stress the
fact that Cn is a random vector of random length L).

Phase 3: assigning degrees to nodes

At this point in the construction of Gn ∼ A we have a degree sequence dn and a collection of
communities Cn with community Cj containing |Cj | unassigned nodes, i.e., nodes that have not
been assigned a label or a degree. We then iteratively assign labels and degrees to nodes as follows.
Starting with i = 1, let Ui be the collection of unassigned nodes at step i. At step i choose a node
uniformly at random from the set of nodes u in Ui that satisfy

di ≤
|C(u)| − 1

1 − ξϕ
,
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where C(u) is the community containing u and

ϕ = 1 − 1

n2

∑
j∈[L]

|Cj |2 ,

and assign this node label i and degree di; we have that Ui+1 = Ui \ {u}. We bound the degrees
assignable to node u in community C to ensure that there are enough nodes in C \{u} for u to pair
with, preventing guaranteed self-loops or guaranteed multi-edges during phase 4 of the construction.
The details of this bound are quite involved and are not overly important for our results. Thus, we
point the reader to either [15] or [16] for a full explanation of the bound.

Phase 4: creating edges

At this point Gn contains n nodes labelled as [n], partitioned by the communities Cn, with node
i ∈ [n] containing di unpaired half-edges. The last step is to form the edges in Gn. Firstly, for each
i ∈ [n] we split the di half-edges of i into two distinct groups which we call community half-edges
and background half-edges. For a ∈ Z and b ∈ [0, 1) define the random variable ⌊a + b⌉ as

⌊a + b⌉ =

{
a with probability 1 − b, and
a + 1 with probability b .

Now define Yi := ⌊(1 − ξ)di⌉ and Zi := di − Yi (note that Yi and Zi are random variables with
E [Yi] = (1− ξ)di and E [Zi] = ξdi) and, for all i ∈ [n], split the di half-edges of i into Yi community
half-edges and Zi background half-edges. Next, for all j ∈ [L], construct the community graph Gn,j

as per the configuration model on node set Cj and degree sequence (Yi, i ∈ Cj). Finally, construct
the background graph Gn,0 as per the configuration model on node set [n] and degree sequence
(Zi, i ∈ [n]). In the event that the sum of degrees in a community is odd, we pick a maximum
degree node i in said community and replace Yi with Yi + 1 and Zi with Zi − 1. As we show in
the proof of Theorem 3, this minor adjustment also has a negligible effect on the analysis and we
thus assume that none of these sums are odd. Note that Gn,j is a graph and Cj is the set of nodes
in this graph; we refer to Cj as a community and Gn,j as a community graph. Note also that
Gn =

⋃
0≤j≤nGn,j .

Phase 5: rewiring self-loops and multi-edges

Note that, although we are calling Gn,0, Gn,1, . . . , Gn,L graphs, they are in fact multi-graphs at the
end of phase 4. To ensure that Gn is simple, we perform a series of rewirings in Gn. A rewiring
takes two edges as input, splits them into four half-edges, and creates two new edges distinct from
the input. We first rewire each community graph Gn,j independently as follows.

1. For each edge e ∈ E(Gn,j) that is either a loop or contributes to a multi-edge, we add e to a
recycle list that is assigned to Gn,j .

2. We shuffle the recycle list and, for each edge e in the list, we choose another edge e′ uniformly
from E(Gn,j)\{e} (not necessarily in the recycle list) and attempt to rewire these two edges.
We save the result only if the rewiring does not lead to any further self-loops or multi-edges,
otherwise we give up. In either case, we then move to the next edge in the recycle list.
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3. After we attempt to rewire every edge in the recycle list, we check to see if the new recycle
list is smaller. If yes, we repeat step 2 with the new list. If no, we give up and move all of
the “bad” edges from the community graph to the background graph.

We then rewire the background graph Gn,0 in the same way as the community graphs, with the slight
variation that we also add edge e to recycle if e forms a multi-edge with an edge in a community
graph or, as mentioned previously, if e was moved to the background graph as a result of giving up
during the rewiring phase of its community graph. At the end of phase 5, we have a simple graph
Gn ∼ A.

Note that phase 5 of the ABCD construction process exists only to ensure that Gn is simple.
Thus, if one were satisfied with a multi-graph Gn that had all of the properties A offers, one could
simply terminate the process after phase 4. However, for most practical uses such as community
detection, we require a simple graph and thus require phase 5. As mentioned in Section 1, phase 5
is a time consuming part of the algorithm. Theorem 3.3 gives us some insight as to why that is
the case, namely, because with high probability the number of self-loops and multi-edges generated
during phase 4 is at least Ω(L). Theorem 3.3 is therefore quite valuable as it lets us know when
our choice of γ, β, ζ and τ will yield a best-case-scenario number of self-loops and multi-edges (in
expectation).

Theorem 3.3 is also valuable for helping us understand how “skewed” the community graphs,
along with the background graph, are with respect to graphs generated uniformly at random from
the set of simple graphs on the respective degree sequences. In [14], Janson shows that if a graph
is constructed as the configuration model on degree sequence d, followed by a series of rewirings,
then a relatively small number of rewirings yields a distribution that is asymptotically equal (with
respect to the total variation distance) to the uniform distribution on simple graphs with degree
sequence d. By extrapolating this result, we can infer that the number of rewirings required in
phase 5 of the ABCD construction process is directly correlated with how “skewed” the resulting
graph is.

2.5 A Known Result for ABCD

A result from [15] that we use often in this paper is a tight bound on the number of communities
generated by the ABCD model.

Theorem 2.1 ([15] Corollary 5.5 (a)). Let Gn ∼ A and let L be the number of communities in
Gn. Then w.e.p. the number of communities, L, is equal to

L = L(n) =
(
1 + O

(
(log n)−1

))
ĉn1−τ(2−β) ,

where

ĉ =
2 − β

(β − 1)sβ−1
.

Note that the concentration in Theorem 2.1 is a consequence of the bound |Cj | ≤ nτ for all
communities Cj and fails if this bound is omitted.
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3 Main Result

Our main result is a stochastic bound on the degree sequence of a given community in A. For
Gn ∼ A with degree sequence dn, and for community graph Gn,j with nodes from Cj , we make the
following distinction: the degree sequence of Gn,j is the degree sequence of the community graph
Gn,j , whereas the degree sequence of Cj is the subset of dn containing the degrees of nodes in Cj .
Hence, the degree sequence of Cj is (dv, v ∈ Cj) and the degree sequence of Gn,j is (Yv, v ∈ Cj)
where we recall that Yv = ⌊(1 − ξ)dv⌉. The following two results, Theorem 3.1 and Corollary 3.2,
are stated in terms of the degree sequences (dv, v ∈ Cj). However, both results can be easily
restated in terms of the degree sequences (Yv, v ∈ Cj).

Theorem 3.1. Let Gn ∼ A. Let Cj be a community in Gn with |Cj | = z and let cj be the degree
sequence of community Cj. Next, let ϵ = ϵ(n) = n−(τ−ζ)(2−β)/2 = o(1), let

∆z = min

{
z − 1

1 − ξϕ
, nζ

}
, where ϕ = 1 − 1

n2

∑
j∈[L]

|Cj |2,

and let X− and X+ be random variables with the following probability distribution functions on
{δ, . . . ,∆z}:

P
(
X− = k

)
=

∫ k+1
k x−γ dx∫ ∆z+1
δ x−γ dx

, and

P
(
X+ = k

)
=

(
1 − ϵ1[k=δ]

) ∫ k+1
k x−γ dx

(1 − ϵ)
∫ δ+1
δ x−γ dx +

∫ ∆z+1
δ+1 x−γ dx

= (1 + o(1))P
(
X− = k

)
,

where 1[k=δ] is the Kronecker delta (function of two variables, k and δ, that is equal to 1 if k = δ
and equal to 0 otherwise). Finally, let X be a uniformly random element of cj. Then w.h.p. X is
stochastically bounded below by X− and above by X+.

The power of Theorem 3.1 is that it allows us to compare the structure of community graphs
in Gn ∼ A with the structure of graphs constructed via the configuration model on an i.i.d. degree
sequence that is well understood. In this paper we provide two uses of this new and powerful tool.
Aside from these two uses, this theorem, combined with the fact that communities in the ABCD
model are generated independently by the simple and analyzable configuration model, provides a
vehicle to future analysis of other important properties such as clustering coefficient, spreading of
information, expansion properties, robustness, etc. The first illustration of its power is a sharpening
of Lemma 5.6 in [15], describing the volumes of communities in Gn ∼ A. For X ∼ P (γ, δ,∆), write

µℓ(γ, δ,∆) = E
[
Xℓ
]
, (1)

and note in particular that µ1(γ, δ, n
ζ) is the expected degree of a node in Gn ∼ A. Next, for

community Cj , define

vol(Cj) :=
∑
v∈Cj

dv .
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Corollary 3.2. Let Gn ∼ A, let Cj be a community in Gn with |Cj | = z, and let

∆z = min

{
z − 1

1 − ξϕ
, nζ

}
.

Then, conditioned on the stochastic domination in Theorem 3.1,

E [vol(Cj)]

z
= (1 + o(1))µ1(γ, δ,∆z) =

{
(1 + o(1))µ1(γ, δ, n

ζ) if z(n) → ∞ , and

Θ
(
µ1(γ, δ, n

ζ)
)

otherwise.

The second use of Theorem 3.1 that we present here is an analysis of the number of self-
loops and multi-edges that are created during phase 4 of the construction process of Gn ∼ A. In
practice, phase 5 of the ABCD construction can be computationally expensive. It is therefore
valuable to study the number of collisions (self-loops and multi-edges) generated during phase 4 of
the construction. The following theorem tells us that, although w.h.p. we can never do better than
generating Ω(L) collisions, where L is the number of communities, we expect to see at most O(L)
collisions under certain restrictions on γ, β, ζ, and τ .

Theorem 3.3. Let Gn ∼ A and define the following five variables depending on Gn.

Sc := The number of self-loops in community graphs after phase 4.

Mc := The number of multi-edge pairs in community graphs after phase 4.

Sb := The number of self-loops in the background graph after phase 4.

Mb := The number of multi-edge pairs in the background graph after phase 4.

Mbc := The number of background edges that are also community edges after phase 4.

Then, conditioned on the stochastic domination in Theorem 3.1,

1. E [Sc] = O
(

(n1−τ(2−β))(1 + nζ(4−γ−β))
)
,

2. E [Mc] = O
(

(n1−τ(2−β))(1 + nζ(7−2γ−β))
)
,

3. E [Sb] = O(nζ(3−γ)),

4. E [Mb] = O(nζ(6−2γ)), and

5. E [Mbc] = o(E [Mc]).

Moreover, for all valid γ, β, ζ, τ ,
E [Sc] = Ω(L) ,

if γ + β > 4 then
E [Sc + Mc + Mbc] = Θ(L) ,

if 2ζ(3 − γ) + τ(2 − β) ≤ 1 then
E [Sb + Mb] = O(L) ,

and if both inequalities are satisfied then

E [Sc + Mc + Sb + Mb + Mbc] = Θ(L) .

The proofs of Theorem 3.1, Corollary 3.2 and Theorem 3.3, are presented in Section 5.
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4 Simulation Corner

In this section, we present a few experiments highlighting the properties that are proved to hold
with high probability. The experiments show that the asymptotic predictions are useful even for
graphs on a moderately small number of nodes.

4.1 The Coupling

Our main result (Theorem 3.1) shows that the degree distribution of a community of size z in Gn ∼
A is stochastically sandwiched between (X−

i , i ∈ [z]) and (X+
i , i ∈ [z]) where X−

i ∼ P (γ, δ,∆z)

and X+
i

d→ X−
i as n → ∞. For two random variables X and Y , X

d→ Y is used to indicate
the convergence in distribution which means that the cumulative distribution function (CDF) of
X converges to the CDF of Y .) To compare the degree distribution of communities in ABCD
graphs to the stochastic lower-bound (X−

i , i ∈ [z]), we perform the following experiment. We
generate three ABCD graphs Gn, G

∗
n and G∗∗

n . Consistent in all three graphs are the parameters
n = 220, δ = 5, ζ = 0.4, s = 50, τ = 0.6, and ξ = 0.5. The graph Gn has parameters γ = 2.1 and
β = 1.1, the graph G∗

n has γ = 2.5 and β = 1.5, and G∗∗
n has γ = 2.9 and β = 1.9. For each graph,

we plot the complementary cumulative distribution function (ccdf) of degrees of (a) the whole
graph, (b) the union of all smallest communities (Gn had 8 communities of size s = 50, G∗

n had 29,
and G∗∗

n had 82), and (c) the unique largest community (sizes 4074, 4073, and 3903 in respective
graphs Gn, G

∗
n, and G∗∗

n ). We then plot, in parallel, the expected ccdfs for the three graphs; for
the whole graph the ccdf is that of P

(
γ, δ, nζ

)
, and for the community graphs we use the expected

ccdf of the stochastic lower-bound (X−
i , i ∈ [z]), i.e., the function F̄ : {δ, . . . ,∆z} → [0, 1] where

F̄ (k) =

∫ ∆z+1
k x−γ dx∫ ∆z+1
δ x−γ dx

=
k1−γ − (∆z + 1)1−γ

δ1−γ − (∆z + 1)1−γ
.

The results are presented in Figure 1. From these results, we see that the distribution of (X−
i , i ∈ [z])

is a very good approximation of the distribution of degrees in a community of smallest size as well
as a community of largest size. We note that, since (X−

i , i ∈ [z]) is a lower-bound, we expect the
theoretical ccdf to sit slightly above the empirical ccdf, and this is confirmed by the experiment.

4.2 Volumes of Communities

Next, to investigate how well Corollary 3.2 predicts the volume of a particular community, we
perform the following experiment. We generate three ABCD graphs Gn, G

∗
n and G∗∗

n . Consistent
in all three graphs are the parameters n = 220, δ = 5, ζ = 0.6, s = 50, τ = 0.9, and ξ = 0.5. The
graph Gn has parameters γ = 2.1 and β = 1.1, the graph G∗

n has γ = 2.5 and β = 1.5, and G∗∗
n has

γ = 2.9 and β = 1.9. In each graph, we sorted communities with respect to their size (from the
smallest to the largest) and then grouped them into 10 buckets as equal as possible (that is, the
number of communities in any pair of buckets differs by at most one). For each bucket we compute
the average degree and the standard deviation over all communities in that bucket. We compare
it with the asymptotic prediction based on Corollary 3.2, that is, for each community of size z we
compute µ1(γ, δ,∆z), and take the average over all communities in the bucket. The results are
presented in Figure 2. We see that n = 220 is large enough and simulations match the theoretical
predictions almost exactly.
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Figure 1: The ccdf for the three different ABCD graphs Gn (top), G∗
n (middle), and G∗∗

n

(bottom), and for three different subsets of nodes in each graph, namely, the whole graph
(left), the union of smallest community graphs (middle), and the unique largest community
graph (right). Each function is drawn on a log–log scale. The blue curves are the empirical
data and the orange curves are the theoretical predictions.

4.3 Self-loops and Multi-edges

Finally, to investigate the number of collisions (of various types) generated during phase 4 of
the ABCD construction as functions of n, we perform the following experiment. For each n ∈
{215, 216, 217, 218, 219, 220}, we generate three sequences of 20 ABCD graphs (Gn(i), i ∈ [20]), (G∗

n(i), i ∈
[20]), and (G∗∗

n (i), i ∈ [20]). Consistent in all three sequences are the parameters δ = 5, ζ = 0.6,
s = 50, τ = 0.9, and ξ = 0.5. The graphs in sequence (Gn(i), i ∈ [20]) have γ = 2.1 and β = 1.1,
the graphs in (G∗

n(i), i ∈ [20]) have γ = 2.5 and β = 1.5, and the graphs in (G∗∗
n (i), i ∈ [20]) have

γ = 2.9 and β = 1.9. We compare the growth of Sc/L, Mc/L, Sb/L, and Mb/L (the average
values and the corresponding standard deviations over 20 graphs), as functions of n, for all three
sequences. Each sequence represents a different scenario in expectation based on Theorem 3.3, and
we comment on each result separately.
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Figure 2: The average degrees in communities for Gn (left), G∗
n (middle), and G∗∗

n (right).
The communities are ranked by their size and grouped into 10 buckets as equal as possible.
The blue line with error bars is the average degree and standard deviation among all com-
munities in each bucket. Note that the errors, in absolute values, are largest for the leftmost
plot and smallest for the rightmost plot. The orange dashed line shows the expected vol-
umes for the stochastic lower-bound (X−

i , i ∈ [z]), computed for each community size and
bucketed in the same way as the empirical data.
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Figure 3: In reading order: Sc/L,Mc/L, Sb/L and Mb/L vs. log2(n) for (Gn(i), i ∈ [20]) with
γ = 2.1 and β = 1.1, averaged over the 20 graphs.
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Figure 5: In reading order: Sc/L,Mc/L, Sb/L and Mb/L vs. log2(n) for (G∗∗
n (i), i ∈ [20])

with γ = 2.9 and β = 1.9, averaged over the 20 graphs.

• For (Gn(i), i ∈ [20]) with γ = 2.1 and β = 1.1, we have γ + β < 4 and 2ζ(3− γ) + τ(2− β) >
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ζ(3− γ) + τ(2−β) > 1 and so we expect each of the variables Sc/L, Mc/L, Sb/L, and Mb/L
to be unbounded. In Figure 3 we see that, indeed, each of the four variables seem to grow
with n in the simulations.

• For (G∗
n(i), i ∈ [20]) with γ = 2.5 and β = 1.5, we have γ + β = 4 and 2ζ(3− γ) + τ(2− β) >

1 > ζ(3 − γ) + τ(2 − β) and so we expect Sb/L to be bounded and Sc/L,Mc/L,Mb/L to be
unbounded. As Figure 4 shows, the simulations are consistent with the theory for Sc/L,Mc/L
and Sb/L. However, the trend of Mb/L is unclear. Considering that 2ζ(3−γ)+τ(2−β) = 1.05
in this case, it is reasonable that the growth of Mb/L should not reveal itself at this scale of
n.

• For (G∗∗
n (i), i ∈ [20]) with γ = 2.9 and β = 1.9, we have γ+β > 4 and 1 > 2ζ(3−γ)+τ(2−β) >

ζ(3− γ) + τ(2−β) and so we expect all of Sc/L,Mc/L, Sb/L,Mb/L to be bounded. Figure 5
again shows us that theory matches simulations. We note the very slight upward trend of
Sc/L and Mc/L, likely due to n being too small to see the asymptotic bound take hold.

We conclude that Theorem 3.3 does a good job at telling us the behaviour of Sc/L, Mc/L,
Sb/L, and Mb/L for various γ and β, although the results are not as clear as the other experiments
which would likely be resolved by taking larger values of n.

5 Proofs

5.1 The coupling (proof of Theorem 3.1)

Before we set up a coupling that sandwiches the ABCD construction process in order to control
the degree sequence of any community Cj , we need to show that almost all nodes belong to large
communities. Such communities are large enough such that they can be assigned nodes of any
degree. Indeed, since the maximum degree in Gn is (deterministically) at most nζ , only communities
of size less than nζ(1− ξϕ)+1 ≤ nζ might not be available during the entire phase 3 of the ACBD
construction process.

Lemma 5.1. Let ω = ω(n) be any function such that ω → ∞ sufficiently slowly as n → ∞. Next,
let Gn ∼ A and let V ′ ⊆ V (Gn) be the set of nodes in communities of size at most nζ . Then, w.h.p.
|V ′| < ωn1−(τ−ζ)(2−β) = o(n1−(τ−ζ)(2−β)/2) = o(n).

Proof. Recall that 0 < ζ < τ < 1 and 1 < β < 2. Pick a community C ∈ Cn uniformly at random
and let X = |C| if |C| ≤ nζ ; otherwise, X = 0. Then, for s ≤ m ≤ nζ ,

P (X = m) =

∫m+1
m y−β dy∫ nτ+1
s y−β dy

= (β − 1)

∫m+1
m y−β dy

s1−β − (nτ + 1)1−β

=
(

1 + O(nτ(1−β))
)

(β − 1)sβ−1

∫ m+1

m
y−β dy ,
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and hence

E [X] =
(

1 + O(nτ(1−β))
)

(β − 1)sβ−1

⌊nζ⌋∑
m=s

m

∫ m+1

m
y−βdy

≤
(

1 + O(nτ(1−β))
)

(β − 1)sβ−1

∫ nζ+1

s
y1−βdy

=
(

1 + O(nτ(1−β))
) (β − 1)sβ−1

2 − β

(
(nζ + 1)2−β − s2−β

)
=
(

1 + O(nτ(1−β)) + O(nτ(β−2))
) (β − 1)sβ−1

2 − β
nζ(2−β)

= Θ
(
nζ(2−β)

)
.

Finally, since w.e.p. L = Θ
(
n1−τ(2−β)

)
(see Theorem 2.1), we get that

E
[
V ′] = O

(
n exp(− log2 n) + n1−τ(2−β)E [X]

)
= O

(
n1−(τ−ζ)(2−β)

)
,

and the lemma now follows from Markov’s inequality:

P
(
|V ′| ≥ ωn1−(τ−ζ)(2−β)

)
≤ E [V ′]

ωn1−(τ−ζ)(2−β)
= O

(
1

ω

)
→ 0

as n → ∞.

We will also need the following simple fact about the distribution P (γ, δ,∆).

Fact 5.2. Fix γ > 0 and 1 ≤ δ ≤ δ′ ≤ ∆′ ≤ ∆. Then X ∼ P (γ, δ,∆), conditioned on δ′ ≤ X ≤ ∆′,
has distribution P (γ, δ′,∆′).

The remainder of Section 5.1 is dedicated to proving Theorem 3.1. In the coming arguments,
we say sequence (Xi, i ∈ I) is stochastically dominated by sequence (Yi, i ∈ I) if, for uniform
X ∈ (Xi, i ∈ I) and uniform Y ∈ (Yi, i ∈ I), X is stochastically dominated by Y . Furthermore,
with respect to phase 3 of the ABCD construction process, we refer to a community C as locked
at step i if di > (|C| − 1)/(1 − ξϕ) and otherwise we refer to C as unlocked at step i. We say that
a node is locked/unlocked at step i if its corresponding community is locked/unlocked at step i.
Note that, since d1 ≤ nζ , all communities of size at least nζ(1 − ξϕ) + 1 are always unlocked.

We start with the modified version of phase 3 of the ABCD construction process that will be
used to prove the lower bound in Theorem 3.1. Fix z with s ≤ z ≤ nτ and define the construction
process A−(z), yielding a collection of degrees assigned to a collection of communities notated as
G−

n , as follows.

1. Copy phases 1 and 2 of the ABCD construction process to get a degree distribution dn =
(di, i ∈ [n]) and a collection of communities Cn = (Cj , j ∈ [L]) each containing unassigned
nodes (recall that unassigned nodes are nodes that have not yet been assigned a label or a
degree).
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2. Copy phase 3 of the ABCD construction process until the communities of size z are unlocked.
This event occurs at step i where i is the smallest label satisfying di ≤ z−1

1−ξϕ (recall that the
degree sequence dn = (di, i ∈ [n]) is non-increasing and that label i and degree di are assigned
to an unassigned node at time i). At this point, all communities of size at least z are unlocked
and i− 1 nodes that belong to communities of size at least z + 1 have been assigned a label
and a degree.

3. Now unlock all communities and assign labels i, . . . , n and corresponding degrees di, . . . , dn
to the unlabelled nodes in [n] uniformly at random.

We will first show that a community Cj in G−
n of size z has the desired degree distribution.

Lemma 5.3. Fix z = z(n) such that s ≤ z ≤ nτ . Let G−
n ∼ A−(z), let Cj be a community in G−

n

with |Cj | = z and with degree sequence c−z , and let (X−
i , 1 ≤ i ≤ z) be the i.i.d. sequence defined in

Theorem 3.1. Then, c−z
d
= (X−

i , 1 ≤ i ≤ z).

Proof. To prove the lemma, we will use the well-known Principle of Deferred Decisions. This simple
but very useful technique is often used in analysis of randomized algorithms. The idea behind the
principle is that the entire set of random choices are not made in advance, but rather fixed only as
they are revealed to the algorithm [25]. In our context, a simple but useful observation is that when
constructing G−

n one can defer exposing some information about the degree sequence dn to the very
end. Indeed, during phase 1 of the ABCD construction, we may only expose information whether
di ≤ z−1

1−ξϕ or not; if di >
z−1
1−ξϕ , then we expose di but otherwise we only reveal that di ≤ z−1

1−ξϕ .

This partial information is enough to continue with the auxiliary process of constructing G−
n .

Recall that community Cj is locked as long as di > z−1
1−ξϕ . Let i be the smallest label such

that di ≤ z−1
1−ξϕ . (Note that, in particular, if nζ ≤ z−1

1−ξϕ , then Cj is immediately unlocked, that is

i = 1.) Once we unlock Cj in G−
n at step i, we unlock all communities and assign degrees di, . . . , dn

uniformly to the set of unassigned nodes in [n]. Thus, c−z is a uniform subsequence of (di, . . . , dn)
of size z. Now, we finally expose the degrees in this subsequence. By Fact 5.2, each di follows

precisely a truncated power law with upper bound ∆z = min
{

z−1
1−ξϕ , n

ζ
}

and lower bound δ. Thus,

c−z
d
= (X−

i , 1 ≤ i ≤ z), proving the lemma.

We are now ready to couple the auxiliary process constructing G−
n with the original process

generating Gn, the ABCD graph. This will prove the lower bound in Theorem 3.1.

Proof of Theorem 3.1 (lower bound). Construct G−
n ∼ A−(z) with nodes labelled as [n], degree

sequence dn = (di, i ∈ [n]), and community sequence Cn = (Cj , j ∈ [L]). Next, for all i ∈ [n] define
zi = ⌈di(1− ξϕ) + 1⌉; note that a community C is unlocked in phase 3 of the ABCD construction
at the first step i for which |C| ≥ zi). Now construct Gn in parallel with G−

n as follows.

1. Let Gn have degree sequence dn and community sequence Cn.

2. Copy the degree assignment process of G−
n until the communities of size z are unlocked. Let

i be the smallest label satisfying di ≤ z−1
1−ξϕ . Instead of unlocking all communities as we do

in G−
n ∼ A−(z), we will unlock only those communities C satisfying

|C| ≥ zi = ⌈di(1 − ξϕ) + 1⌉
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as we do in A. (Note that, if |C| = z ≥ ⌈nζ(1 − ξϕ) + 1⌉, then i = 1 and C is unlocked from
the start.)

3. Now, for j ∈ {i, . . . , n} starting with j = i, we first unlock all communities C satisfying
|C| ≥ zj . We then partition the nodes into four sets. We say that node v is open in Gn at
step j if v is both unlocked and unlabelled before step j, and otherwise we say v is closed at
step j (and similarly for G−

n ). The four sets are as follows:

V ++
j =

{
v : v is open in both G−

n and Gn at step j
}
,

V +−
j =

{
v : v is open in G−

n and closed in Gn at step j
}
,

V −+
j =

{
v : v is closed in G−

n and open in Gn at step j
}
,

V −−
j =

{
v : v is closed in both G−

n and Gn at step j
}
.

Note that V +−
i is the set of nodes in communities of size at most zi − 1 and V −+

i = ∅.
However, all four sets will change with j. We now choose a node v in G−

n to receive label j
and degree dj as per the A−(z) construction (note that v is a uniform element of V ++

j ∪V +−
j ).

We then choose a node in Gn to receive label j and degree dj as follows.

• If v ∈ V ++
j , then we give label j and degree dj to v in Gn.

• If v ∈ V +−
j , then we give label j and degree dj to a uniform node in V −+

j with probability

pj , and to a uniform node in V ++
j with probability 1 − pj , where

pj =
|V ++

j ||V −+
j | + |V +−

j ||V −+
j |

|V ++
j ||V +−

j | + |V +−
j ||V −+

j |
;

we will later verify that pj ≤ 1.

4. Once all nodes have been assigned a degree, create the community edges and background
edges in Gn as per the usual A construction process.

We claim (a) that Gn ∼ A, and (b) that any community C ∈ Cn of size z with Gn-degree sequence
cz and G−

n -degree sequence c−z satisfies cz ≥ c−z point-wise.
Starting with claim (a), it is clear by the construction process A−(z) that dn and Cn are valid

sequences for Gn ∼ A. We must then verify that, for j = i, . . . , n, the node in Gn chosen to receive
label j and degree dj is a uniform node from the set of unlabelled nodes in communities of size
at least dj(1 − ξϕ) + 1. Note that this set of nodes is precisely V ++

j ∪ V −+
j , and so we need only

show that, for u, v ∈ V ++
j ∪ V −+

j , the probability of labelling u and the probability of labelling v

are equal. We will first show that pj ≤ 1 by showing that |V −+
j | ≤ |V +−

j | for all j ∈ {i, . . . , n}. In

fact, we will show a stronger result, namely, that |V +−
j | − |V −+

j | is precisely the number of nodes
in communities that are locked in Gn at time j.

As mentioned earlier, when j = i, V +−
j is the set of nodes in communities that are still locked

(that is, of size at most zi − 1) and V −+
j = ∅, so the desired property holds. Now suppose the

property holds up to some time j ≥ i. At step j, if v ∈ V ++
j receives label j and degree dj in

G−
n , then v also receives this label and degree in Gn, and thus v is moved from V ++

j to V −−
j+1

(|V +−
j+1 | − |V −+

j+1 | is unaffected by this event). On the other hand, if v ∈ V +−
j receives label j and
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degree dj at step j, then v is moved from V +−
j to V −−

j+1 and we have two sub-cases to consider.

If some node u ∈ V −+
j receives label j and degree dj in Gn, then u is moved from V −+

j to V −−
j

(V +−
j+1 and V −+

j+1 each lose one node in this case); if some node u ∈ V ++
j receives label j and degree

dj in Gn, then u is moved from V ++
j to V +−

j (V +−
j+1 loses a node and gains a different node in

this case). Thus, in any case, |V +−
j+1 | − |V −+

j+1 | is unaffected by the process of assigning labels and
degrees. Finally, we need to investigate what happens when communities are unlocked. Any node
in a locked community at step j is in V +−

j or V −−
j . Once a community is unlocked, all of the

corresponding nodes in V +−
j move to V ++

j+1 and all of the corresponding nodes in V −−
j move to

V −+
j+1 . Thus, every node in a newly unlocked community decreases V +−

j+1 by one or increases V −+
j+1

by one, but not both. Therefore,
(
|V +−

j | − |V −+
j |

)
−
(
|V +−

j+1 | − |V −+
j+1 |

)
is precisely the number of

nodes in communities unlocked at step j + 1. The claim now follows by induction.
We have established that

pj =
|V ++

j ||V −+
j | + |V +−

j ||V −+
j |

|V ++
j ||V +−

j | + |V +−
j ||V −+

j |
≤ 1.

Next, consider a node v ∈ V −+
j . Then v is given label j and degree dj in Gn if and only if some

node V +−
j is chosen in G−

n , the label is redirected to V −+
j in Gn, and v is then chosen uniformly

from the set V −+
j to receive the label in Gn. Thus, the probability that v ∈ V −+

j is assigned label
j and degree dj is(

|V +−
j |

|V ++
j | + |V +−

j |

)(
|V ++

j ||V −+
j | + |V +−

j ||V −+
j |

|V ++
j ||V +−

j | + |V +−
j ||V −+

j |

)(
1

|V −+
j |

)
=

1

|V ++
j | + |V −+

j |
.

Consequently, a node v in V ++
j is labelled in Gn at step j with probability(

1 −
|V −+

j |
|V ++

j | + |V −+
j |

)(
1

|V ++
j |

)
=

(
|V ++

j |
|V ++

j | + |V −+
j |

)(
1

|V ++
j |

)
=

1

|V ++
j | + |V −+

j |
.

Therefore, at every step i ≤ j ≤ n, the node chosen to receive label j and degree dj is a uniform
element of V ++

j ∪ V −+
j , the set of unlocked and unlabelled (that is, open) nodes in Gn at step j.

Lastly, the remaining part of the construction process of Gn is equivalent to that of A, and hence
Gn ∼ A.

We continue with the proof of claim (b). Let C ∈ Cn satisfy |C| = z. Then the coupling ensures
that C is unlocked in both Gn and G−

n before there is any deviation in the assignment process.
Hence, if a node v ∈ C receives label j and degree dj in G−

n , then v will receive the same label
in Gn unless v has already been labelled. If v was already labelled in Gn then this label is some
j′ < j. Since d1 ≥ · · · ≥ dn, dj′ ≥ dj . Therefore, the degree sequence c−z of C in G−

n is bounded
above point-wise by the degree sequence cz in Gn. The proof now follows from Lemma 5.3.

We continue with another modified version of phase 3 of the ABCD construction process. This
new version will be used to prove the upper bound in Theorem 3.1. Fix z with s ≤ z ≤ nτ and
define the construction process A+(z), yielding a collection of degrees assigned to a collection of
communities notated as G+

n , as follows.
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1. Copy phases 1 and 2 of the ABCD construction process to get a degree distribution dn =
(di, i ∈ [n]) and a collection of communities Cn = (Cj , j ∈ [L]) each containing unassigned
nodes.

2. Copy phase 3 of the ABCD construction process until the communities of size z are unlocked.
This event occurs at step i where i is the smallest label satisfying di ≤ z−1

1−ξϕ . Let n′ be the
number of locked nodes, i.e., the number of nodes in communities of size at most zi−1 (recall
that zi = ⌈di(1 − ξϕ) + 1⌉). At this point, of the n − n′ unlocked nodes, we have assigned
i− 1 of them labels 1, . . . , i− 1 and corresponding degrees d1, . . . , di−1 in some order.

3. Now keep the communities of size at most zi − 1 locked and assign labels i, . . . , n − n′ and
corresponding degrees di, . . . , dn−n′ uniformly at random to the collection of unlocked and
unassigned nodes.

4. Finally, unlock the communities of size at most zi − 1 and assign the n′ unassigned nodes
labels n− n′ + 1, . . . , n and corresponding degrees dn−n′+1, . . . , dn in any order (we will later
show that w.h.p. dn−n′+1 = · · · = dn = δ).

Note that, by the end of step 3, all nodes in communities of size z have been assigned a label and a
degree. This labelling is all we need to complete the proof, and we include step 4 only for the sake
of completeness.

We first show that a community Cj in G+
n ∼ A+(z) with z nodes has the desired degree

distribution. Our statement this time is not as strong as Lemma 5.3, though thanks to Lemma 5.1
we can still stochastically bound the degree sequence of a community of size z in G+

n .

Lemma 5.4. Let G+
n ∼ A+(z), let Cj be a community in G+

n with |Cj | = z and with degree
sequence c+z , and let (X+

i , 1 ≤ i ≤ z) be the i.i.d. sequence defined in Theorem 3.1. Then w.h.p. c+z
is stochastically bounded above by (X+

i , 1 ≤ i ≤ z).

Proof. As in the proof of Lemma 5.3, we will use the Principle of Deferred Decisions, that is, at the
beginning we only uncover some partial information about the degree sequence dn. As before, we
first expose whether or not di >

z−1
1−ξϕ and, if the inequality holds, then we expose the value of di.

However, if di ≤ z−1
1−ξϕ , then we reveal di only if di = δ, and otherwise we do not expose additional

information about di.
By the construction of G+

n ∼ A+(z), we know that the sequence of degrees in Cj is a uniform
subsequence of (di, . . . , dn−n′), where i is the smallest labelled node satisfying di ≤ z−1

1−ξϕ and n′ is

the number of nodes in communities of size at most zi − 1. Then, letting V ′ be as in Lemma 5.1,
we have that n′ ≤ |V ′| and that w.h.p. by Lemma 5.1, |V ′| < ωn1−(τ−ζ)(2−β) for any function
ω = ω(n) → ∞. Thus, w.h.p. n′ = o

(
n1−(τ−ζ)(2−β)/2

)
= o(ϵn). (Recall that ϵ = n−(τ−ζ)(2−β)/2.)

Since we aim for a statement that holds w.h.p., we may condition on this event.
Let n′′ be the number of nodes of degree δ. Note that n′′ is simply a Binomial(n − i, pδ) random

variable with

pδ =

∫ δ+1
δ x−γ dx∫ ∆z+1
δ x−γ dx

,

where ∆z = min
{

z−1
1−ξϕ , n

ζ
}

. It follows immediately from Chernoff’s bound that w.h.p. we have

n′′ = (n− i)pδ + ω
√
n = (n− i)pδ + o(ϵn) = (n− i)pδ(1 + o(ϵ)),
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the second equality holding since 1 − (τ − ζ)(2 − β)/2 > 1/2. We may condition on this event too.
Let us now summarize our situation. The degree distribution of Cj is a uniform subsequence

of length z of the sequence

(di, . . . , dn−n′) = (di, . . . , dn−n′′)⌢(dn−n′′+1, . . . , dn−n′)

of n − n′ − i = (n − i)(1 − o(ϵ)) degrees. (x⌢y is the concatenation of sequences x and y.)
The subsequence (di, . . . , dn−n′′) consists of degrees that are at least δ + 1 and at most ∆z; recall
that, since we have not yet exposed these degrees, by Fact 5.2 they are i.i.d. random variables
with distribution P (γ, δ + 1,∆z). On the other hand, (dn−n′′+1, . . . , dn−n′) is simply a sequence of
n′′ − n′ = (n− i)pδ(1 − o(ϵ)) copies of δ.

Now, let us provide a more careful argument to show that a uniform subsequence of (di, . . . , dn−n′′)
of length z satisfies the stochastic domination in the statement of the theorem. We sample z times
uniformly at random from this sequence (that may be viewed as a multi-set) without replacement
and observe that each time we select δ with probability at least

n′′ − n′ − z

n− n′ − i− z
= pδ(1 − o(ϵ)) =

(1 − ϵ− o(ϵ2))
∫ δ+1
δ x−γ dx

(1 − ϵ)
∫ δ+1
δ x−γ dx + (1 − ϵ)

∫ ∆z+1
δ+1 x−γ dx

>
(1 − ϵ)

∫ δ+1
δ x−γ dx

(1 − ϵ)
∫ δ+1
δ x−γ dx +

∫ ∆z+1
δ+1 x−γ dx

.

If we select a value other than δ, then our selected degree has distribution P (γ, δ + 1,∆z). There-
fore, w.h.p. the random subsequence c+z is stochastically bounded from above by the i.i.d. sequence
(X+

i , 1 ≤ i ≤ z) defined in Theorem 3.1, and the proof of the lemma is finished.

We will now couple the constructions of Gn ∼ A and G+
n ∼ A+(z) and prove the upper bound in

Theorem 3.1. Contrast to the proof of the lower bound, we will first construct Gn ∼ A and couple
this construction with another construction G+

n which we will later show satisfies G+
n ∼ A+(z).

Proof of Theorem 3.1 (upper bound). Construct Gn ∼ A with nodes labelled as [n], degree se-
quence dn = (di, i ∈ [n]), and community sequence Cn = (Cj , j ∈ [L]), and construct G+

n in
parallel as follows.

1. Let G+
n have degree sequence dn and community sequence Cn.

2. Copy the degree assignment process of Gn until the communities of size z are unlocked. Let
i be the smallest labelled node satisfying di ≤ z−1

1−ξϕ and let n′ be the number of nodes in
communities of size at most zi − 1 (recall that zi = ⌈di(1 − ξϕ) + 1⌉). Instead of unlocking
communities progressively as we do in Gn ∼ A, we will keep the n′ nodes locked until we
have assigned label n− n′ and degree dn−n′ as we do in A+(z).

3. Now, for j ∈ {i, . . . , n − n′} starting with j = i, we first partition the nodes into three sets
as follows.

V ++
j =

{
v : v is open in both Gn and G+

n at step j
}
,

V +−
j =

{
v : v is open in Gn and closed in G+

n at step j
}
,

V −−
j =

{
v : v is closed in both Gn and G+

n at step j
}
.
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Note, distinct from the lower-bound, that V +−
i = ∅, and that that there is no set V −+

j . We

need not define V +−
j , as we will never encounter a scenario where a node is assigned in Gn

but unassigned in G+
n . We now choose a node v in Gn to receive label j and degree dj as per

the A construction process (note that v is chosen uniformly at random from V ++
j ∪ V +−

j ).

We then choose a node in G+
n to receive label j and degree dj as follows.

• If v ∈ V ++
j , we give label j and degree dj to v in G+

n .

• If v ∈ V +−
j , we give label j and degree dj to a uniform node in V ++

j in G+
n .

4. Finally, unlock the n′ locked nodes in G+
n and assign labels n − n′ + 1, . . . , n and degrees

dn−n′+1, . . . , dn uniformly among these newly unlocked nodes, independent of how these labels
and degrees are assigned in Gn.

Similar to the previous coupling, the last step of the coupling is given only for the sake of complete-
ness and has no bearing on the proof. We claim (a) that G+

n ∼ A+(z), and (b) that any community
C ∈ Cn of size z with degree sequence c+z in G+

n and degree sequence cz in Gn satisfies c+z ≥ cz
point-wise.

Starting with claim (a), it is clear by the construction process A that dn and Cn are valid
sequences for G+

n ∼ A+(z). It is also clear that the degree assignment process in G+
n for nodes in

communities of size at most zi − 1 is valid, since this assignment process is identical to that of A
(which is identical to that of A+(z) as well). We must then verify that, for j ∈ {i, . . . , n− n′}, the
node in G+

n chosen to receive label j and degree dj is a uniform node from the set of unassigned
nodes in communities of size at least zi. Note that this set of nodes is precisely V ++

j . For u ∈ V ++
j ,

u is assigned label j and degree dj in G+
n if u is assigned this label and degree in Gn or if a node

v ∈ V +−
j is assigned this label and degree in Gn and this label and degree is redirected to u in G+

n .

Thus, the probability that u ∈ V ++
j is labelled at step j is

1

|V ++
j | + |V +−

j |
+

(
|V +−

j |
|V ++

j | + |V +−
j |

)(
1

|V ++
j |

)
=

1

|V ++
j |

,

and, in particular, the probability is equal for all u ∈ V ++
j . Therefore, at every step i ≤ j ≤ n,

the node chosen to receive label j and degree dj is a uniform element from the set of unlocked and
unlabelled nodes in G+

n at step j, and this proves claim (a).
We continue with the proof of claim (b). Let C ∈ Cn satisfy |C| = z. Then the coupling ensures

that C is unlocked in both G+
n and Gn before there is any deviation in the assignment process.

Hence, if a node v ∈ C receives label j and degree dj in Gn, then v will receive the same label
and degree in G+

n unless v has already been given some label j′ < j and degree dj′ ≥ dj in G+
n .

Therefore, the degree sequence cz of C in Gn is bounded above point-wise by the degree sequence
c+z in G+

n . The proof now follows from Lemma 5.4.

5.2 Volumes of Communities (Proof of Corollary 3.2)

Let X ∼ P (γ, δ,∆) and recall that µℓ(γ, δ,∆) = E
[
Xℓ
]
. Unfortunately, there is no closed formula

for µℓ(γ, δ,∆). However, in the coming proofs, we use the following standard technique to bound
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µℓ(γ, δ,∆) (and other related values) from above and below:

µℓ(γ, δ,∆) =

∆∑
k=δ

kℓ
∫ k+1
k x−γ dx∫ ∆+1
δ x−γ dx

≤
∆∑

k=δ

∫ k+1
k xℓ−γ dx∫ ∆+1
δ x−γ dx

=

∫ ∆+1
δ xℓ−γ dx∫ ∆+1
δ x−γ dx

, and

µℓ(γ, δ,∆) =
∆∑

k=δ

kℓ
∫ k+1
k x−γ dx∫ ∆+1
δ x−γ dx

≥
∆∑

k=δ

(
k

k + 1

)ℓ
∫ k+1
k xℓ−γ dx∫ ∆+1
δ x−γ dx

≥
(

δ

δ + 1

)ℓ
∫ ∆+1
δ xℓ−γ dx∫ ∆+1
δ x−γ dx

.

Proof of Corollary 3.2. Let Gn ∼ A with degree sequence dn, let Cj be a community in Gn with
|Cj | = z, let cj be the degree sequence of Cj , and let

∆z = min

{
z − 1

1 − ξϕ
, nζ

}
, where ϕ = 1 − 1

n2

∑
j∈[L]

|Cj |2 .

Now let (X−
i , 1 ≤ i ≤ z) and (X+

i , 1 ≤ i ≤ z) be as in Theorem 3.1. Then, conditional on the
stochastic domination in Theorem 3.1,

E [vol(Cj)]

z
≥ 1

z
E

[
z∑

i=1

X−
i

]
= µ1(γ, δ,∆z) ,

and

E [vol(Cj)]

z
≤ 1

z
E

[
z∑

i=1

X+
i

]
= (1 + o(1))

1

z
E

[
z∑

i=1

X−
i

]
= (1 + o(1))µ1(γ, δ,∆z) ,

which establishes the first claim in Corollary 3.2. Next, we have

µ1(γ, δ, n
ζ) − µ1(γ, δ,∆z) =

 nζ∑
k=δ

k

∫ k+1
k x−γ dx∫ nζ+1
δ x−γ dx

−
∆z∑
k=δ

k

∫ k+1
k x−γ dx∫ ∆z+1
δ x−γ dx


=
(
1 + O(∆1−γ

z )
) nζ∑

k=δ

k

∫ k+1
k x−γ dx∫ nζ+1
δ x−γ dx

−
∆z∑
k=δ

k

∫ k+1
k x−γ dx∫ nζ+1
δ x−γ dx


=
(
1 + O(∆1−γ

z )
) nζ∑
k=∆z+1

k

∫ k+1
k x−γ dx∫ nζ+1
δ x−γ dx

≤
(
1 + O(∆1−γ

z )
) ∫ nζ+1

∆z+1 x
1−γ dx∫ nζ+1

δ x−γ dx

= O(∆2−γ
z ) .

The second claim in Corollary 3.2 now follows since

E [vol(Cj)]

z
= (1 + o(1))

(
µ1(γ, δ, n

ζ) −
(
µ1(γ, δ, n

ζ) − µ1(γ, δ,∆z)
))

= (1 + o(1))
(
µ1(γ, δ, n

ζ) −O(∆2−γ
z )

)
and, since ∆z = Θ(min{z, nζ}), we have that ∆z → ∞ as z → ∞.
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5.3 Loops and Multi-edges (Proof of Theorem 3.3)

Throughout this section, it will be useful to refer to the multi-graph generated by the first four
phases of the ABCD construction. Write Gn ∼ A(4) to mean Gn is the hypergraph generated by
the first four phases.

Before tackling the upper-bounds in Theorem 3.3, we first prove that the number of self-loops
and multi-edges in Gn ∼ A(4) is asymptotically bounded from below by the number of communities.
In fact, we show that the number of self-loops in community graphs alone is asymptotically bounded
in this way.

Lemma 5.5. Let Gn ∼ A(4) with L communities and let Sc be the number of self-loops in community
graphs in Gn. Then w.h.p.

Sc = Ω(L) .

Proof. Fix a constant z large enough so that z ≥ s and ⌊(1−ξ)∆z⌋ ≥ 2 and let Gn,j be a community
graph in Gn with |Cj | = z and with degree sequence (Yi, i ∈ Cj) (recall that Yi = ⌊(1 − ξ)di⌉ where
⌊·⌉ is a random rounding function). Then, by the lower bound in Theorem 3.1, a uniformly random
degree Yi is stochastically bounded from below by ⌊(1 − ξ)X⌋ where X ∼ P (γ, δ,∆z). Thus, by
the stochastic bound, we have

P (Yi = ⌊(1 − ξ)∆z⌋) ≥ P (X = ∆z) > 0 .

Thus, w.h.p. a linear proportion of community graphs with z nodes contain at least one node v with
deg(v) = ⌊(1 − ξ)∆z⌋ ≥ 2. Furthermore, a node with this degree generates a loop in Gn ∼ A(4)

with positive probability, and so w.h.p. a linear proportion of community graphs with z nodes
contain at least one loop. Finally, as the number of communities of size z is w.h.p. Θ(L), the
lemma follows.

We continue now with the upper-bounds. The heart of Theorem 3.3 is the following lemma.

Lemma 5.6. Fix z > ∆ > δ > 0 and γ ∈ (2, 3). Let qz = (qi, i ∈ [z]) be a sequence of i.i.d.
random variables with qi ∼ P (γ, δ,∆) and let Hz be sampled as the configuration model with degree
sequence qz. Let S and M be the number of self-loops and, respectively, multi-edges in Hz. Then

E [S] ≤ (1 + O(∆γ−3)) c(γ, δ)∆3−γ , and

E [M ] ≤ (1 + O(∆γ−3)) c(γ, δ)2∆6−2γ ,

where

c(γ, δ) =
(γ − 1)δγ−2

2(3 − γ)
.

Proof. We begin with known bounds for S and M . We have

E [S | qz] =

∑
i∈[z] qi(qi − 1)

2 (
∑z

i=1 qi − 1)
≤ 1

2

∑
i∈[z] q

2
i∑z

i=1 qi − 1
, (2)

and

E [M | qz] ≤
∑

1≤i<j≤z qi(qi − 1)qj(qj − 1)

2 (
∑z

i=1 qi − 1) (
∑z

i=1 qi − 3)
≤ 1

2

∑
1≤i<j≤z q

2
i q

2
j

(
∑z

i=1 qi − 3)2
. (3)
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See Chapter 7 in [28] for a detailed study on the number of self-loops and multi-edges in the
configuration model. In particular, the equality in (2) and the first inequality in (3) come from
respective equations (7.3.21) and (7.3.26) in [28].

For independent X,Y ∼ P (γ, δ,∆) we have

E
[
X2
]

=

∆∑
k=δ

k2
∫ k+1
k x−γ dx∫ ∆+1

δ x−γ dx

≤
∫ ∆+1
δ x2−γ dx∫ ∆+1
δ x−γ dx

=

(
γ − 1

3 − γ

)(
(∆ + 1)3−γ − δ3−γ

δ1−γ − (∆ + 1)1−γ

)
= (1 + O(∆γ−3 + ∆1−γ))

(
γ − 1

3 − γ

)
δγ−1∆3−γ

= (1 + O(∆γ−3))

(
γ − 1

3 − γ

)
δγ−1∆3−γ ,

and

E
[
X2Y 2

]
= E

[
X2
]
E
[
Y 2
]

= (1 + O(∆γ−3))

(
γ − 1

3 − γ

)2

δ2γ−2∆6−2γ .

Now, since qz contains i.i.d. random variables, and since
∑z

i=1 qi ≥ δz, it follows from (2) that

E [S] = E [E [S | qz]]

≤ 1

2
E

[ ∑
i∈[z] q

2
i∑

i∈[z] qi − 1

]
≤ 1

2(δz − 1)

∑
i∈[z]

E
[
q2i
]

≤ (1 + O(∆γ−3))

(
1

2δz

)(
z

(
γ − 1

3 − γ

)
δγ−1∆3−γ

)
= (1 + O(∆γ−3))

(
(γ − 1)δγ−2

2(3 − γ)

)
∆3−γ ,
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and from (3) that

E [M ] = E [E [M | qz]]

≤ 1

2
E

[∑
1≤i<j≤z q

2
i q

2
j

(
∑z

i=1 qi − 3)2

]
≤ 1

2(δz − 3)2

∑
1≤i<j≤z

E
[
q2i q

2
j

]
≤ (1 + O(∆γ−3))

(
1

2δ2z2

)(
z

2

) (
γ − 1

3 − γ

)2

δ2γ−2∆6−2γ

≤ (1 + O(∆γ−3))

(
(γ − 1)δγ−2

2(3 − γ)

)2

∆6−2γ .

Note that, in the first computation, we use the fact that

1

2(δz − 1)
= (1 + O(z−1))

1

2δz
= (1 + O(∆γ−3

z ))
1

2δz
,

and in the second computation, we use the fact that

1

2(δz − 3)2
= (1 + O(z−1))

1

2δ2z2
= (1 + O(∆γ−3

z ))
1

2δ2z2
.

This finishes the proof of the lemma.

We are now ready to prove Theorem 3.3.

Proof of Theorem 3.3. Let Gn ∼ A(4) with degree sequence dn = (di, i ∈ [n]), and let Sc,Mc, Sb,Mb

and Mbc be as in the statement of the theorem. Starting with Sb and Mb, note that the degree
sequence in Gn,0 is (Zi, i ∈ [n]) where Zi = ⌊ξdi⌉. Thus, Zi ≤ di, meaning by Lemma 5.6 that

E [Sb] ≤
(

1 + O(nζ(γ−3))
)
c(γ, δ)

(
nζ
)3−γ

= O(nζ(3−γ)) , and

E [Mb] ≤
(

1 + O(nζ(γ−3))
)
c(γ, δ)2

(
nζ
)6−2γ

= O(nζ(6−2γ)) ,

proving claims 3. and 4.
Continuing with Sc and Mc, for community graph Gn,j with |Cj | = z let Sc,j and Mc,j be the

number of self-loops and multi-edges in Gn,j . Note that, for any node i ∈ Cj , the degree of i in
Gn,j is Yi ≤ di. Thus, by Theorem 3.1, Yi is stochastically bounded from above by the random
variable Y ∼ P (γ, δ + 1,∆z). Then, again by Lemma 5.6, we have that

E [Sc,j | |Cj | = z] ≤
(
1 + O

(
∆γ−3

z

))
c(γ, δ + 1)∆3−γ

z , and

E [Mc,j | |Cj | = z] ≤
(
1 + O(∆γ−3

z )
)
c(γ, δ + 1)2∆6−2γ

z .

For the remainder of the proof, we write c = c(γ, δ + 1) to simplify notation. Recall from phase 2
of the construction process of Gn that |Cj | ∼ P (β, s, nτ ). Therefore,

E [Sc,j ] =
nτ∑
z=s

E [Sc,j | |Cj | = z]P (|Cj | = z)

≤
nτ∑
z=s

(
1 + O

(
∆γ−3

z

))
c∆3−γ

z

∫ z+1
z y−β dy∫ nτ+1
s y−β dy

.
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We split the sum at the community size z∗, where z∗ is minimal with the property that⌊
z∗ − 1

1 − ξϕ

⌋
≥ nζ .

Note that, for z ≤ z∗, ∆z = Θ(z), and for z ≥ z∗, ∆z = nζ . Let c′ be a constant satisfying
∆3−γ

z ≤ c′z3−γ for all s ≤ z ≤ z∗. For the first part of the sum, we have

z∗∑
z=s

(
1 + O

(
∆γ−3

z

))
c∆3−γ

z

∫ z+1
z y−β dy∫ nτ+1
s y−β dy

≥
z∗∑
z=s

(
1 + O

(
zγ−3

))
cc′z3−γ

∫ z+1
z y−β dy∫ nτ+1
s y−β dy

≤
(
1 + O

(
sγ−3

))
cc′

z∗∑
z=s

∫ z+1
z y3−γ−β dy∫ nτ+1
s y−β dy

=
(
1 + O

(
sγ−3

))
cc′
∫ z∗+1
s y3−γ−β dy∫ nτ+1
s y−β dy

=
(
1 + O

(
sγ−3

))
cc′ (β − 1) s1−β

(
(z∗ + 1)4−γ−β − s4−γ−β

4 − γ − β

)
= O

(
1 + (z∗)4−γ−β

)
= O

(
1 + nζ(4−γ−β)

)
.

For the second part of the sum, we have

nτ∑
z=z∗+1

(
1 + O

(
∆γ−3

z

))
c∆3−γ

z

∫ z+1
z y−β dy∫ nτ+1
s y−β dy

=
nτ∑

z=z∗+1

(
1 + O

(
nζ(γ−3)

))
c nζ(3−γ)

∫ z+1
z y−β dy∫ nτ+1
s y−β dy

=
(

1 + O
(
nζ(γ−3)

))
cnζ(3−γ)

nτ∑
z=z∗+1

∫ z+1
z y−β dy∫ nτ+1
s y−β dy

=
(

1 + O
(
nζ(γ−3)

))
cnζ(3−γ)

∫ nτ+1
z∗+1 y−β dy∫ nτ+1
s y−β dy

=
(

1 + O
(
nζ(γ−3)

))
cnζ(3−γ) (z∗ + 1)1−β − (nτ + 1)1−β

s1−β − (nτ + 1)1−β

= O
(
nζ(3−γ)(z∗)1−β

)
= O

(
nζ(3−γ)nζ(1−β)

)
= O

(
nζ(4−γ−β)

)
,
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and thus, E [Sc,j ] = O(1 + nζ(4−γ−β)). An analogous calculation shows that E [Mc,j ] = O(1 +
nζ(7−2γ−β)). Lastly, we handle the fact that an extra half-edge can be added to a community
during Phase 4 of the construction process. This increase can add at most one self-loop or multi-
edge, meaning the statement E [Mc,j ] = O(1 + nζ(7−2γ−β)) remains true after accounting for the
potential extra half-edges. Claims 1. and 2. now follow from linearity of expectation, along with
the fact that w.e.p. the number of communities in Gn is Θ(n1−τ(2−β)).

Claim 5. states that E [Mbc] = o(Mc). To see this, let Cj be a community in Gn and let u, v ∈ Cj .
Now let Mc(u, v) be the number of {u, v} multi-edge pairs in Gn,j , and let Mbc be the number of
{u, v} multi-edge pairs with one edge in Gn,j and the other in Gn,0. Then

E [Mc(u, v) | dn] = Θ

 d2ud
2
v(∑

i∈Cj
di

)2
 ,

whereas

E [Mbc(u, v) | dn] = Θ

 d2ud
2
v(∑

i∈Cj
di

)(∑
i∈[n] di

)
 .

Since
∑

i∈Cj
di = o

(∑
i∈[n] di

)
for all communities Cj , we get that E [Mbc(u, v)] = o (E [Mc(u, v)]),

and Claim 5. follows from linearity of expectation.
Finally, we know that w.e.p. L = Θ(n1−τ(2−β)) and that E [Sc] = Ω(L). Now suppose that

γ + β > 4 and that 2ζ(3 − γ) + τ(2 − β) ≤ 1, and note that these two inequalities imply that
2γ + β > 3 + γ + β > 7 and that 3 − γ + τ(2 − β) ≤ 1. Therefore, under this assumption, and
conditioned on the stochastic domination, we have

E [Sc] = O
(

(n1−τ(2−β))(1 + nζ(4−γ−β))
)

= O
(
n1−τ(2−β)

)
,

E [Mc + Mbc] = (1 + o(1))E [Mc] = O
(

(n1−τ(2−β))(1 + nζ(7−2γ−β))
)

= O
(
n1−τ(2−β)

)
,

E [Sb] = O
(
nζ(3−γ)

)
= O

(
n1−τ(2−β)

)
, and

E [Mb] = O
(
n2(ζ(3−γ))

)
= O

(
n1−τ(2−β)

)
,

which proves the final claim.

6 Conclusion

Let us finish the paper with some open problems. We have shown two examples of how Theorem 3.1
can help us understand the nature of ABCD graphs. There are more applications of Theorem 3.1
that we do not explore here. Essentially, any result that holds for a configuration model on an i.i.d.
degree sequence, sampled as P (γ, δ,∆) for some γ ∈ (2, 3), should hold for a community graph
in Gn ∼ A modulo some discrepancy involving the rewiring phase of the ABCD construction.
With additional work, it may also be true that such results hold for a community graph in Gn ∼
A. Possible avenues for Gn ∼ A include studying its diameter, its diffusion rate, its clustering
coefficient, etc.
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Our results in Corollary 3.2 and Theorem 3.3 are results only in expectation, though our
experiments indicate that the behaviour of at least community volumes is quite tight. Given
that the truncated power-law P

(
γ, δ, nζ

)
has unbounded second moment, and that P (β, s, nτ ) has

unbounded first moment, any study involving concentration will prove to be challenging. However,
considering that the collection of community degree sequences partition the degree sequence of
the whole graph, it is possible that these sequences exhibit self-correcting behaviour, and this is a
potential road-map to a tighter version of our results.

In Theorem 3.3 we only show that collisions are bounded below asymptotically by Ω(L). On
the other hand, our experimental results suggest that the number of collisions is, in fact, ω(L) when
γ +β ≤ 4 or when 2ζ(3− γ) + τ(2−β) > 1. Thus, there is potential room to improve Theorem 3.3
by tightening the lower-bound.
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