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Abstract

In this paper, we show how transport policy decisions regarding vehicle scheduling frequency
can affect the pandemic dynamics in urban populations. Specifically, we develop a multi-agent
simulation framework to model infection dynamics in complex transportation networks. Our
agents periodically commute between home and work via a combination of walking routes and
public transit, and make decisions intelligently based upon their location, available routes, and
expectations of public transport arrival times. Our infection scheme allows for different levels
of contagiousness, as a function of where the agents interact (i.e., inside or outside). The
results show that the pandemic’s scale is heavily impacted by the network’s structure, and the
decision making of the agents. In particular, the progression of the pandemic greatly differs
when agents primarily infect each other in a crowded urban transportation system, opposed to
while walking. We also assess the effect of modifying the public transport’s running frequency
on the virus spread. Lowering the running frequency can discourage agents from taking public
transportation too often, especially for shorter distances. On the other hand, the low frequency
contributes to more crowded streetcars or subway cars if the policy is not designed correctly,
which is why such an analysis may prove valuable for finding “sweet spots” that optimize the
system. The proposed approach has been validated on real-world data, and a model of the
transportation network of downtown Toronto. The framework used is flexible and can be easily
adjusted to model other urban environments, and additional forms of transportation (such as
carpooling, ride-share and more). This general approach can be used to model contiguous disease
spread in urban environments, including influenza or various COVID-19 variants.

1 Introduction

The objective of the paper is to analyze how decisions made by public transport regulators regarding
vehicle frequency in urban populations affect pandemic development dynamics such as influenza or
COVID-19. In order to control the spread of a virus, a policy regulator may take several actions,
which we refer to as policy designs. The development of the epidemic depends on various factors,
including the frequency of social contact, the contagiousness of a particular virus strain, and the
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level of protection applied during those contacts. One area where individuals can transmit the
disease is in the urban space of a large city. In such environments, people meet at various points
of interest (POIs) or while travelling, including while on sidewalks and in public transportation.
In this paper, we take an approach similar to the approach presented by Silva et al. (2020) and
model these processes using an agent-based model (ABM) to assess the effects of social distancing
interventions in public transportation of a large urban area.

Pandemic widespread can lead to significant changes in requirements for operations of a public
transportation system — e.g. see Ge et al. (2022). While the literature on pandemic evolution is
incredibly rich and vast, our work can be classified as an agent-based model (ABM) simulator that
tracks infection rates in the population — which is also a standard approach in the transportation
literature. As described by Currie et al. (2020), ABMs are valuable tools for decision makers.
For instance, Kerr et al. (2021) have constructed “Covasim”— an agent-based model of COVID-
19 dynamics and interventions and state that their model has been used to make informed policy
decisions in several countries including the United States, Vietnam, the United Kingdom, and
Australia. Another ABM tool, OpenABM-Covid19 (Hinch et al., 2020), assesses COVID-19 non-
pharmaceutical interventions including contact tracing and has been designed for demographics in
the UK. On the other hand, the work by Speir and Negahban (2020) is an example of a tool that
measures the effectiveness of mitigation rules such as social distancing or mask-wearing in cities.
Hoertel et al. (2020) introduce a COVID-19 ABM simulator of the urban population of New York
City and investigate various pandemic mitigation strategies. While there are multiple all-purpose
simulators such as aforementioned Covasim, there is less work that is transportation-oriented. In
this paper, we first design a transportation restrictions simulator. We then explore and analyze its
outcomes in order to provide qualitative guidance to policy makers on public transportation running
frequency during an epidemic outbreak.

The adopted research methodology is as follows. We first build a simplified “toy model” of
reality that only represents the key processes from the point of view of our research questions.
We mathematically analyze this model and explore key measures such as the number of infected
pedestrians in relation to the frequency of public transportation. Afterwards, we build a simulation
model, and compare its numerical results with the toy model, where we verify that the results of
both models agree. Next, we greatly expand upon the simulation model to better approximate
real-world interactions. We numerically simulate this expanded model and observe the essential
processes that take place in it, which we translate into real-world conclusions. We have developed
the agent-based simulation model using the Julia programming language (Bezanson et al., 2017)
and the OpenStreetMapX.jl library. Spatial data come from the OpenStreetMap project along
with the “TTC Routes and Schedules” data set from the Toronto Transit Connection (TTC) Open
Data portal. All simulation source codes are available on a GitHub repository1.

The main contribution of this research study is that it shows that pandemic modelling in the
context of public transportation is possible and can bring tangible benefits to policy makers. Nu-
merical simulations on a model that reflects the main processes that take place in society can be
a reliable data-driven source of knowledge that supports regulators in defining public transport
policies to limit the spread of a virus such as COVID-19.

The remainder of the paper is organized as follows. In Section 2, we present a review of the
literature on COVID-19 in urban areas, as well as its economic impacts. In Section 3, we rigorously
analyze a small-scale network “toy model” using tools from probability theory. The scale of this

1https://github.com/NykPol/EpidemicInUrbanNetworkToronto
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network is not realistic, but it provides a starting point for the main properties we wish to explore.
In Section 4, we introduce a much more general and complex model which more accurately reflects
the real world. Next, using discrete-event simulation, we run the simulation on the network of the
toy model to verify the consistency between our mathematical and numerical results. Finally, we
use simulation experiments to investigate different scenarios of the complex model and to find the
optimal setup of the public transportation system to minimize infection spread. Finally, we present
our conclusions, insights, and possible extensions in Section 5.

2 Literature Background

The literature on the subject can be broadly classified into three main areas: methods for designing
resilient and robust transportation systems, agent-based modelling of pandemic in transportation
systems, and optimizing transportation system operations through regulatory decisions. We now
provide brief overviews of the most related works in each area.

2.1 Resilience and Robustness of Public Transport Systems

The outbreak of a pandemic can lead to significant changes in the operations of a public transporta-
tion system — e.g. see Frias-Martinez et al. (2011); Ge et al. (2022); Müller et al. (2020, 2021).
This point is emphasized in Ge et al. (2022), and Yao et al. (2022) quantified the impact through
empirical research of vehicle commuters in a collection of Chinese cities. More specifically, Yao
et al. (2022) analyzed the data from license plate recognition systems and used clustering methods
to understand the behavioral patterns of commuters. They identified commuters’ frequent travel
patterns before the COVID-19 pandemic and found out that during the pandemic, such patterns
changed for over 90% of the vehicles. Interestingly, over half of the studied commuters did not
return to their original travel patterns after the pandemic ended.

Serdar et al. (2022) perform a literature review on the resilience of transportation networks.
They use agent-based modelling to understand how viruses spread through commuting networks,
and conclude that a greater resilience to infection spread can be achieved by combining different
transportation modes. Dekker et al. (2022) propose an analytical framework for disruption mod-
elling and argue that tools from complex science – such as Monte Carlo simulation – should be
used for rescheduling services when a disruption occurs. Ge et al. (2022) observe that planning and
disruption modelling in public transport systems typically follows the multi-layered approach devel-
oped by Daduna and Voß (1996). This approach is described in the following four levels: strategic
(e.g., line planning), tactical (e.g., timetables), operational planning (e.g., vehicle scheduling) and
operations (vehicle dispatching and monitoring). The benefit of this layered approach is that it
allows researchers to focus on specific parts of the problem.

In the terminology of Daduna and Voß (1996), we focus on the tactical and operational planning
layers. Given a commuting network, we analyze the effect of an urban transportation’s general
running frequency on infection spread. We analyze a real-world network, however, the model is
flexible enough that it can be used for simulating virus spread on a hypothetical network.

2.2 Agent-Based Modelling of a Pandemic in Transportation Systems

Frias-Martinez et al. (2011) construct an agent-based simulator taking into account social interac-
tions and individual mobility patterns to investigate the 2009 outbreak in Mexico of the influenza
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subtype H1N1. This simulator also measures the effect of mobility reduction on the spread of
the disease. Aleman et al. (2011) is another work that simulates the behavior of disease during a
pandemic. In this model, used by the Ontario Agency for Health Protection and Promotion, the
authors consider each individual to be unique and assume that the transmission and infection rates
are non-homogeneous. Furthermore, they consider the use of public transportation in urban cities.
The model’s output is then passed through software to generate a map of the area where the disease
has been spread. Hackl and Dubernet (2019) introduce an agent-based transport simulation that as
an additional simulation layer includes a virus spread model. The combined model makes it possible
to understand the rate of infection in urban areas and the authors utilized it to analyze seasonal
influenza outbreaks in Zurich, Switzerland. Laskowski et al. (2011) developed an agent-based model
that uses a Geographic Information System (GIS) to study the spread of influenza in an urban area.
The model was validated using the 2009 H1N1 influenza outbreak in Kunming, China. In another
research ACEMod — an agent-based model has been developed that studies the spatiotemporal
dynamics of influenza epidemics in Australia. The model uses mobility patterns (employees and
students commuting) as well as human interactions to offer intervention/mitigation policies — see
Cliff et al. (2018).

In a related line of work, Müller et al. (2020, 2021) constructed an agent-based model for pan-
demic spread in public transportation. They postulate that during the pandemic, public transport
should run at its highest frequency and capacity. However, they do not take into consideration that
a higher frequency increases the attractiveness of public transportation and encourages more people
to use it instead of alternative modes of transportation. They obtain a result that supports that
only a complete lockdown can decrease the peak pandemic level.

Gkiotsalitis and Cats (2021) consider a quadratic mixed integer linear programming optimization
(QMILP) model for optimal allocation of train schedule including the number of carts and the
frequency. Their approach makes it possible to analyze the trade-off between the operating costs
of a transportation system, average passenger wait times, and the requirement to provide enough
space in the carts to achieve social distancing.

Agent-based modeling (ABM) of a pandemic can be classified into various groups depending on
the target disease, population, environment, etc. In this section, we review the use of ABMs for
simulating pandemics in urban environments. We focus on influenza transmission, dynamic analysis
of COVID-19 outbreaks, the impact of COVID-19 on the healthcare system, and the economic
implications of this virus.

Many researchers have concentrated their efforts on simulating the COVID-19 movement across
small towns and/or metropolises to enable them to evaluate the performance of interventions through
agent-based frameworks. This subsection reviews some of the recent developments in this domain.

To understand how the coronavirus spreads in small towns and cities, Truszkowska et al. (2021)
presented an ABM platform which they verified on real data from New Rochelle, New York. Their
tool incorporates testing strategies (in-hospital and drive-through), different types of treatment
(in-home and in-hospital), and intervention approaches (school and business closure/reopening).
Another example is the risk assessment of COVID-19 spread in facilities proposed by Cuevas (2020)
which helps decision makers develop appropriate strategies.Wallentin et al. (2020) constructed an
agent-based model for the city of Salzburg, Austria to support policymakers in taking intervention
measures. The model simulates four scenarios for the after-lockdown phase of COVID-19 and the
results are independent of the above-mentioned city.

To measure the efficacy of mitigation rules in metropolises, such as school/business closures
and random testing/quarantine requirements, Speir and Negahban (2020) designed a customizable
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agent-based simulation tool. They then validated their model on New York City, the epicenter
of the COVID-19 outbreak in the US. Macal et al. (2020) implemented an agent-based model
called CityCOVID to support decision-making about COVID-19 at the level of city, county, and
state (currently in the Chicago area). To accomplish this goal, the model analyzes the COVID-19
transmission and understands the behavior of individuals in reaction to the transportation policy
regulator interventions. An extension of CityCOVID, focusing on the development of a large-scale
synthetic population, is discussed by Kaligotla et al. (2020). In Canada, the Public Health Agency
has developed an agent-based simulation to study the impact of non-pharmaceutical interventions
on the spread of COVID-19 with the aim of supporting public health decision-makers — see (Ogden
et al., 2020). The Covasim agent-based simulator has been applied to inspect the dynamics of the
COVID-19 disease and evaluates various intervention policies in Africa, Europe, Oceania, and North
America (Kerr et al., 2021).

Finally, an agent-based tool called OpenABM-Covid19 (Hinch et al., 2020) assesses COVID-19
non-pharmaceutical interventions including contact tracing. The default version of the model is de-
signed for UK demographics but it can be used for other countries through simple re-parameterization.

Similarly to the above research, our paper also relies on an ABM model to simulate the urban life
of a large metropolis, and so it fits into the growing literature on agent-based modeling of pandemics.
However, in our ABM model we focus on pandemic aspects related to public transportation.

2.3 Planning and Optimizing Transportation System Operations

Any design decision in transportation systems results in several externalities including congestion
level, pollution, commuter satisfaction, crowdedness and infection likelihood. The goal of a transport
system operator is to design routes, timetables, and pricing policies that on the one hand minimize
the negative effects and on the other hand keep the transportation system running costs within
the budget limit. Pandemic development and urban mobility planning have been proven to be
closely intertwined. For instance, in Rahman et al. (2021) it was examined that human mobility
was significantly reduced during the pandemic. Shamshiripour et al. (2020) suggested that there
may be a shift from the usage of shared mobility options (such as transit services) to transport
modes that avoid contact (such as walking, biking, or personal vehicles). This is why researchers
have stressed the need for proactive transportation planning in a way that promotes an active and
equitable transportation system to avoid further car reliance in large cities in the post-pandemic
times. This problem is addressed in the transportation robustness and smart city literature. For
instance, Shi et al. (2020) analyze the data gathered in Shanghai where the goal of controlling
COVID-19 outbreaks at the community level was achieved by integrating manual measures with
advanced information technology applications.

Huang and Shen (2021) propose an optimization model for the reopening of transit lines and the
design of new timetables which take into consideration the risk of infections and social distancing
rules. They note that system operators need to either open as many lines as possible to keep the
interaction level between the commuters low, or to discourage commuters from using the system
by providing a very low frequency of service and/or close some stations. While the first approach
is preferable, it might not be feasible with the limited budgets of most municipalities. In another
work, Yusuke et al. (2020) constructed a simulation model to discover the impact of bus scheduling
changes and reduced vehicle capacity under a wide range of employee demands. As a result, this
guarantees safe and reliable trips between campus buildings in the post-shutdown phase. Emergency
departments (EDs) in the US have faced scarce resources and long waiting times due to the COVID-
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19 pandemic.
Our work does not directly propose a total redesign of the existing transportation network.

Rather, it provides tools that can point to spots where the existing network is missing the ideal
infrastructure, e.g., an additional station that could unload some traffic from the overcrowded hubs.
We also observe the effects of long waiting times and crowd formulations in a number of the scenarios
we study.

3 Theoretical Example

In this section, we investigate a very simple scenario in which agents have only two routes to choose
from and all of them start at the same time.

3.1 Definition of the Toy Model

h r

TTC car

w

s1 s2

n

n1
n2

σhr σrw

σhs1

σs1s2

σs2w

Figure 1: Toy Model

Suppose that we are given a graph G “ pV,Eq with vertices V “ th, r, w, s1, s2u, and edges
E “ thr, rw, hs1, s1s2, s2wu, as well as n ě 1 agents, which are labelled with a label from set
rns :“ t1, . . . , nu. Initially, all the agents are positioned at their home h, and they commute to
and from their work w each day via two potential routes, P1 “ ph, r, wq and P2 “ ph, s1, s2, wq of
varying travel times—see Figure 1. Each edge e P E is associated with the expected travel time
σe, such that σi :“

ř

ePPi
σe indicates the amount of time it takes for an agent to move along route

Pi. Note that we are making the simplifying assumption that the travel times do not depend on
the agent. We also assume that there are fixed departure times for leaving both w and h to which
all the agents adhere.

The agents are mostly rational in that they each will usually take the path that minimizes
their travel time. However, we incorporate randomness into their decision making based on an
exponential scaling function of the values σ1, σ2. Specifically, set σmin :“ mintσ1, σ2u, and for each
i “ 1, 2, define the transition probability αi P r0, 1s where

αi :“
expp´σi{σminq

expp´σ1{σminq ` expp´σ2{σminq
. (1)

The results obtained below (that is, Theorem 3.1 and Corollary 3.2) hold for any transition prob-
ability but the above choice has a few desired properties. First of all, it is a decreasing function of
σi: the longer travel time, the less likely an agent will select route Pi. Second of all, it only pays
attention to the relative difference, that is, if both travel times increase or decrease by the same
multiplicative factor, then the transition probability will not change.
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During each commute t ě 1, each agent a P rns independently draws one of P1 and P2 according
to the transition probabilities α1 and α2, respectively. If a draws Pi, then they move along Pi or
the reversal of Pi, depending on whether they were at h or w after their previous commute.

We assume that some subset of the agents I0 Ď rns is initially infected. Suppose that It denotes
the infected agents after t ě 0 rounds. We update It`1 from It based on the procedure below. Let
us assume that Pi has an interaction probability βi P r0, 1s, as well as a base contagion
probability λi P r0, 1s for i P t1, 2u.

Suppose a1 P rns is infected at time t ě 0, and a2 P rns is not infected after t rounds. Agent a1
infects agent a2 in round t` 1, provided the following events occur in order:

1. In round t` 1, agents a1 and a2 both select path Pi for some i P t1, 2u.

2. Agents a1 and a2 interact, which given 1., occurs independently with probability βi by
definition.

3. The interaction between agents a1 and a2 is contagious, which given 1. and 2., occurs inde-
pendently with probability λi.

We say that a2 is infected during commute t ` 1, provided there exists at least one agent which
infects a2. In this case, we update It`1 from It by adding all those agents within rnszIt which
became infected in commute t` 1. Note that once an agent becomes infected, it remains so for the
duration of the process, i.e., It Ď It`1 for all t ě 0.

3.2 Analyzing the Toy Model

Let us assume that βi “ bi{n for non-negative constants b1, b2 which do not depend on n. Moreover,
we assume that |I0| “ csn for some constant 0 ă cs ă 1, where we refer to cs as the starting
infected proportion. For convenience, we define the random variable Xt :“ |It| for each t ě 0.

Given a target final infection proportion cf such that 0 ă cs ď cf ă 1, we define τcf to
be the smallest t ě 0 such that Xt{n ě cf . Note that we assume cf ă 1 in order to ensure the
concentration of our random variables throughout the entire process. We also assume that the
parameters b1, b2, α1, α2, λ1, λ2, cs, and cf satisfy

p1´ cf qpα1p1´ expp´b1λ1α1csqq ` α2p1´ expp´b2λ2α2csqqq ą 0. (2)

In particular, if all parameters are positive, then this condition is trivially satisfied (recall that
0 ă cs ď cf ă 1 is already assumed). As we show below (see Corollary 3.2), this will ensure that
τcf ă 8. In other words, the infection is guaranteed to eventually spread through cf fraction of the
agents. Our goal is thus to predict how long this process will take with a high degree of certainty.

Consider the following recursively defined sequence prxtq8t“0 where

rxt`1 :“ rxt ` p1´ rxtq pα1p1´ exp p´b1λ1α1rxtqq ` α2p1´ exp p´b2λ2α2rxtqqq, (3)

for each t ě 0, and x0 :“ cs. Clearly, since (2) holds, this sequence is increasing and so, in particular,
cs ď rxt ď 1 for all t ě 0. Note that Xt{n is a random variable. However, we will show that one
can use rxt of (3) to approximate Xt{n. This approximation will hold asymptotically almost
surely (a.a.s.), that is, it will hold with probability tending to 1 as nÑ8. Having said that, with
slightly more work one may compute (or estimate) the failure probability as a function of n (decaying
exponentially fast) and state the concentration results for a given value of n. The conclusion would
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b1 interaction probability b1{n for route P1 (walking)
b2 interaction probability b2{n for route P2 (subway)
σ1 expected travel time for route P1 (walking)
σ2 expected travel time for route P2 (subway)
λ1 base contagion probability for route P1 (walking)
λ2 base contagion probability for route P2 (subway)
cs starting infected proportion
cf final infection proportion

Table 1: Parameters of the toy model.

be that with probability at least 1´ ε for some small constant ε ą 0, the approximation is accurate
even for moderately small values of n.

We are now ready to state the main results in this section. We defer all proofs to Appendix A.

Theorem 3.1. For each 0 ď t0 ă τcf , there exists a function ε0 “ ε0pnq “ op1q, such that a.a.s. it
holds that

ˇ

ˇ

ˇ

ˇ

Xt0

n
´ rxt0

ˇ

ˇ

ˇ

ˇ

ď ε0pnq.

Let us define tcf ě 0 as the smallest t ě 0 such that rxt ě cf . Note that this is a deterministic
value, as it only depends on the (deterministic) sequence prxtq8t“0, Moreover, tcf ă 8. To see this,
notice that for any 0 ď t ă tcf , we can apply (2) to ensure

rxt`1 ´ rxt ě p1´ cf qpα1p1´ expp´b1λ1α1csqq ` α2p1´ expp´b2λ2α2csqqq ą 0,

as rxt ě cs for all t ě 0. Thus,

tcf ď
cf ´ cs

p1´ cf qpα1p1´ expp´b1λ1α1csqq ` α2p1´ expp´b2λ2α2csqqq
.

The following corollary relates τcf and tcf .

Corollary 3.2. The following holds a.a.s.:

(a) If rxtcf ą cf , then τcf “ tcf .

(b) If rxtcf “ cf , then τcf P ttcf , tcf ` 1u.

3.3 Illustration

Let us recall that there are 8 parameters of the toy model—we list them in Table 1. We investigate
a few scenarios below but if one wants to test other sets of parameters, then the Julia code can be
found on the GitHub repository. For simplicity, for all the scenarios we set λ1 “ 1{100, λ2 “ 2{100,
cs “ 0.01, and cf “ 0.99.
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Figure 2: Scenario 1: the fraction of the agents infected (left), and the fraction of new infections
(right).

Scenario 1: b1 “ 5, b2 “ 5, σ1 “ 15, σ2 “ 10.

In this scenario, the subway is 50% faster than walking and so it is used by agents more often,
namely, with probability α2 « 62.25%. We claim that 99% of the agents are infected after tf “ 204
iterations.

The fraction of the agents infected after t iterations is presented in Figure 2 (left). We see an
“S-shaped” function which can be explained as follows. Initially, the number of infected agents is
small and they interact with a small number of non-infected agents. As a result, the new infections
are relatively rare. On the other hand, if the number of infected agents is large, then the number
of non-infected agents is small. Hence, the number of new infections is also small. The number of
new infections is large when there are many infected agents but at the same time there are many
non-infected ones that can potentially get infected—see Figure 2 (right).

Scenario 2: b1 “ 5, b2 “ 5, σ1 “ 15, σ2 “ 15.

In this scenario, the subway slows down and the expected travel time by subway is the same as
walking. As a result, agents select each route with the same probability, namely, α1 “ α2 “ 50%.
99% of the agents are infected after tf “ 248 iterations. The virus spreads slower than in Scenario
1.

Scenario 3: b1 “ 5, b2 “ 3, σ1 “ 15, σ2 “ 10.

In this scenario, the subway’s expected travel time is back to the original value (as in Scenario 1)
but we assume that agents taking the subway interact with a smaller number of other agents: b2
is reduced from 5 to 3. As expected, it has a positive effect: 99% of the agents are infected after
tf “ 306 iterations. The virus spreads even slower than in Scenario 2.

Scenario 4: b1 “ 3, b2 “ 5, σ1 “ 15, σ2 “ 10.

This time we test the scenario in which agents meet less frequently when they walk: b1 is reduced
from 5 to 3. Not surprisingly, it also has a positive effect in comparison to Scenario 1: 99% of the
agents are infected after tf “ 217 iterations. However, as expected, it is worse than Scenario 3—the
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Figure 3: Scenarios 1–4: the fraction of the agents infected (left), and the fraction of new infections
(right).
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Figure 4: Scenario 5: the number of iterations needed to infect 99% of the agents (left) and the
fraction of the agents infected after 100 iterations (right).

base contagion probability for the subway is twice the corresponding probability for walking and so
reducing interactions on the subway has a larger impact.

A comparison of all scenarios can be found on Figure 3. The fraction of the agents infected after
t iterations is presented on the left and new infections are presented on the right.

Scenario 5: b1 “ 5, b2 “ 5, σ1 “ 15, 1 ď σ2 ď 50.

Finally, we investigate the process for various values of σ2, namely, we consider σ2 P r50s. When
σ2 “ 50 (the subway is more than 3 times slower than walking), most agents walk, often interacting
with each other and infecting themselves quickly. Similarly, when σ2 “ 1 (the subway is 15 times
faster than walking), most agents take subway infecting one another even faster (recall that the
base contagion probability for the subway is twice that of walking). In Figure 4, we present the
number of iterations needed to infect 99% of the agents and the fraction of the agents infected after
100 iterations, both as a function of σ2. The “sweet spot” turns out to be when σ2 “ 25: it takes
278 iterations to infect 99% of the agents and after 100 iterations only 21.21% of the agents are
infected.
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Figure 5: The fraction of the agents infected (left), and the fraction of new infections (right): actual
vs. approximated values.

3.4 Approximation

In Section B (see the appendix), we derive an approximate but closed formula for the number of
infected agents after a given number of iterations. We may approximate (3) as follows:

rxt`1 ´ rxt “ Ap1´ rxtqrxt, where A :“ b1λ1α
2
1 ` b2λ2α

2
2.

On Figure 5 (right), we compare this approximation with the actual values for Scenario 1. We also
get that

rxt « xptq :“
1

1` expp´Atqp1{cs ´ 1q
.

As expected, this approximation is working well as depicted on Figure 5 (left). By solving xptq “ cf ,
it follows that

tf «
1

A
ln

ˆ

cf
1´ cf

¨
1´ cs
cs

˙

.

4 Numerical Experiments

4.1 Model Details

To conduct our experiments, we use a multi-agent discrete event simulation model, which we im-
plemented in Julia. We selected this programming language because of its performance, and its
built-in simulation and distributed computing capabilities. The general logic of the model is that
agents are randomly placed in downtown Toronto. For this reason, the nomenclature in this paper
is derived from Toronto’s transportation system. For instance, the term TTC refers to the Toronto
Transit Commission. While we focus on one particular city, the simulation can be repeated on an
arbitrary city, as the data on OpenStreet map project is publicly available, and our framework is
flexible.

All agents have their own work and home locations which they periodically travel between.
Specifically, at the beginning of the process, each agent selects six static routes, three for each
direction of their commute. Their routes involve the streets the agents may walk on, as well as the
public transport available. Before each trip, each agent independently and uniformly at random
chooses between one of their three routes in the appropriate direction (i.e., home to work, or work to
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Attribute Type Class

ID fixed value
home_location fixed value
work_location fixed value
current_location dynamic value
direction dynamic value
infection_status dynamic value
walking_speed fixed value
routes fixed set
TTC_car_ID dynamic value
passengers_met_in_TTC dynamic set
number_of_trips dynamic value

(a) Attributes of the commuter class

Attribute Type Class

ID fixed value
first_station fixed value
last_station fixed value
current_station dynamic value
line fixed value
route fixed set
passengers dynamic set
passengers_limit fixed value
arrival_time_interval fixed value
one_trip_max_passengers dynamic value

(b) Attributes of the TTC car class

Table 2: Objects’ attributes

home). When an agent reaches its workplace, it typically works for an average of 8 hours, remaining
stationary during this period, and then returns home. Once at home, the agent rests for about 16
hours. To begin the process, 1% of the population is chosen randomly to be infected. We refer to
each of these agents as a “patient zero.” The agents then begin moving, and infect each other with
some probability p0 outdoors and a much higher probability indoors. The simulation stops when
95% of the agents have become infected.

Symbols that facilitate describing the simulation model are listed in Table 4 in Appendix C.

4.1.1 Types of Agents

There are two types of agents in the model: people (commuters) and public transport (TTC)
cars. Each agent type is characterized by a set of attributes, each of which is categorized as fixed
or dynamic. A fixed attribute is assigned to an agent at the very beginning of the simulation
and remains unchanged. In contrast, a dynamic attribute changes throughout the course of the
simulation. We also indicate in the supporting tables whether each attribute is a value or a set of
values.

Each person (or: agent, commuter) has the set of characteristics as listed in Table 2a.
ID is a unique identifier of a person. home_location and work_location are two randomly

selected vertices from a city graph. current_location is a vertex pointing to the current position
of a person. direction indicates whether a person is going from home to work or vice versa.
infection_status helps to understand if a person has already been infected, and if so, whether it
occurred on the street or inside a public transportation vehicle. walking_speed describes how many
meters per second a person can go on foot. For simplicity, this parameter is the same for all people
but it can be made more realistic if more data is injected into the model (such as the distribution
of ages of the agent). Based on the approach of Obuchi et al. (2021), the value for this parameter
was set at 1.25 m/s, which is exactly the walking speed observed in Japan during the COVID-19
pandemic in 2020. routes are lists of graph edges an agent passes through before reaching their
target location. As mentioned earlier, each person has three favourite routes in each direction, which
we discuss in detail in Subsection 4.1.2. TTC_car_ID is assigned to a person once they are on board
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a specific public transport vehicle. passengers_met_in_TTC is the set of individuals an agent met
on their ongoing ride in the same TTC vehicle, i.e., it resets to the empty set once a TTC ride ends
and potentially starts filling up again during the next one. If at the end of a commuter’s TTC trip,
there are infected people within the set, then the new infection_status is calculated and updated.
By doing this in this way we ensure that an agent cannot be infected during the trip, which means
that they cannot infect others during the same commute. All TTC infections are resolved when
agents leave a TTC car. number_of_trips counts the number of one-direction trips a commuter
makes during a simulation.

Each TTC car has the attributes presented in Table 2b.
ID is a unique identifier of a TTC car. first_station and last_station are the first and the

last station of a specific public transport line. current_station is the current position of a vehicle.
line is a unique identifier of each direction of a public transport line, i.e., the attribute line in
the simulation is a combination of a line and its direction. route of a subway or streetcar vehicle
is presented as a sequence of stations a TTC car passes through (the same for all vehicles with
the same line attribute). As was already mentioned, in our implementation we artificially add the
directions for every line (e.g. Line 1(A->B) Line 1(B->A)) for implementation purposes, so each
direction has its unique route. passengers is a set of people who are currently inside the TTC car.
passengers_limit is the maximum number of passengers which can fit in one vehicle at any point
in time. arrival_time_interval is the average number of minutes that pass between two TTC
cars on the line. one_trip_max_passengers is the maximum number of passengers who were inside
a TTC car at one point in time. This parameter is helpful to measure whether a line is overloaded.
It is worth noting that a TTC car disappears after reaching the last station. Nevertheless, it calls
a new one on the same line, which keeps the efficiency of the public transport system at the same
level because the arrival time interval does not change. It has its real-world interpretation, i.e., that
every car is disinfected at the last station.

4.1.2 Routing

A route of an agent k can be represented in terms of nk consecutively adjacent edges:

sk “ pe
p1q
k , . . . , e

pnkq

k q (4)

Notably, we assume that the commuting agents do not know precisely how long a route which
includes public transportation will take. They instead make assumptions about the waiting time of
the TTC cars and take this extra time into account when determining their routes. The estimated
time needed to traverse the route of the kth commuter is thus split into two sums, where the latter
aggregates over the expected waiting times of the TTC cars:

ptk “
ÿ

ePsk

te `
ÿ

pv1,v2qPsk:
pv1,v2qPVPˆVT

d̂
pwpv2qq
k (5)

where all symbols are in accordance with Table 4. Using the A* search algorithm, which is often
used in many fields of computer science due to its completeness, and computational efficiency (Zeng
and Church, 2009), we find the top three shortest routes in each direction for agent k with respect
to the edge weights of (5). Thus, each agent has six different paths representing routes. Note that
the factual travel time of a route will in most cases differ from its estimated traversal time. Liu and
Zhou (2016) point out that empirical data show that in reality commuters do not always choose
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the shortest routes. They propose to model this behavior by using the k-shortest path method to
identify a set of routes between starting and destination point and choose among them. In our paper
we take a similar approach — we identify three shortest routes between the starting and destination
point and randomly select one of them. This provides a more natural distribution of travel paths.

4.1.3 Infection Scheme

In our model, the commuters can get infected with a virus similar to COVID-19. Specifically, at
any point in the process, there are a number of infected commuters, each of which has a chance to
infect an uninfected agent when an interaction occurs. An interaction between two commuters can
occur in two different ways: during the wait at an intersection or by sharing public transportation.
We assume that once an agent becomes infected, they remain so for the duration of the process.
Moreover, the infections occur independently, i.e., the joint probability of non-infection over a
number of encounters is the product of the events’ individual probabilities. The dynamics of the
infection process is a consequence of the implementation choices, as documented in the open-source
code available at the project’s GitHub repository. In summary this is the result of the chosen
Discrete Event Simulation framework.

Bulfone et al. (2021) note that the odds of indoor transmission of COVID-19 was almost 19 times
higher compared to outdoors. Based on this publication, in our study, we assume a base probability
of infection p0, which is applied to encounters at intersections, while for the TTC, it is 19 times of
that value. Note that either of these values can be adjusted easily in the Julia implementation of
the framework. As a result, the probability Qk1,k2 that an infected agent k1 infects an uninfected
agent k2 during a particular encounter can be summarized as follows:

Qk1,k2 “

#

p0 if k1 and k2 meet at an intersection,
19 ¨ p0 if k1 and k2 meet on a TTC car.

(6)

At each stage of the trip of an agent k, the probability depends on the number of infected individuals
that were encountered, and the location of the encounter. Let us assume that k is uninfected when
it meets ψpvq infected agents at intersection v, or φpwq infected agents while on a TTC car w. In
this case, if Qtotal denotes the overall probability that k is infected during the current stage of their
trip, then

Qtotal “

#

1´ p1´ p0q
ψpvq if k meets ψpvq infected agents at v P VP

1´ p1´ 19 ¨ p0q
ψpwq if k meets ψpwq infected agents while on w PW .

(7)

Also it is important to remember that all TTC infections are resolved when agents leave a TTC car,
which means that an agent can be infected during a trip, but cannot spread the infection during
the same trip — see also Löhner et al. (2021).

4.1.4 Simulation Dynamics

We explain the simulation dynamics using a separate action diagram for each agent type. These
diagrams enable us to illustrate the sequence of actions undertaken by various agents throughout
the course of one exemplary day. We first present the diagram for the commuters (Figure 6).

To summarize, the commuter wakes up at home and then selects their route to work among
the three fastest alternatives. While traversing their route, they may interact with infected people,
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Figure 6: An example of one day simulation dynamics for an agent

which could cause the commuter to become infected herself. After work, they select a route back
to their home and then rest for a fixed amount of time. The action diagram for the TTC cars has
been presented in Figure 7.

Figure 7: An example of one day simulation dynamic for a TTC car

A TTC car is fixed to a single route upon its creation. While traversing its route, it stops at
each vertex to drop off and pick up passengers (commuters). When a passenger leaves the subway
or streetcar vehicle, it updates their infection status based on the number of infected co-passengers
they interacted with. When the TTC car reaches the last station, it drops off all its passengers,
computes the relevant statistics gathered on the way (e.g., maximum number of passengers) and
then stays in a depot for the remainder of the process. Additionally, using its arrival time interval
attribute, it calls a new car on the same route at the same starting location. The reason that this
is done in this way is that it is convenient for implementation purposes.

4.2 Simulation Setup

We evaluated the simulation model on a simplified representation of downtown Toronto and its
transportation system, i.e., TTC (Toronto Transit Commission). Figure 8 presents the exact ele-
ments of the city utilized in the experiment. The simulation map includes the streets of the city,
as well as the TTC lines of streetcars (marked in green in Figure 8) and subway (marked in red).
In the simulation, we track the agents only as they reach the downtown area of the city. Therefore,
we assume that the commuters from the suburban areas of Toronto are present in the model, but
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Figure 8: Map of Toronto used in the experiment

we only start tracking their movement once they reach the central part of Toronto. The map was
downloaded from the OpenStreetMap project2. From the perspective of the simulation, the most
crucial elements of the map are the streets, sidewalks and intersections. The types of roads that
were taken into account are 1) primary, 2) secondary, 3) tertiary, 4) unclassified, and 5) residential.

After preparing and filtering the map, we represented it as a strongly connected (directed) graph.
That is, we assume the existence of a direct path between any pair of nodes. This avoids a situation
where agents are randomly placed in a location where they can never leave.

We later modified the map by adding public transportation nodes and vertices to the resulting
graph. The two networks were connected via those walking vertices that were located nearby
TTC stations. The real-world data regarding public transport schedule and routes in Toronto was
downloaded from the City of Toronto’s Open Data Portal3. The final representation of the whole
system is a graph, where vertices are stops and intersections, edges are routes between stops and
intersections, and weights are the number of seconds between two different graph vertices. It is
worth noting that each TTC line and its direction has a unique set of edges and vertices. Next, the
agents were placed on the graph and the simulation was run. The simulation hyper-parameters can
be found in Table 3.

2https://www.openstreetmap.org/
3https://open.toronto.ca/dataset/ttc-routes-and-schedules/
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Parameter Value

number_of_agents 2 000
number_of_patients_zero 20
p0 0.001
walking_speed 1.25m/s
passengers_limit 10 people
arrival_time_interval from 1 to 25 minutes by 1 minute
number_of_simulations 100
d̂
pwq
k half of a TTC interval (frequency)

Table 3: Simulation hyperparameters

The simulation was written in Julia language whose distributed computing capabilities enabled
an integration with AWS S3 and performing all necessary computations in the cloud. The cluster
consisted of 320 computing cores. The results are presented in the next section.

4.3 Experiment Results

The results section is divided into three parts. We begin with the results of a simplified model that
is based on the mathematical toy model presented in Section 3. We use this simplified model as
an intermediate step in understanding the complexity of the full model. The second part of the
section deals with the validation of the full simulation model. Finally, we explain the results of the
experiments, and discuss the primary outcome of our study.

4.3.1 Simplified Model Results

We first make a number of key simplifications and alterations in the simulation model. The goal of
these changes is to ensure that the simplified model resembles behaviour of the mathematical toy
model from Section 3.

1. A simplified graph, as presented in Figure 9.

2. All agents have the same home and work location and leave their homes/works simultaneously.

3. Assigning probabilities of choosing a route (entirely walking the whole way or utilizing one
TTC edge) is based on an exponential scaling function as in the case of the mathematical toy
model.

4. Small population of agents due to the small graph.

The smaller graph and homogeneous home and work locations result in a model very similar to
the mathematical toy model, as the agents are forced to travel in large groups and reach consecutive
nodes simultaneously. This contrasts with the full simulation where the paths taken by the agents
are diversified. In terms of the routing decisions, recall that each agent selects one of its three
optimal routes uniformly at random in the full simulation. In contrast, in the simplified model
each agent chooses between either taking a walk to work or using the TTC, where the travel time
depends on the frequency parameter. Thus, if we were to assume that the agents always choose
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Figure 9: Simplified graph used in toy simulation model

their optimal route, then increasing the frequency sufficiently high would force all the commuters to
forgo taking the TTC. Instead, we use the exponential weighting as in the toy model to determine
route selection probabilities.

Let us explain how the frequency of running public transportation impacts the pace of the
epidemic in the simplified model. Firstly, we observe that due to the routing scheme of the model,
the more frequent the trains are, the more people there are that want to ride them. Conversely, by
increasing the interval between public transportation trains, the TTC becomes less attractive, and
so more commuters will choose to walk, thus crowding at intersections. In our model a short TTC
headway such as 2.5 minutes is greatly increasing public transport attractiveness — see Figure 10.
This happens because in our model, on one hand, the routes of several commuters are possibly
within a walking distance, and on the other hand they optimize their travel times. Hence very short
headway is causing a massive redirection of commuter flow from pavements to the transportation
system — which causes overcrowding and sharply increases infection probability. This result is
consistent with other postulates in literature such as Huang and Shen (2021) postulate decreasing
public transport attractiveness in a period of a pandemic. On the other hand, we can see in Figure 10
that very long headway times results in increased infection rates as commuters who live at a great
distance from their work and have no other transportation options end up in overcrowded TTC
carts. Hence, in our numerical results, the curve presenting the percentage of infected agents after
a fixed time frame is U-shaped with a visible “sweet spot” (the optimal lowest number of infected
commuters) at 4 minutes.

To better understand how the behavior of agents leads to the “sweet spot”, it is helpful to
consider Figure 11. Observe that when the TTC arrives very frequently, it is extremely attractive
for people to take, and so a lot of commuters are infected on their way to the station and inside
the TTC. Looking at Figure 11, it could be assumed when TTC is more frequent (the number
of TTC cars increases) then the number of passengers increases much more. When the frequency
increases to 4 minutes, the people are appropriately spread amongst the routes to minimize the
average probability of infection, and so the described “sweet spot” occurs. Note that by increasing
the frequency past the "sweet spot", public transport runs rarely so those who choose the TTC to
get infected easily because of overcrowded public transport. The decrease in the number of TTC
users does not compensate for the less frequent TTC.

We also checked how many commutes (number of trips on the route from home to work and
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Figure 10: Infected agents at a fixed iteration depending on TTC frequency

vice versa) it takes to infect 95% of the simplified model’s population and compared the results of
different TTC frequency setup. As observed in Figure 12, this number is lower for very frequent
public transport and higher when the TTC is rare. This is the case because public transport is
extremely popular when the trains almost immediately arrive at the station. Since the probability
of infection in public transport is significantly higher than on the streets, many people use the TTC
and quickly get infected. On the other hand, when public transport arrives infrequently, many
people choose the walking path instead of the TTC, and so it takes longer (in terms of number
of commutes) to infect each other. Nevertheless, it takes the most commutes to infect 95% of the
population when people are spread between public transport and streets in a way that neither of
them is overloaded. Thus, the same conclusion as previously can be drawn from Figure 12 as the
maximum number of commutes is achieved when public transport frequency is 4 minutes.

4.3.2 Full Model Validation

After the experiment was conducted, we verified the elementary properties of the model. We have
examined the model’s take on epidemic curves and increased in population while keeping the area
they move around intact (hence increasing population density or propensity to leave their homes).

First of all, the model’s infection curve is a classic s-shaped curve as in Figure 13, for every
tested parametrization. The figure presents the outcome in the scenario where all hyper-parameters
are set as in Table 3 and public transportation runs every 20 minutes.

The other model property we have found is that the more agents are on the map, the faster the
epidemic develops (see Figure 14). While for 300 agents, the epidemic has not had enough time to
develop till the end of the presented period, all three phases of an epidemic were completed for the
population of 5000 agents. This outcome agrees with the results presented by Coşkun et al. (2021)
and Bhadra et al. (2021), as well as the #stayathome strategies promoted all around the globe.

4.3.3 Full Model Results

In the full simulation model we also found that the frequency of running public transportation has
an impact on the pace of the epidemic, however, the further conclusions differ significantly.
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Figure 11: Infected agents in different places of infection at a fixed iteration depending on TTC
frequency

Figure 12: Number of trips on the route from home to work and vice versa depending on TTC
frequency

As in the previous versions of the model, we observed that due to the routing scheme, the less
frequent the trains are, the least people want to ride them. As seen in Figure 15, the percentage of
agents that used public transportation at least once in their home-to-work or work-to-home routes
declines as the gap between subsequent trains increases. The more rare the trains are, the more
attractive walking becomes in comparison. While the TTC users number drops, the curve presenting
the percentage of infected agents in a fixed time frame is inverted-U-shaped with a visible peak at
4 minutes and more than 90% of infected population. This is a curve that is widely different than
the ones obtained in the previous sections of the study.

Moreover, those results are confirmed looking at Figure 16, which shows how many commutes it
takes to infect 95% of the population. The point when pace of infection is the fastest is around 4-5
minutes, which is consistent with the previously described results. The number of commutes divided
by 2 could be interpreted as number of working days, because it represents a trip: home->work-
>home. Thus, at the most “dangerous” point it takes around 31 working days (63.5/2) to infect
95% of the population, while at “the safest” point, when public transport arrives to the station every
minute, it takes around 43 working days (86.5/2), which is approximately 40% longer comparing to
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Figure 13: Exemplary epidemic curve in the simulation model

Figure 14: Population density vs pace of infection

the worst scenario.
In Figure 17 you can see the source of the infection peak. The chart shows the location of

infection for every infected agent and the total percentage of infected agents at every TTC frequency.
It turns out that while the infections on the city streets are relatively flat due to 1) low infection
probability, and 2) sparse agents concentration outside, i.e., less people interactions at intersections,
the peak in total infections is perfectly aligned with a peak of infections in TTC.

The main reason behind the result is captured in Figure 18. The barplot presents the number
of encounters in TTC by 1) the TTC frequency (OX axis), and 2) the number of infected agents
that participated in the interaction (bar colors). The numbers on the blocks refer to the number of
encounters of a given crowd size and with a given TTC frequency.

Firstly, the number of meetings decreases as trains become less frequent and fewer agents use
public transportation. However, mind how the structure of the encounters changes—the less frequent
the trains are, the lower the percentage and the number of interactions in small groups. It is the
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Figure 15: Percentage of TTC users and infected agents at a fixed iteration depending on TTC
frequency

case for all crowd sizes smaller than 7. Simultaneously, crowd sizes of 7-11 agents and 12 and
more are non-monotonous. Their share is relatively small in the left part of the graph due to the
frequently running trains—even though many agents come to stations to use public transportation,
the train comes quickly enough to prevent them from forming a large crowd. As the gap between
subsequent trains rises, TTC loses its capability to unload all passengers in time. Therefore, people
crowd at stations and in trains leading to high infection rates. In the case of the infrequent trains,
the number of people willing to ride TTC is so low that the high share of high-crowd encounters
does not result in a high infection pace. These forces lead to an infection peak in a spot, where 1)
most agents are willing to take TTC due to its relatively high frequency, and 2) TTC is not effective
enough in separating passengers between trains.

The reason why this mechanism occurs is the time mismatch between train and agents’ arrivals
at stations. While some agents just missed the train, the other ones are coming and gradually form
a considerable crowd if the train does not come soon enough. In contrast, if they walked in hordes
and reached the station simultaneously as they do in the toy version of the model, the crowd size
would always be the percentage of the population that choose to take the TTC route. Mind also
that the map size in the toy model is unrealistically tiny, which is why agents can form large crowds
in the street. Hence, the model would suggest a severe danger of walking and is not realistic.

Those findings could also be confirmed by looking at the number of visits of individual nodes on
the map. In Figure 19 the size of a circle around the point represents the number of visits. When
public transport is very frequent (TTC frequency = 3 minutes), TTC nodes are much more crowded
than the others, which leads to an increase in the number of infections as many people meet each
other in a closed space like a TTC car. On the other hand, when public transport is sporadic (TTC
frequency = 20 min), there is no specific outbreak area. In this case, TTC is not attractive for
people traveling relatively small distances, so they are more willing to walk. Thus, they are more
evenly distributed on the map, leading to fewer potentially “dangerous” meetings.

Another crucial decision taken by the transportation system operator is the maximum car capac-
ity. Namely, it is possible to introduce a restriction that only some percentage of the total subway
car area can be occupied by passengers, i.e., a passenger limit would be introduced. The goal of
such restriction would be to avoid crowds inside the TTC cars. In Figure 20 passenger limit’s im-
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Figure 16: Number of trips on the route from home to work and vice versa depending on TTC
frequency
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Figure 17: Places of infection

pact on the number of infections turns out not to be equal between the potential TTC frequencies.
After ca. one work week of the simulation, the number of infections is strongly dependent both
on the passenger limit, and TTC frequency. If the subway runs frequently enough, e.g., every 2
minutes, none of the restriction variants are effective — the subway is never that crowded anyway.
At the same time, there are so many TTC cars and passengers that they get infected while being in
smaller groups, just more frequently. Under moderate TTC frequency, e.g., every 5 minutes, only
a very strict limit on the number of passengers can impact the infection rate in a meaningful way.
With such a running frequency, the TTC is a popular choice among travelers but cannot serve all
passengers that need a ride. This is why a mild restriction would not be particularly helpful here as
the number of passengers in the car and the station would be at its maximum and there will be a
lot of fully loaded trains (and not too many pedestrians on the streets). Last but not least, with a
TTC running frequency as low as every 10-15 minutes, the subway becomes less popular, and even
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Figure 18: Number and structure of encounters in terms of crowd size (each bar colour represents
the number of agents involved in a single encounter)

a mild passenger limit helps to lower the number of infections — during the rush hour, citizens will
spend more time waiting for a TTC car in a more spacious and less risky place in terms of infection
probability.

Let us consider an initiative by a transportation system regulator (e.g. a municipality) where an
information campaign is held and unnecessary physical contact in closed public spaces is discouraged.
In the model, such a measure can be included via the maximum number of interactions the agents
make in the subway. The more interactions the agents are allowed to make during their trip, the
larger the percentage of infected is after ca. one week of travel. In practice, the result of such a
campaign would be strictly dependent on the people’s reaction to the regulators’ warning which can
vary for different countries, municipalities, cultures, and, in general, the trust the citizens put in
the authorities. These factors can be reflected by the number of interactions made, i.e., the lowest
interaction numbers would occur in places of strong trust in the government, while the highest —
in the places where the government’s warnings are not heard by the inhabitants. Figure 21 shows
that the more restrained the passengers are with each other and the less crowded parts of the TTC
car they choose, the lower the percentage of infected people. When travelers are keen to interact
with each other or just be in each other’s direct proximity, the infections go up significantly.

5 Conclusions

This paper shows that public transportation schedules can be optimized in terms of epidemic safety.
However, one has to be cautious of the assumptions they are making. Namely, we have presented
two vastly different sets of results obtained under different assumptions and conditions. The more
intricate model resulted in an infection peak instead of a sweet spot which shows that the optimiza-
tion in the area cannot be optimized strictly under only one criterion. This conclusion agrees with
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Figure 19: Individual nodes visits depending on TTC frequency on a small fragment of the map

Figure 20: Impact of government restrictions on TTC passenger limits on the number of infections
under different TTC frequencies (x-axis indicates the percentage of permissible passengers)

the reality—people would not be infecting each other if they did not meet anywhere, especially in
closed spaces such as a train station and a train car. Nevertheless, such a solution would be highly
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Figure 21: The impact of the number of interactions in TTC (e.g., due to the government’s infor-
mation campaign) on the percentage of infected citizens

impractical, which is why it is crucial for a regulator to choose a train frequency that is 1) practical
for the citizens, and 2) is not too expensive to maintain, i.e., choose a frequency on the right side
of the infection peak.

From a transportation policy point of view, it can be argued that an extreme increase in public
transportation frequency can slow the spread of the virus by leading to more encounters between
small groups of passengers. Making public transportation less frequent can be treated similarly as
it discourages passengers from unnecessary travel and encourages short-distance passengers to walk
instead. However, this strategy has negative implications. It may promote non-ecological car travel
and exclude non-car-owners from urban life. In addition, it could be ineffective in the case of a more
contagious strain of the virus, as tends to result in a larger crowd formation.

The presented model has been calibrated with sample data from Toronto Public Transportation.
Note that for simulations we have selected only a subset of the TTC system to illustrate the emergent
phenomena. However, the proposed approach can be extended to a massive transportation model
of the entire city. We believe that our results can help decision makers to understand trade-offs
when deciding between various frequencies for public transport in times of an ongoing epidemic.

The presented research can be extended in many ways. Firstly, the ABM approach makes it
possible to apply the same model for real-world data on commuter movement patterns (e.g. from
GPS devices). We are considering only two means of transportation (walking vs. TTC), while other
options such as driving a car or a bicycle could be included. In the proposed model commuters
optimize only their travel times — this could be extended to a multi-criteria decision model where
travel time could be weighted against their travel costs or environmental awareness. Similarly, the
transportation system regulator (e.g. a municipality) needs to take several factors such as budget
availability, transportation system capacity, or carbon footprint.
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A Proofs of theorems from Section 3

To prove Theorem 3.1, we first prove the following lemma.

Lemma A.1. There exists a function ε1 “ ε1pnq “ op1q, such that for any 0 ď t ă τcf , a.a.s. it
holds that

ˇ

ˇ

ˇ

ˇ

ˇ

Xt`1 ´Xt ´ pn´Xtq

˜

2
ÿ

i“1

αi

ˆ

1´ exp

ˆ

´
biλiαiXt

n

˙˙

¸
ˇ

ˇ

ˇ

ˇ

ˇ

ď ε1.

Note that ε1 does not depend on t.

Proof of Lemma A.1. We shall apply a standard form of Chernoff bound (see, for example, Corollary
2.3 in Janson et al. (2011)). Let X P Binpk, pq be a random variable with the binomial distribution
with parameters k and p, and suppose 0 ă ε ď 3{2 and µ :“ EX “ kp. In this case,

Pr|X ´ µ| ě ε ¨ µs ď 2 exp

ˆ

´
ε2 ¨ µ

3

˙

. (8)

Given s ě 0 and j P t1, 2u, define Dj
s as the set of the agents that choose the path Pj on the

commute s. Moreover, for s ě 0, define Y j
s to be the number of the agents which become infected

during commute s while taking Pj . Clearly, Y
j
s “ |D

j
sX IsX Is´1| for s ě 1. Let us now condition

on It and D
j
t`1 for 0 ď t ă τcf and fix agents a, b P rns where a ‰ b. Observe then that if a P rnszIt,

b P It, and both a and b select Pj then

PrAgent a is infected in commute t` 1 by agent b | It, D
j
t`1s “ βjλj .
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To see this, observe that if both agents select path Pj , then agent b infects a provided a and b
interact, and their interaction is contagious. This occurs with probability precisely βjλj . As the
agents of It XD

j
t`1 infect a independently of one another, we have that

PrAgent a is infected in commute t` 1 | It, D
j
t`1s “ 1´ p1´ βjλjq

|ItXD
j
t`1|. (9)

Now, βj “ bj{n, so in particular, βjλj “ op1q. Thus, if a P rnszIt and a P D
j
t`1 then

PrAgent a is infected in commute t` 1 | It, D
j
t`1s „ 1´ exp

˜

´
bjλj |It XD

j
t`1|

n

¸

.

Thus,

ErY j
t`1 | It, D

j
t`1s „ |D

j
t`1 X It|

˜

1´ exp

˜

´
bjλj |It XD

j
t`1|

n

¸¸

(10)

To simplify (10), observe that conditional on It, the random variables |It XD
j
t`1| and |D

j
t`1 X It|

are distributed as Binp|It|, αjq and Binp| It|, αjq, respectively. Moreover, csn ď |It| ď cfn, as
0 ď t ď τcf , so we may apply (8) with say εpnq :“ 1{n1{3 “ op1q to conclude that a.a.s. ` :“

|It XD
j
t`1| “ p1` op1qqαjXt and k :“ | It XD

j
t`1| “ p1` op1qqαjpn´Xtq. Thus, a.a.s.

ErY j
t`1 | It, D

j
t`1s „ αjpn´Xtq

ˆ

1´ exp

ˆ

´
bjλjαjXt

n

˙˙

“ Θpnq. (11)

On the other hand, Y j
t`1 conditional on It and Dj

t`1 is distributed as a binomial Binpk, pq with

parameters k “ |Dj
t`1 X It| and p “ 1´ p1´ βjλjq

|ItXD
j
t`1| “ 1´ p1´ βjλjq

`. Moreover, a.a.s.

µj :“ αjpn´Xtq

ˆ

1´ exp

ˆ

´
bjλjαjXt

n

˙˙

„ kp, (12)

where the approximation for p follows from (9). As a result, by taking εpnq “ 1{n1{3 and applying
(8), we get that a.a.s.

Pr|Y j
t`1 ´ µj | ě εµj | It, D

j
t`1s ď expp´Ωpn1{3qq.

(Formally, one should stochastically lower and upper bound Y j
t`1 by Binpk´, p´q and Binpk`, p`q

with some deterministic functions k˘ and p˘, such that p`{p´ Ñ 1 and k`{k´ Ñ 1 as n Ñ 8.)
Thus, a.a.s.,

|Y j
t`1 ´ µj | ď εµj (13)

for each j “ 1, 2. On the other hand, Xt`1 ´Xt “
ř2
j“1 Y

j
t`1, and

µ1 ` µ2 „ pn´Xtq

˜

2
ÿ

i“1

αi

ˆ

1´ exp

ˆ

´
biλiαiXt

n

˙˙

¸

,

so the proof is complete.
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Proof of Theorem 3.1. Let us set Ai :“ biλiαi ě 0 for i “ 1, 2, and A :“ maxt1, A1, A2u for
convenience. Given 0 ď t0 ă τcf , our goal is to show that there exists a function ε0 “ ε0pnq “ op1q
such that a.a.s.

ˇ

ˇ

ˇ

ˇ

Xt0

n
´ rxt0

ˇ

ˇ

ˇ

ˇ

ď ε0pnq.

In order to prove this, we first prove the following implication. Let us take 0 ď t ă τcf , and assume
that 0 ď δ “ δpnq ď 1 satisfies

ˇ

ˇ

ˇ

ˇ

Xt

n
´ rxt

ˇ

ˇ

ˇ

ˇ

ď δ, (14)

and
ˇ

ˇ

ˇ

ˇ

ˇ

Xt`1 ´Xt ´ pn´Xtq

˜

2
ÿ

i“1

αi

ˆ

1´ exp

ˆ

´
biλiαiXt

n

˙˙

¸ˇ

ˇ

ˇ

ˇ

ˇ

ď δ. (15)

Under these assumptions, we claim that |Xt`1{n´ rxt`1| ď 5Aδ. Observe first that by (14), Xt{n ď
rxt ` δ, so

expp´AiXt{nq ě expp´Aiprxt ` δqq.

Now, using the inequality 1´ x ď expp´xq, we get that

expp´pz1 ` z2qq ě expp´z1qp1´ z2q ě expp´z1q ´ z2

for z1, z2 ě 0. It follows that

expp´Aiprxt ` δqq ě expp´Airxtq ´Aδ. (16)

Define gpzq :“
ř2
i“1 αip1´ expp´Aizqq for z P R. Observe then that gpzq is an increasing function

of z and so by (14) and (16),

gpXt{nq ď gprxt ` δq ď gprxtq ` 2Aδ. (17)

Now, applying (15),

Xt`1

n
ď
Xt

n
`

ˆ

1´
Xt

n

˙

˜

2
ÿ

i“1

αi p1´ exp p´AiXt{nqq

¸

` δ

ď rxt ` δ ` p1´ rxt ` δqgpXt{nq ` δ

ď rxt ` p1´ rxtqgpXt{nq ` δ ` δ

ď rxt ` p1´ rxtqgprxtq ` 2Aδ ` 2δ ` δ

ď rxt ` p1´ rxtqgprxtq ` 5Aδ

where the latter inequalities follow since gpzq ď 1 for z ě 0, and by (14) and (17). Yet, rxt`1 :“
rxt ` p1´ rxtqgprxtq, so

Xt`1

n
ď rxt`1 ` 5Aδ.

An analogous argument shows that Xt`1{n ě rxt`1 ´ 5Aδ. Thus, assuming (14) and (15) for δ ď 1,
it follows that

ˇ

ˇ

ˇ

ˇ

Xt`1

n
´ rxt`1

ˇ

ˇ

ˇ

ˇ

ď 5Aδ.
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In order to complete the argument, take δpnq “ ε3pnq, where ε3 “ op1q is from Lemma A.1. Clearly,
we may assume that 5t0Aδ ď 1 for n sufficiently large. Now, X0{n “ rx0 by assumption. Moreover,
since t0 is constant, we may apply Lemma A.1 to each 0 ď t ď t0 to ensure that (15) holds a.a.s.
for all 0 ď t ď t0 simultaneously. Thus, proceeding by induction, we get that a.a.s.

ˇ

ˇ

ˇ

ˇ

Xt0

n
´ rxt0

ˇ

ˇ

ˇ

ˇ

ď 5t0Aδ.

Since t0 is a constant, 5t0Aδ “ op1q, so the argument is complete.

Proof of Corollary 3.2. Let us first fix c :“ rxtcf`3, which clearly satisfies c ą cf . By applying
Theorem 3.1, it is easy to show that τc ą tcf ` 1. Thus, we may apply Theorem 3.1 at the values
from ttcf ´ 1, tcf , tcf ` 1u. Specifically, there exists ε1 “ op1q such that a.a.s.,

ˇ

ˇ

ˇ

ˇ

Xk

n
´ rxk

ˇ

ˇ

ˇ

ˇ

ď ε1pnq (18)

for each k P ttcf ´ 1, tcf , tcf ` 1u.
Now, for k “ tcf ´ 1, (18) implies that a.a.s.

Xtcf´1

n
ď rxtcf´1 ` ε1.

On the other hand, rxtcf´1 ă cf . Thus, for all n sufficiently large, ε1pnq ă cf ´ rxtcf´1. It follows
that a.a.s.

Xtcf´1

n
ă cf ,

and so τcf ě tcf .
Suppose now that rxtcf ą cf (part (a)). Using (18) for k “ tcf , we get that a.a.s.,

Xtcf

n
ě rxtcf ´ ε1.

Since rxtcf ą cf , for all n sufficiently large, ε1pnq ă rxtcf ´ cf . It follows that a.a.s.

Xtcf

n
ą cf ,

and so τf ď tcf . The same argument can be applied for part (b) but with Xtcf`1 instead of Xtcf
.

B Approximation for the number of infected agents

In this section, we derive an approximate but closed formula for the number of infected agents after
a given number of iterations. First, let us note that expp´xq “ 1 ´ x ` Opx2q, and so we may
approximate (3) as follows:

rxt`1 ´ rxt “ p1´ rxtq pα1p1´ exp p´b1λ1α1rxtqq ` α2p1´ exp p´b2λ2α2rxtqqq

« p1´ rxtqrxt
`

b1λ1α
2
1 ` b2λ2α

2
2

˘

“ Ap1´ rxtqrxt, where A :“ b1λ1α
2
1 ` b2λ2α

2
2.
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On Figure 5 (right), we compare this approximation with the actual values for Scenario 1. Since
the base contagion probabilities are typically very small, the exponent is also small and so the
approximation expp´xq « 1´ x is relatively good.

Next, we approximate the difference equation by the differential equation:

x1ptq “ Ap1´ xptqqxptq

with the initial condition xp0q “ cs. We get that

rxt « xptq :“
1

1` expp´Atqp1{cs ´ 1q
.

As expected, this approximation is working well as depicted on Figure 5 (left). By solving xptq “ cf ,
it follows that

tf «
1

A
ln

ˆ

cf
1´ cf

¨
1´ cs
cs

˙

.
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C List of symbols used in the paper

K population of agents
k commuting agent, k P K
|K| the total number of agents (cardinality of K)

V set of intersections and public transportation stations (vertices)
v single intersection or public transportation station, v P V (vertex)

E
set of road/sidewalk and public transportation routes sections (directed
edges)

e
single road/sidewalk, e P E (directed edge); an edge e can be also
represented as an ordered pair of vertices that is we can write e “
pvi, vjq where i ‰ j

VP set of intersections (vertices) accessible to pedestrians, VP Ď V

VT

set of stations and stops (vertices) used by public transportation sys-
tem, VT Ď V ; we assume that VP Y VT “ V and VP X VT “ H, that is,
pVP , VT q is a partition of V

GpV,Eq
urban network (directed, weighted, strongly connected graph) with
weights representing the time needed to traverse an edge;

W set of public transportation system (or: TTC) cars
w public transportation (or: TTC) car, w PW
|W | the total number of public transportation cars (cardinality of W )

wpvq
public transportation car available at the node v P V (it is assumed that
a node can be served only by a single transportation car, the exchange
stations are assuming that adjacent platforms connected by a sidewalk)

sk route taken by an agent k, sk “ pep1qk , . . . , e
pnkq

k q

te
weight of an edge e P E, measured in time needed to traverse e (in
seconds)

ptk estimated time to traverse the route of the agent k

t̄k actual time to traverse the route of the agent k

d̂
pwq
k

estimated transportation wait time of the agent k for the car w

φpwq number of infected agents in a car w PW

ψpvq number of infected pedestrians at the vertex v P VP

p0 base probability of infection

p effective probability of infection

Table 4: List of symbols used in the paper
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