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Abstract. The semi-random graph process is a single-player game that begins
with an empty graph on n vertices. In each round, a vertex u is presented to
the player independently and uniformly at random. The player then responds by
selecting a vertex v and adds the edge uv to the graph. For a fixed (monotone)
increasing graph property, the player’s objective is to force the graph to satisfy this
property with high probability in as few rounds as possible.

We focus on the problem of constructing a subgraph isomorphic to an arbitrary,
fixed graph H. In [3], it was proved that asymptotically almost surely one can
construct H in t rounds, for any t ≫ n(d−1)/d where d ≥ 2 is the degeneracy of H.
It was also proved that this result is sharp for H = Kd+1 and conjectured that it is
so for all graphs H. We prove this conjecture, and the conjecture’s generalization
to a semi-random s-uniform hypergraph process for every s ≥ 2.

1. Introduction

In this paper, we consider the semi-random process suggested by Peleg Michaeli
(see [2] and [3, Acknowledgements]), formally introduced in [3], and studied recently
in [2, 5–9,13,15]. This process can be viewed as a “one player game”.

1.1. Definitions. The process starts from G0, the empty graph on the vertex set
[n] := {1, 2, . . . , n} where n ≥ 1. In each step t ≥ 1, a vertex ut is chosen uniformly
at random from [n]. Then, the player (who is aware of graph Gt−1 and vertex ut)
must select a vertex vt and add the edge utvt to Gt−1 to form Gt. The player aims
to build a (multi)graph satisfying a given property P as quickly as possible. It is
convenient to think of ut as receiving a square, and vt as receiving a circle, so every
edge in Gt joins a square with a circle. Equivalently, we may view Gt as a directed
graph where arcs go from ui to vi, i = 1, . . . , t. To make the process well defined, we
allow parallel edges (for example, if some vertex receives n squares, a parallel edge
is necessary).
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A strategy S is defined by specifying, for each n ≥ 1, a sequence of functions
(ft)

∞
t=1, where for each t ∈ N, ft(u1, v1, . . . , ut−1, vt−1, ut) is a distribution over [n]

that depends on the vertex ut, and the history of the process up until step t − 1.
Then, vt is chosen according to this distribution. If ft is an atomic distribution, that
is non-random, then vt is fully determined by u1, v1, . . . , ut−1, vt−1, ut. We denote
by (Gi(n)[S])ti=0 the sequence of random (multi)graphs obtained by following the
strategy S for t rounds; we shorten Gt(n)[S] to Gt or Gt(n) when clear.

Suppose P is a monotonically increasing property of graphs. We say that a function
τP(n) is a threshold for P if the following two conditions hold:

(a) there exists a strategy S so that if t := t(n) ≫ τP(n), then
limn→∞ P[Gt ∈ P ] = 1, and

(b) for every strategy S, if t := t(n) = o(τP(n)), then limn→∞ P[Gt ∈ P ] = 0.

Here and throughout we write an ≫ bn if bn = o(an). We also say that an event
holds asymptotically almost surely (a.a.s.) if it holds with probability tending to one
as n → ∞.

1.2. Main Result. In this paper, we focus on the problem of constructing a sub-
graph isomorphic to an arbitrary, fixed graph H. Let PH be the property that
H ⊆ Gt. It turns out that the threshold τPH

can be determined in terms of the
degeneracy of H.

For a given d ∈ N, a graph H is d-degenerate if every sub-graph H ′ ⊆ H has
minimum degree δ(H ′) ≤ d. The degeneracy of H is the smallest value of d for which
H is d-degenerate. It was proved in [3] that for any graph H of degeneracy d ∈ N,
τPH

≤ n(d−1)/d.

Theorem 1.1 ([3, Theorem 1.10]). Let H be a fixed graph of degeneracy d ∈ N.
Then, there exists a strategy S so that whenever t ≫ n(d−1)/d,

lim
n→∞

P[Gt ∈ PH ] = 1.

For completeness and as a warm-up, we re-prove this theorem in Section 2.4.
Note that for d = 1, that is, when H is a forest, Theorem 1.1 implies immediately

that τPH
= 1. For d ≥ 2, it was proved in [3] that τPH

= n(d−1)/d when H = Kd+1,
the complete graph on d+ 1 vertices, and conjectured that the equality holds for all
graphs of degeneracy d. As our main result, we prove this conjecture here.

Theorem 1.2. Let H be a fixed graph of degeneracy d ≥ 2. Then, for any strategy S,
if t = o(n(d−1)/d), then

lim
n→∞

P[Gt ∈ PH ] = 0.

Combining Theorems 1.1 and 1.2 we get the following corollary.

Corollary 1.3. Let H be a fixed graph of degeneracy d ∈ N. Then, τPH
= n(d−1)/d.
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1.3. Background. The semi-random process was also recently studied in the con-
text of perfect matchings [10] and Hamilton cycles [5, 6, 8, 9]. For both structures,
since the goal is to create a spanning subgraph with bounded maximum degree, the
length of the process leading to constructing them must be, trivially, of order Ω(n).
In all above papers, a matching bound of O(n) is established, however, the multi-
plicative constants were not determined precisely. Cliques, chromatic number, and
independent sets were considered in [7].

Perfect matchings and Hamilton cycles are just two special cases of the property
of containing a given graph Hn as a spanning subgraph. As was reported in [2],
Noga Alon asked, more generally, whether for any fixed sequence of graphs Hn with
maximum degree ∆(Hn) ≤ ∆ for all n and Hn containing at most n vertices, one
can construct a copy of Hn in Gt on n vertices a.a.s. for t = O(n). This question
was answered positively in a strong sense in [2], where it was shown that such an
Hn can be constructed a.a.s. in (3∆/2 + o(∆))n rounds. They also proved that if
∆ ≫ log(n), then this upper bound improves to (∆/2 + o(∆))n rounds. Note that
this result applies to fixed subgraphs too, but this bound is far too weak. Indeed, we
will show that the property of containing a fixed subgraph has a threshold of order
o(n). Consequently, we will be interested in finding the correct exponent of n rather
than multiplicative constants.

The semi-random process may be extended or generalized in various ways. For
example, in [11] the authors consider a no-replacement variant of the process in
which squares follow a permutation of vertices selected uniformly at random. Once
each vertex is covered with a square, another random permutation is drawn, and the
process continues. Another variant was studied in [4] in which a random spanning
tree of Kn is presented to the player who can keep one of the edges. In [15], the
process presents k squares, and to create an edge the player selects one of them, and
freely chooses a circle to connect to.

1.4. Hypergraphs. In this paper, we propose a natural generalization of the semi-
random process to hypergraphs (cf. [14]). Fix r ≥ 1 to be the number of randomly
selected vertices per step, and s ≥ r to be the uniformity of the hypergraph. The

process starts from G
(r,s)
0 , the empty hypergraph on the vertex set [n], where n ≥ 1.

In each step t ≥ 1, a set Ut of r vertices is chosen uniformly at random from [n].
Then, the player replies by selecting a set of s − r vertices Vt and the edge Ut ∪ Vt

is added to G
(r,s)
t−1 to form G

(r,s)
t . We assume that Ut and Vt are disjoint so that the

resulting hypergraph is an s-uniform hypergraph, or shortly an s-graph. As was the
case with graphs, in order for the process to be well defined we will allow parallel
edges.
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If r = 1 and s = 2, then this is the semi-random graph process described above.

On the other hand, if r = s (that is, the player chooses Vt = ∅ for all t), then G
(r,r)
t

is just a uniform random r-graph process with t edges selected with repetitions.
In this paper, we will focus on the case where r = 1. In this case, at each step one

vertex is randomly selected and the player chooses s− 1 vertices. For simplicity, we

will refer to the s-graph G
(1,s)
t simply as G

(s)
t .

As before, the goal of the player is to build an s-graph G
(s)
t satisfying a given

property P as quickly as possible, and we focus on the property PH of possessing a
sub-s-graph isomorphic to an arbitrary, fixed s-graph H. We define strategies and
the threshold τPH

identically to the graph case.
In Section 3 we show that for uniform hypergraphs, the case r = 1 resembles

the graph case and the degeneracy of an s-uniform hypergraph H is still the only

parameter that affects the threshold for the property H ⊆ G
(s)
t . As for graphs, for

a given d ∈ N, a hypergraph H is d-degenerate if every sub-hypergraph H ′ ⊆ H
has minimum degree δ(H ′) ≤ d (where the minimum degree of a hypergraph is the
minimum degree over all vertices). The degeneracy of H is the smallest value of d
for which H is d-degenerate.

In particular, we have the following theorems that are counterparts of Theorem 1.1
and Theorem 1.2.

Theorem 1.4. Let r = 1, s ≥ 2, and let H be a fixed s-uniform hypergraph of
degeneracy d ∈ N. Then, there exists a strategy S so that whenever t ≫ n(d−1)/d,

lim
n→∞

P[G(s)
t ∈ PH ] = 1.

Theorem 1.5. Let r = 1, s ≥ 2, and let H be a fixed s-uniform hypergraph of
degeneracy d ≥ 2. Then, for any strategy S, if t = o(n(d−1)/d), then

lim
n→∞

P[G(s)
t ∈ PH ] = 0.

As a result, combining Theorems 1.4 and 1.5, we get the following corollary.

Theorem 1.6. Let r = 1 and let H be a fixed s-uniform hypergraph of degeneracy
d ∈ N. Then, τPH

= n(d−1)/d.

The proofs of these results follow the same approach as in the graph case.

1.5. Organization. In the next section we prove Theorems 1.1 and 1.2, while in
Section 3 we concentrate on Theorems 1.4 and 1.5. The last section presents a
number of open problems, including the problem of the hypergraph case when the
number of randomly selected vertices r satisfies 1 < r < s. Some further results on
this case will be presented in a follow-up paper.
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2. Proofs for graphs

2.1. Outline. First, in Subsection 2.4, we prove Theorem 1.1 which sets an upper
bound on τPH

. Then, in Subsection 2.5, a proof of Theorem 1.2 is given that provides
a matching lower bound. A probabilistic lemma, established in Subsection 2.3, is
utilized in both proofs. The proof of Theorem 1.2 is much more involved and requires
an auxiliary notion of vertex weighting w. In Lemma 2.2 we show that the weights are
bounded from below by δ(H). Then, in Lemma 2.3, we bound the number of possible
images of a vertex v of H in Gt in terms of w(v). Combined, these two lemmas yield
the proof of Theorem 1.2. Before all that, we include a brief compendium on the
degeneracy of graphs and hypergraphs.

2.2. Degeneracy. We start with some useful basic facts about degeneracy. Recall
that for a given d ∈ N, a hypergraph H is d-degenerate if every sub-hypergraph
H ′ ⊆ H has minimum degree δ(H ′) ≤ d.The degeneracy of H is the smallest value
of d for which H is d-degenerate.
The d-core of a hypergraph H is the maximal (with respect to inclusion) induced

subgraph H ′ ⊆ H with minimum degree δ(H ′) ≥ d. (Note that the d-core is well
defined, though it may be empty. Indeed, if S ⊆ V (H) and T ⊆ V (H) induce
sub-hypergraphs with minimum degree at least d, then the same is true for S ∪ T .)
If H has degeneracy d then it has a non-empty d-core. Indeed, by definition, H
is not (d − 1)-degenerate and so it has a sub-hypergraph H ′ with δ(H ′) ≥ d. We
immediately get that if H has degeneracy d, then there exists an ordering of the
vertices of H, (v1, v2, . . . , vk), such that for each ℓ ∈ [k] vertex vℓ has degree at most
d in the sub-hypergraph induced by the set {v1, v2, . . . , vℓ}.
For graphs, this implies a useful reformulation of degeneracy: a graph H is d-

degenerate if and only if the edges of H can be oriented to form a directed acyclic
graph D with maximum out-degree at most d. In other words, there exists a per-
mutation of the vertices of H, (v1, v2, . . . , vk), such that for every directed edge
(vi, vj) ∈ D we have i > j and the out-degrees are at most d. For example, the
degeneracy of the complete graph Kk is k− 1, and any acyclic tournament embodies
the aforementioned orientation.

2.3. Useful Lemma. Let us first state the following simple but useful lemma. The
proofs of Theorems 1.1 and 1.2, as well as (since the lemma does not depend on s)
those of Theorems 1.4 and 1.5, will rely on it.

Lemma 2.1. Let t = o(n) and let ω = ω(n) be any function tending to infinity as

n → ∞. Let x ∈ N and let X
(x)
t be the number of vertices in Gt with precisely x

squares on them, that is, the number of vertices in Gt with out-degree x. Then the
following holds:
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(a) EX(x)
t = (1− o(1)) tx

x!nx−1 .

(b) If t = n(x−1)/x/ω, then a.a.s. X
(x)
t = 0.

(c) If t = n(x−1)/xω, then for any y ∈ N a.a.s. X
(x)
t ≥ y.

Proof. Let Yt(i), i = 1, . . . , n, be the number of squares on vertex i in Gt. It follows
from our random model that each Yt(i) is a random variable with binomial distribu-
tion Bin(t, 1/n). Note, however, that the random variables Yt(i) for i = 1, . . . , n are
not independent. The same observation applies to the indicator random variables
It(i)

(x), where for each i = 1, . . . n, It(i)
(x) = 1 if Yt(i) = x and 0 otherwise. Thus

X
(x)
t =

n∑
i=1

It(i)
(x),

and, since t = o(n) and x is a constant, we immediately get that

EX(x)
t = n

(
t

x

)(
1

n

)x (
1− 1

n

)t−x

= (1− o(1))
ntx

x!nx
exp

(
−t− x

n
+O(t/n2)

)
= (1− o(1))

tx

x!nx−1
.

If t = n(x−1)/x/ω, then EX(x)
t = o(1) and so a.a.s. X

(x)
t = 0 by the first moment

method. On the other hand, if t = n(x−1)/xω, then EX(x)
t ∼ ωx/x! → ∞ as n → ∞.

Set X := X
(x)
t for convenience. To turn the above estimate of expectation EX

into the desired lower bound on X itself, we are going to apply the second moment
method, or Chebyshev’s inequality, with the variance expressed in terms of the second
factorial moment (this form fits well the cases when all summands constituting X
are pairwise dependent):

P
(
|X − EX| > 1

2
EX

)
≤ 4Var(X)

(EX)2
= 4

(
E(X(X − 1))

(EX)2
+

1

EX
− 1

)
. (2.1)

Since EX → ∞ as n → ∞, it suffices to show that E(X(X − 1)) ∼ (EX)2. By
symmetry,

E(X(X − 1)) = n(n− 1)P(It(1)(x) = It(2)
(x) = 1),

while

P(It(1)(x) = It(2)
(x) = 1) =

(
t

x

)(
t− x

x

)(
1

n

)2x (
1− 2

n

)t−2x

∼ t2x

x!2n2x
,

and, thus, indeed, E(X(X−1)) ∼ (EX)2. Consequently, a.a.s. X
(x)
t ≥ ωx/(3x!) and,

in particular, X
(x)
t ≥ y, regardless of the value of y ∈ N. □
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2.4. Upper Bound. In this section, we will re-prove Theorem 1.1. We do it for
completeness as well as to highlight challenges in proving the lower bound.

Proof of Theorem 1.1. Let H be a graph on k vertices V (H) = {v1, v2, . . . , vk} of
degeneracy d ∈ N. As such, we may assume that for each ℓ ∈ [k], vertex vℓ has
at most d neighbours among {v1, v2, . . . , vℓ−1}. We orient edges of H so that for all
edges vivj it holds that j < i. As a result, the maximum out-degree is equal to d.

The player can create the oriented graph H in t ≫ n(d−1)/d rounds by using the
following simple strategy. The process is divided into k phases labelled with ℓ ∈ [k],
each consisting of t/k rounds. We proceed by an inductive argument. At the begin-
ning of phase ℓ, we assume that a copy of the induced subgraph H[{v1, v2, . . . , vℓ−1}]
has been already created in G(ℓ−1)t/k.
Note that the property is vacuously satisfied at the beginning of phase 1. At the

beginning of phase 2, we may select any vertex to obtain a copy of H[v1]. Therefore,
let ℓ ≥ 2. Let us fix one such copy and let ui be the image of vi, i = 1, . . . , ℓ− 1 in
that copy.

Let Nℓ ⊆ {v1, v2, . . . , vℓ−1} be the neighbours of vℓ in H that come earlier in the
vertex ordering. By construction, h := |Nℓ| ≤ d. Let w1, . . . , wh be the images of
the vertices of Nℓ in the fixed copy of H[{v1, v2, . . . , vℓ−1}] in G(ℓ−1)t/k.
The goal of the player (in this phase) is to create an image uℓ of vertex vℓ that

is adjacent to w1, . . . , wh. In order to achieve this, when some vertex receives its
ith square during this phase, 1 ≤ i ≤ h, the player simply connects this vertex
with wi. It follows from Lemma 2.1(c) with x = d and y = k that a.a.s. at least k
vertices receive d squares during this phase, in which case we can find such a vertex
distinct from u1, . . . , uℓ−1. Therefore a.a.s. the fixed copy of H[{v1, v2, . . . , vℓ−1}] can
be extended to a copy of H[{v1, v2, . . . , vℓ−1, vℓ}]. Since the number of phases is
k = O(1), a.a.s. a copy of H is created in k phases, and the proof is finished. □

2.5. Lower Bound. In this section, we prove the main result of this paper, Theo-
rem 1.2.

Let H be a graph on k vertices and m edges that may contain loops and parallel
edges. Fix an ordering of the edges (e1, e2, . . . , em) of H, and fix an orientation of
each edge. We will analyze the probability of an oriented copy of H arising in Gt

where the edges of H are added to Gt in this specified order and the edge orientations
in Gt (from squares to circles) respect the edge orientations of H. Since, for a fixed
H, there is only a finite number of ways to order and orient the edges, we can sum
these probabilities to get the desired bound on the occurrence of any copy of H in
Gt. Later on, we will formally prove this simple observation. For now, let us restrict
ourselves to a given orientation and a given order of edges, and assume that the
player’s goal is to create a copy of H with these additional constraints.
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To highlight the main challenge in proving the result, consider a simple example
with H = C4, the cycle of length 4. If the cycle is oriented so that one of the vertices
has out-degree 2, then it follows immediately from Lemma 2.1(b) that a.a.s. one
cannot accomplish the task in o (

√
n) rounds, and we are done. However, if the cycle

is oriented so that each vertex has out-degree 1, then no non-trivial bound can be
deduced from the lemma.

In order to deal with all possible scenarios, for a given orientation and order, we
define a weight function on the vertices of the graph H. This function is meant
to measure how much of the difficulty in creating a copy of H hinges upon a given
vertex. We will then show (see Lemma 2.2) that ifH is d-degenerate, then all vertices
of its d-core H ′ have weight at least d. On the other hand, we will show (see Lemma
2.3) that even if H ′ contains just one vertex of weight at least d, then the expected
number of copies of H ′ in Gt is O(td/nd−1), regardless of the strategy of the player.
As a result, if t = o(n(d−1)/d), then the expectation tends to zero, and the desired
conclusion holds by the first moment method: a.a.s. there is no copy of H ′, and thus
of H, in Gt.

In order to prove Lemma 2.2 it is helpful to allow directed graphs that contain
loops, including potentially several loops on the same vertex, to make the inductive
step work. We call such a graph loopy.
As promised, we recursively define a weight function wH : V → N ∪ {0} on the

vertices of a loopy graph H = (V,E) that is dependent on the edge order and
orientation. Let H0 be the edgeless graph on vertex set V and define the weighting
wH0 : V → N ∪ {0} to be uniformly zero. For 1 ≤ i ≤ m = |E|, let Hi have vertex
set V and edge set {e1, e2, . . . , ei} (so Hm = H). In particular, Hi is Hi−1 with edge
ei added. Let ei be the directed edge xi → yi (where we may have yi = xi). Define
wHi

: V → N ∪ {0} by
wHi

(xi) = wHi−1
(xi) + 1

and for all other vertices v ∈ V ,

wHi
(v) =

{
max{wHi

(xi), wHi−1
(v)} if xi ⇝ v in Hi

wHi−1
(v) otherwise,

where xi ⇝ v denotes that there is a directed path from xi to v. See Figure 1 for
an example of the updating rule. Note that for every i the weights of vertices on
a directed path in Hi form a non-decreasing sequence and that for every v ∈ V we
have wi(v) ≤ i.
The weight of a vertex v relates implicitly to the number of vertices that are images

of v in the copies of H in Gt, where a higher weight means fewer copies (cf. Lemma
2.3 below). In particular, it counts how many times the random process must pick
v in order to create a copy of H with an additional technical constraint that the
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Figure 1. An example of a vertex weighting on Hi−1 and the updated
weighting on Hi.

weights cannot decrease along directed paths. The intuition is as follows. Suppose
there is a number of images of xi lying within copies of Hi−1 in Gt. Only a fraction
of them will become an image of xi in a copy of Hi, as the random process must
choose them (assign a square) at a later time. Similarly, as the player assigns only
one circle at a time, the pool of images of yi in copies of Hi will shrink as the process
progresses. Hereditarily, the same applies to the vertices further away from xi in Hi

but accessible from it by directed paths.

Lemma 2.2. If a loopy graph H has minimum degree δ = δ(H) (where a loop edge
v → v contributes one to the degree of v), then wH(v) ≥ δ for every vertex v.

Proof. We prove the statement by induction on the number of edges m = |E(H)|.
The base case is trivial. If m = 0, then H = H0, δ(H0) = 0, and all vertices have
weight zero by definition.

For the inductive step, assume that m ≥ 1 and the result holds for all graphs with
fewer than m edges. Let δ = δ(Hm). Clearly, Hm−1 has minimum degree δ or δ − 1.
If Hm−1 has minimum degree δ then we are done, as wHm(v) ≥ wHm−1(v) ≥ δ for
every vertex v.

Suppose then that Hm−1 has minimum degree δ−1 and that wHm−1(v) ≥ δ−1 for
all v. Let em = xm → ym. We have wHm(xm) = wHm−1(xm) + 1 ≥ δ. Let S be the
set of all vertices v with a directed path from xm to v in Hm. We know that xm ∈ S
(there is a degenerate directed path from xm to xm) and wHm(v) ≥ wHm(xm) ≥ δ for
any v ∈ S. If S = V (Hm) then we are done, so suppose not and let T = V (Hm) \ S.
Note that by definition, there are no directed edges in Hm from a vertex in S

to a vertex in T . Indeed, suppose that ei = xi → yi with xi ̸∈ T and yi ∈ T .
Since xi ̸∈ T , xm ⇝ xi in Hm and so also xm ⇝ yi. We get yi ̸∈ T which gives
us a contradiction (see Figure 1). We construct a series of auxiliary graphs Fi for
i = 0, 1, . . . ,m on vertex set T as follows. Let F0 be the empty graph on vertex set
T . For each 1 ≤ i ≤ m, consider the edge ei = xi → yi in Hm.
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• If xi, yi ∈ T then let Fi be Fi−1 with edge xi → yi added.
• If xi ∈ T, yi ̸∈ T , then let Fi be Fi−1 with loop edge xi → xi added (with
multiplicity if xi → xi is already included as an edge).

• Otherwise, if xi ̸∈ T , let Fi = Fi−1.

These graphs naturally inherit the edge ordering from Hm.
Since xm ̸∈ T , em = xm → ym is not added to Fm and so we know that Fm has

strictly fewer than m edges. We also have that dFm(v) = dHm(v) for all v ∈ T , since
there are no edges ei = xi → yi with xi ̸∈ T and yi ∈ T . Thus by the inductive
hypothesis, the weighting wFm : T → N ∪ {0} has wFm(v) ≥ δ for all v ∈ T .

On the other hand, we can also show inductively that wFi
(v) = wHi

(v) for all v ∈ T
and all i ≤ m. This certainly holds for i = 0. Since there are no directed edges from
S to T in Hm, the set of vertices v ∈ T with xi ⇝ T is the same in both Hi and Fi,
for all i. Thus, if ei = xi → yi with xi ∈ T , we can see that for v ∈ T with xi ⇝ v, we
have wHi

(v) = max{wHi−1
(v), wHi−1

(xi)+1} = max{wFi−1
(v), wFi−1

(xi)+1} = wFi
(v)

and for v ∈ T with xi ̸⇝ v, we have wHi
(v) = wHi−1

(v) = wFi−1
(v) = wFi

(v). For the
same reason, if xi ̸∈ T , then adding edge ei to Hi−1 to get Hi has no effect on vertex
weights within T . In particular, we obtain wHm(v) = wFm(v) ≥ δ for all v ∈ T and,
consequently, wHm(v) ≥ δ for all v ∈ V (Hm), since we already had that wHm(v) ≥ δ
for v ∈ S = V (Hm) \ T . The proof of the lemma is finished. □

Recall that Gt is the semi-random graph after t time-steps. Before we can state
our main lemma, we need to introduce a few more definitions. Let H be an oriented
graph with a fixed edge order e1, e2, . . . , em. A homomorphism from H to Gt is a map
that respects the edge orientations and edge ordering in the natural way. Formally, a
homomorphism from H to Gt is an injective function ϕ : V (H) → V (Gt) such that:

a if e = u → v is a directed edge in H then ϕ(u) → ϕ(v) is a directed edge in Gt

which we call ϕ(e); and
b for i < j, the edge ϕ(ei) was added to Gt at an earlier time-step than the edge
ϕ(ej).

For a vertex v ∈ V (H), define S(v,H; t) to be the set of vertices u in Gt for each
of which there is a homomorphism ϕ from V (H) to V (Gt) such that u = ϕ(v). Less
formally, one can think of S(v,H; t) as being the number of vertices within Gt that
look like an image of the vertex v within some copy of the graph H.

We also need a notion of the diameter of an oriented graph. For any ordered pair
of vertices u, v ∈ H for which there exists a directed path from u to v, let d(u, v)
be the length of the shortest such path. Define diam(H) as the maximum value of
d(u, v) over all pairs u, v with a directed path from u to v. (We use the convention
that diam(H) = 0 if H is the empty graph.) Note that diam(H) ≤ |V (H)| − 1 and
that diam(H) is not a monotone function of graphs.
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Lemma 2.3. Let H be an oriented graph with a fixed edge order (e1, . . . , em), and
let wH be the vertex weighting defined above. Then, for any strategy S of the player,
any t < n/2, and any vertex v ∈ V (H) with w = wH(v),

E |S(v,H; t)| ≤ tw

nw−1

(
2(m!)D − 1

)
where D = maxi{diam(Hi)} ≤ |V (H)| − 1.

Proof. We will prove a slightly stronger statement: for any vertex v ∈ V (G) and any
i ∈ {0, 1, . . . ,m},

E |S(v,Hi; t)| ≤
twi(v)

nwi(v)−1

(
2(wi(v)!)

D − 1
)
, (2.2)

where we use the shorthand wi = wHi
. Then, the lemma will follow by taking i = m

and observing that wi(v)! ≤ m!. The proof is by induction on i.
The base case is trivial. Indeed, if i = 0, then by the definition of w0, the weighting

is identically zero. Clearly, for all v ∈ V (H),

S(v,H0; t) = n =
t0

n−1

(
2(0!)D − 1

)
,

and so the desired inequality (2.2) holds.
For the inductive step, suppose that i ≥ 1 and that (2.2) holds for Hi−1. We

will show that it also holds for Hi. If wi(v) = 0, then clearly |S(v,Hi; t)| ≤ n =
t0

n−1

(
2(0!)D − 1

)
and we are done. If wi(v) = 1, then v must be in some edge

in Hi. If v has a positive out-degree in Hi, then each vertex in S(v,Hi; t) has a
positive out-degree in Gt. Otherwise, v has a positive in-degree in Hi, and then each
vertex in S(v,Hi; t) has a positive in-degree in Gt. Either way, |S(v,Hi; t)| ≤ t =
t1

n0

(
2(1!)D − 1

)
and we are done again.

Moreover, as, obviously,

|S(v,Hi; t)| ≤ |S(v,Hi−1; t)|,

the result follows immediately for all vertices v with wi(v) = wi−1(v). Consequently,
we only need to consider vertices v where wi(v) ≥ 2 and wi(v) ̸= wi−1(v).

Let ei = x → y and set wi(x) = w. The condition wi(v) ̸= wi−1(v) only holds if
there is a directed path from x to v in Hi, in which case wi(v) = w too. We will
show by induction on the distance di(x, v) from x to v in Hi that

E |S(v,Hi; t)| ≤
tw

nw−1

(
2wdi(x,v) ((w − 1)!)D − 1

)
. (2.3)

Since di(x, v) ≤ diam(Hi) ≤ D, this will suffice to prove (2.2) and so to finish the
proof of the lemma.
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From now on we suppress the subscript i in di(x, y). First consider the case
d(x, v) = 0, that is, v = x. If u ∈ S(x,Hi; t), then there must be some time t′ < t so
that u ∈ S(x,Hi−1; t

′) and u was selected by the semi-random process at time t′ +1,
when the image of the edge ei was added to create a copy of Hi. The probability
that some vertex in S(x,Hi−1; t

′) was selected by the semi-random process at time
t′ + 1 is |S(x,Hi−1; t

′)|/n. Thus,

E |S(x,Hi; t)| ≤
t−1∑
t′=0

|S(x,Hi−1; t
′)|

n

and, by the linearity of expectation and (2.2), valid for i− 1, we have

E |S(x,Hi; t)| ≤
t−1∑
t′=0

E |S(x,Hi−1; t
′)|

n

≤
t−1∑
t′=0

(t′)w−1

n (nw−2)

(
2 ((w − 1)!)D − 1

)
≤ tw

nw−1

(
2 ((w − 1)!)D − 1

)
,

as required.
Now, consider the case d(x, v) > 0, that is, v ̸= x and there is a directed path from

x to v, and suppose that the hypothesis (2.3) holds for all u with d(x, u) < d(x, v).
We fix a directed path from x to v of minimum length. Let u be the vertex preceding
v on this path, so d(x, u) = d(x, v)− 1. Observe that, by the definition of the weight
function, wi(u) = w.
The number of vertices in S(v,Hi; t) is bounded by the number of edges in Gt that

are the images of the edge u → v under some homomorphism ϕ from Hi to Gt. We
partition the vertices in S(u,Hi; t) into classes according to how many of the edges
they are incident to are the images of u → v under some homomorphism. If a vertex
in S(u,Hi; t) is incident to exactly a such edges, it contributes at most a vertices to
S(v,Hi; t).

Thus, the total contribution to S(v,Hi; t) from all vertices in S(u,Hi; t) that are
incident to at most w such edges is at most w|S(u,Hi; t)|. On the other hand, the
expected number of vertices in S(u,Hi; t) that are incident to exactly a > w edges
that are images of u → v is, by Lemma 2.1(a), at most 2ta

a!na−1 . Combining these
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estimates, we have

E |S(v,Hi; t)| ≤ wE |S(u,Hi; t)|+ 2
∑

a≥w+1

a
ta

a!na−1

≤ wE |S(u,Hi; t)|+
2tw

w!nw−1

(
t

n
+

t2

n2
+ . . .

)
≤ w

tw

nw−1

(
2wd(x,u) ((w − 1)!)D − 1

)
+

tw

nw−1
· t

n− t
,

since w ≥ 2. It follows that

E |S(v,Hi; t)| ≤
tw

nw−1

(
2wd(x,u)+1 ((w − 1)!)D − w +

t

n− t

)
≤ tw

nw−1

(
2wd(x,v) ((w − 1)!)D − 1

)
,

as t < n/2. Thus, inequality (2.3) holds for all v with a directed path from x to v.
This finishes the proof of the lemma. □

Now we combine the two lemmas to prove the theorem.

Proof of Theorem 1.2. Let H be a graph on k vertices and m edges with degeneracy
d. Let H ′ be the (non-empty) d-core of H so, in particular, H ′ has minimum degree
at least d. We will show that, regardless of the strategy used by the player, a.a.s. H ′

is not a subgraph of Gt as long as t = o(n(d−1)/d). As a result, the same is true for
H ⊇ H ′.

As mentioned at the beginning of this section, it is enough to show that the player
cannot create a copy of H following a specific (but arbitrarily chosen) orientation
and order of the edges of H. Clearly, there are 2mm! different configurations to select
from (which is a large constant, but it does not depend on n). We may consider 2mm!
auxiliary games, one for each configuration, on top of the regular game. Each game
(both the auxiliary ones and the original one) is played by 2mm! + 1 perfect players
aiming to achieve their own respective goals. All the games are coupled in a natural
way, that is, exactly the same squares are presented by the semi-random process to
each of the players.

Fix an edge ordering and an orientation of the edges of H, and consider a perfect
player playing the corresponding auxiliary game. Applying Lemma 2.2 to the d-core
H ′ of H, we see that wH′(v) ≥ d for each vertex v ∈ V (H ′). Thus, by Lemma 2.3,
for each vertex v ∈ V (H ′)

E |S(v,H ′; t)| ≤ td

nd−1

(
2(e(H ′)!)|V (H′)|−1 − 1

)
= O

(
td

nd−1

)
.
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Note that the above bound holds for all vertices v ∈ V (H ′). This property is
slightly stronger than we need as we only need it for one vertex of V (H ′). Let us fix
then an arbitrary vertex v0 of H ′. If t = o

(
n(d−1)/d

)
, then we have E |S(v0, H ′; t)| =

o(1) and so, by the first moment method, a.a.s. there are no vertices in S(v0, H
′; t).

It follows that a.a.s. there is no copy of H ′, and thus of H, in Gt with this given order
and orientation of edges. In other words, the player playing this specific auxiliary
game does not win the game a.a.s at time t = o

(
n(d−1)/d

)
.

This holds for every edge ordering and every orientation of the edges of H. As
mentioned earlier, the number of such orderings and orientations is a constant de-
pending only on m = |E(H)|. Thus, by the union bounds over all auxiliary games,
a.a.s. all players playing auxiliary games lose their own respective games. It follows
that a.a.s. a perfect player playing the original game loses too (if not, the other play-
ers could all mimic the same strategy, and one of them would win her game). The
proof is finished. □

3. Proofs for hypergraphs when r = 1

In the case when r = 1, for each step t of the semi-random process for hypergraphs,
a single vertex ut is chosen uniformly at random from [n], the same as for the process
on graphs. The player then replies by selecting a set of s − 1 vertices Vt, and the
edge {ut} ∪ Vt is added.

The proofs of Theorems 1.4 and 1.5 follow the same approach as in the graph case
considered in Section 2 and, therefore, we only sketch them here emphasizing the
required differences. The proof of Theorems 1.4 is again based on Lemma 2.1 and,
indeed, proceeds mutatis mutandis.

Proof of Theorem 1.4. Follow the same approach as in the proof of Theorem 1.1,
dividing the process into phases where in each phase, the next vertex according to
the degeneracy ordering is added. In each phase, we must create all edges in which
the new vertex is the last vertex. Since r = 1 these can be constructed in exactly
the same way. □

Now we outline the proof of Theorem 1.5 by discussing the necessary changes in
the proof of the graph counterpart, which is Theorem 1.2. Let H be a hypergraph
on k vertices and m edges. For the purposes of the proof of Lemma 3.1, we allow
H to be not necessarily uniform, but with every edge containing at most s vertices,
and we also allow there to be potentially multiple copies of edges on < s vertices.
Call such a hypergraph s-bounded. This is analogous to the so-called loopy graphs
used in the proof of Lemma 2.2.

Fix an ordering of the edges (e1, e2, . . . , em) of H, and for each edge ei fix a leading
vertex xi. Given such anH, define an auxiliary directed graph(H) on the same vertex
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set V where for each edge ei ∈ H, we have that graph(H) contains the directed edges
xi → u for every u ∈ ei \ {xi}. Note that the only property of graph(H) we will
use is whether two vertices have a directed path between them, so while we will add
any arcs in opposite directions, we do not add any parallel arcs that are in the same
direction.

As in the graph case, we recursively define a weight function wH : V → N∪{0} on
the vertices of H = (V,E) that is dependent on the edge order and choice of leading
vertices. Let H0 be the empty hypergraph on vertex set V and define the weighting
wH0 : V → N ∪ {0} to be uniformly zero. For 1 ≤ i ≤ m = |E|, let Hi have vertex
set V and edge set {e1, e2, . . . , ei} (so Hm = H). In particular, Hi is Hi−1 with edge
ei added. Define wHi

: V → N ∪ {0} by

wHi
(xi) = wHi−1

(xi) + 1

and for all other vertices v,

wHi
(v) =

{
max{wHi

(xi), wHi−1
(v)} if xi ⇝ v in graph(Hi)

wHi−1
(v) otherwise,

where xi ⇝ v denotes that there is a directed path from xi to v.

Lemma 3.1. If an s-bounded hypergraph H has minimum degree δ = δ(H), then
wH(v) ≥ δ for every vertex v.

Proof. The proof follows the same approach as the proof of Lemma 2.2, using induc-
tion on the number of edges m = |E(H)|. The base case m = 0 is trivial.
For the inductive step, let δ = δ(Gm). If Gm−1 has minimum degree δ then we are

done, so we assume Gm−1 has minimum degree δ − 1 and that wGm−1(v) ≥ δ − 1 for
all v. We have wGm(xm) = wGm−1(xm) + 1 ≥ δ. Let S be the set of all vertices v
where there is a directed path from xm to v in graph(Gm).

We know that xm ∈ S and wGm(v) ≥ wGm(xm) ≥ δ for any v ∈ S. If S = V (Gm)
then we are done, so suppose not and let T = V (Gm) \ S. We construct a series of
auxiliary hypergraphs Fi for i = 0, 1, . . . ,m on vertex set T as follows. Let F0 be the
empty graph on vertex set T . For each 1 ≤ i ≤ m, consider the edge ei in Gm.

• If xi ∈ T then let Fi be Fi−1 with edge ei ∩ T added (with multiplicity if
already included).

• Otherwise, if xi ̸∈ T , let Fi = Fi−1.

Fm has strictly fewer than m edges and for all v ∈ T , the degree dFm(v) = dGm(v).
Thus by the inductive hypothesis, the weighting wFm : T → N∪ {0} has wFm(v) ≥ δ
for all v ∈ T . On the other hand, we can also show that wFi

(v) = wGi
(v) for all

v ∈ T and all i ≤ m by the same argument as in Lemma 2.2. □
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Let Gt = G
(1,s)
t be the semi-random hypergraph after t time-steps and let ut be

the single vertex in the randomly chosen set Ut at time t. Before we can state our
main lemma, we need to generalize some of our earlier definitions to hypergraphs.
Let H be an hypergraph with a fixed edge order e1, e2, . . . , em where each edge ei
is assigned a leading vertex xi ∈ ei. A homomorphism from H to Gt is a map that
respects the leading vertices and edge ordering in the natural way (analogously to
the graph case). For a vertex v ∈ V (H), define S(v,H; t) to be the set of vertices
in Gt which are the image ϕ(v) for some homomorphism ϕ from V (H) to V (Gt).
We also define the diameter diam(H) of the hypergraph to be the diameter of the
auxiliary graph graph(H), in the same sense as defined in Section 2.

Lemma 3.2. Let H be an s-graph with a fixed edge order e1, e2, . . . , em where each
edge ei is assigned a leading vertex xi ∈ ei. Let wH be the vertex weighting defined
above. Then, for any strategy S of the player, any t < n/2, and any vertex v ∈ V (H)
with w = wH(v),

E |S(v,H; t)| ≤ tw

nw−1

(
2 ((s− 1)mm!)D − 1

)
where D = maxi{diam(Hi)} ≤ |V (H)| − 1.

Proof. The proof of this lemma follows the exact same approach as the proof of
Lemma 2.3. Specifically, one can show by induction on i that if hypergraph H has
m edges then for any vertex v ∈ V (H) and any i ∈ {0, 1, . . . ,m},

E |S(v,Hi; t)| ≤
twi

nwi−1

(
2 ((s− 1)wiwi!)

D − 1
)
,

where wi = wHi
(v). There are two changes needed in the proof. The first is to use

the directed paths given by the auxiliary graphs graph(Hi), whereas in the original
proof the Hi’s were themselves oriented.

The second is where the extra (s− 1)wD factor arises. It comes when considering
the case where d(x, v) > 0 and there is a directed path from x to v. We fix a directed
path from x to v in graph(Hi) of minimum length and let u be the vertex preceding
v on this path, so d(x, u) = d(x, v)− 1.

There must be a hyperedge e ofHi containing both u and v in which u is the leading
vertex. We partition the vertices in S(u,Hi; t) into classes according to how many of
the hyperedges they are incident to are the images of e under some homomorphism.
If a vertex in S(u,Hi; t) is incident to exactly a such hyperedges, then it contributes
at most (s− 1)a vertices to S(v,Hi; t). This is the number of hyperedges multiplied
by the number of other vertices in each hyperedge.

Thus, the total contribution to S(v,Hi; t) from all vertices in S(u,Hi; t) that are
incident to at most wi such edges is at most (s−1)wi|S(u,Hi; t)|. On the other hand,
the expected number of vertices in S(u,Hi; t) that are incident to exactly a > wi
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edges that are images of e is, by Lemma 2.1(a), at most 2ta

a!na−1 . Combining these
estimates, we have

E |S(v,Hi; t)| ≤ (s− 1)wiE |S(u,Hi; t)|+ 2
∑

a≥wi+1

(s− 1)a
ta

a!na−1

and the rest of the proof follows along the same lines as before. □

Now we combine the two lemmas to prove the lower bound.

Proof of Theorem 1.5. Let H be a hypergraph on k vertices and m edges with degen-
eracy d. Let H ′ be the (non-empty) d-core of H so, in particular, H ′ has minimum
degree at least d.

Using the same coupling argument as in the proof of Theorem 1.2 one can see
that, regardless of the strategy used by the player, a.a.s. H ′ is not a sub-hypergraph
of Gt as long as t = o(n(d−1)/d). As a result, the same is true for H ⊇ H ′. □

4. Open Problems

Let us finish the paper with a few open problems. The value of τPH
is determined

for any uniform hypergraphH (if r = 1); see Theorem 1.6. (This covers the case when
H is a graph.) In fact, we establish that a.a.s. one may construct H in t ≫ n(d−1)/d

rounds but cannot do it in t = o
(
n(d−1)/d

)
rounds, where d is the degeneracy of H.

Note that the nature of our proofs means that they work equally well when H has
parallel edges and/or if H is a non-uniform hypergraph with all edges of size at most
s. (In the graph case, this amounts to a multi-graph with loops.) The definition of
degeneracy has to be adjusted accordingly but the proofs go through without any
alteration.

It remains to investigate the probability of success after t = cn(d−1)/d rounds,
where c is some fixed positive constant. It is natural to expect that an optimal
strategy produces (1 + o(1))f(c) copies of H in expectation for some deterministic
function f(c), and then the limiting probability that the strategy fails falls into the
open interval (0, 1). Under some structural properties of H, it may actually tend to
exp(−f(c)), per analogy with the purely random (hyper)graph (see [12, Chapter 3]).
However, determining an optimal strategy and analyzing it might be challenging.

Problem 4.1. Determine the limiting probability that PH holds for t = cn(d−1)/d for
some positive constant c.

Note also that Theorem 1.6 applies to a fixed hypergraph H. If the order of H
is an increasing function of n, then our results do not apply. In the extreme but
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quite natural case, H may have n vertices, so the player is after a spanning sub-

hypergraph of G
(r,s)
t isomorphic to H. For graphs, as mentioned in the introduction,

we know that a.a.s. one may construct a copy of a graph with bounded degree in
(3∆/2 + o(∆))n rounds [2]. However, these upper bounds are asymptotic in ∆.
When ∆ is constant in n, such as in both the perfect matching and the Hamiltonian
cycle setting, determining the optimal dependence on ∆ of the number of rounds
needed to construct H remains open. A good starting point (apart from matchings
and Hamiltonian cycles already considered in [6, 8, 9]) might be to investigate F -
factors, that is, spanning subgraphs whose all components are isomorphic to a fixed
connected graph.

Problem 4.2. Given a graph F , estimate the number t of rounds needed to a.a.s.
construct an F -factor in Gt on n vertices, where n is divisible by |V (F )|.

For hypergraphs, we know much less in the case when r, the number of randomly

selected vertices at each step, is greater than 1. We can define τ
(r)
PH

analogously to

τPH
by replacing G

(s)
t = G

(1,s)
t with G

(r,s)
t . In particular, τ

(1)
PH

is the τPH
explored in

detail in this paper. The most ambitious goal would be to obtain a general formula

for τ
(r)
PH

.

Problem 4.3. Given an s-graph H and an integer 2 ≤ r < s, determine τ
(r)
PH

.

In [1], we obtained a general lower bound τ
(r)
PH

≥ nr−(k−s+r)/m, where k = |V (H)|
and m = |E(H)|, showed its optimality for certain classes of hypergraphs and better
bounds for some others. However, the general question remains wide open. To
answer it, we believe, one would need to come up with entirely new strategies of the
player.
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