
Performance of Community Detection Algorithms Supported
by Node Embeddings

Bartosz Pankratz∗ Bogumił Kamiński† Paweł Prałat‡

May 12, 2024

Abstract

Grouping of nodes into subsets, that are relatively densely interconnected and separable from
the rest of the network is a property often displayed in many real-world complex networks; this
feature is known as a community structure. There is a growing demand for algorithms, that
can find partition resembling the community structure of a given network as closely as possible.
However, most popular algorithms for community detection in graphs have one serious drawback,
namely, they are heuristic-based and in many cases are unable to find a near-optimal solution.
Moreover, their results are volatile, impacting the replicability of their results.

In this paper, we investigate if the performance of greedy algorithms might be improved
by initialization of such algorithms with some carefully chosen partition of nodes, namely a
partition obtained by embedding the nodes into real numbers space and then running a clustering
algorithm on this latent representation. We believe that embedding will filter unwanted noise
while retaining the proximity of nodes belonging to the same community or will learn more
complex and elusive relations between nodes. Then, clustering algorithms run on this embedding
will create a stable partitioning that will reduce the uncertainty in the initial phases of the
community detection algorithms.

The experiments show that the proposed procedure significantly improves the results over
baseline community detection algorithms, namely Louvain and Leiden. It also reduces the
inherent volatility of such algorithms. The impact depends on the given graph’s properties,
especially the strength of the community structure and degree distribution. The largest boost
in performance is given in the cases when networks are “noisier”, that is when the community
structure is less pronounced and there are many connections between communities. Furthermore,
the design and parametrization of the procedure depend on the network’s topology, not on the
size of the network itself.

1 Introduction

Empirical complex networks tend to display a modular organization which means that one can
separate sets of nodes (inducing subgraphs) with a considerably larger density of edges between nodes

∗Decision Analysis and Support Unit, SGH Warsaw School of Economics, Warsaw, Poland; e-mail:
bpankra@sgh.waw.pl

†Decision Analysis and Support Unit, SGH Warsaw School of Economics, Warsaw, Poland; e-mail:
bogumil.kaminski@sgh.waw.pl

‡Department of Mathematics, Toronto Metropolitan University, Toronto, ON, Canada; e-mail:
pralat@torontomu.ca

1

in such sets than between two different sets. Such a property is widely referred to as a community
structure [12]. In social networks, communities may represent groups by interest. For example in
citation networks, they correspond to related papers. In Web communities, they are formed by pages
on related topics, etc. Being able to identify communities in a network could help us utilize this
network more effectively and learn much more interesting and non-trivial relations between nodes.
Indeed, with growing awareness of the network-like nature of many phenomena in the surrounding
world, community detection is productively used in many different scenarios: identification of interest
groups in social networks [5, 10, 41], frauds in telecommunications networks [35, 37], or various
biomedical applications [17, 45].

For a graph G = (V,E), with n = |V | nodes and m = |E| edges, we define each community in G
as a subset C of V that induces a subgraph G[C]. Obviously, we expect that G[C] is connected but,
more importantly, nodes in a community should be more likely to be connected to other members of
the same community than to nodes in other communities.

Partition P = {P1, P2, . . . , Pℓ} of the set V is a grouping of its elements into non-empty subsets in
such a way that every element is included in exactly one subset and subsets are pairwise disjoint. The
goal of community detection process is to find a partition that captures the structure of communities
in a graph. However, we should ask a very important question: how can one asses that the partition
P represents the underlying community structure in G?

Communities are somewhat elusive; without full knowledge about a graph generating process
(which is obviously the case for most real-world networks) it is not clear what score function or
measure should be used to assess them and, consequently, what algorithm should be used to detect
them, especially since no algorithm can uniquely solve community detection task [33]. This problem
is widely discussed, see, for example, [26, 50, 28], and plenty of different score functions were proposed
up to them. The modularity function [30] is possibly the most often used one.

The Modularity function measures the difference between the number of edges within groups
induced by a given partition P and the expected number of such edges if they were attached randomly,
regardless of community structure. The expected number of edges is given by an appropriately
selected null-model, usually Chung-Lu random graph model [1].

For a graph G = (V,E), a given partition P = {P1, P2, . . . , Pℓ} of V and Chung-Lu null-model,
the modularity function is defined as follows:

qG(P) =
∑
Pi∈P

eG(Pi)

|E|
−

∑
Pi∈P

(
vol(Pi)

vol(V)

)2

, (1)

The first term in (1),
∑

Pi∈P e(Pi)/|E|, is called the edge contribution, and it computes the fraction of
edges that fall within one of the parts. The second one,

∑
Pi∈P(vol(Pi)/vol(V))2, is called the degree

tax, and it computes the expected fraction of edges that do the same in the corresponding random
graph (the null-model). The intuition behind the modularity function is straightforward; it measures
how much the community structure in G differs from the one in the purely random graph, where we
expect no community structure. Obviously, a higher value of modularity indicates a stronger division
of a network. The natural simplicity of the definition of modularity is its biggest advantage; it is, at
the same time, a perfect candidate for global criterion to define communities, a quality function of
community detection algorithms, and a way to measure the presence of community structure in a
network, without introducing any specific centrality of (dis)similarity measures for nodes.

Finding an optimal partition P of graph G is a non-trivial problem. Solving it directly, by
enumerating over all partitions of the set of nodes V until the maximum modularity q∗(G) is

2

reached, is practically impossible. Even for a small graph, with e.g. 15 nodes, such a procedure
will be computationally too expensive to conduct. Moreover, optimizing modularity is a NP-hard
problem [7]. There exist exhaustive optimization methods (for example, via the Bayan algorithm [2]
or simulated annealing [16]), but the complexity of the problem limits their usability for large
graphs. As a result, to partition the graph one must rely on heuristic-based, greedy algorithms.

One of the most popular, fastest, and best performing [25] one is the Louvain algorithm [6].
Its core idea is simple yet effective. It is a two-step technique: at first, it locally optimizes the
modularity in the neighbourhood of each node vi. It considers all neighbours of vi and moves it to the
community that provides the largest increase of the score function. During the second step, when all
nodes are properly placed, it aggregates the communities into super-nodes, where all edges between
two communities are replaced by a single weighted edge. Then, both phases are repeated until no
improvement of the score function can be further achieved. By default, the Louvain algorithm
starts from a singleton partition in which each node belongs to its own community. However, it is
possible to initialize the algorithm with a preexisting partitioning.

Louvain algorithm offers a great compromise between the accuracy of the estimate of the
modularity maximum, which is better than that delivered by the greedy techniques, and efficiency—
the run time is only O(|V | ln2 |V |). But it has some severe and known drawbacks.

First, the obtained results are heavily stochastic, that is, each run of the algorithm on the same
network may lead to vastly different partitions. Moreover, it may create weakly connected or even
internally disconnected communities [44]. These problems are caused by two factors, both inherent
to the nature of the algorithm. It is a greedy algorithm; sometimes, especially on early iterations,
nodes might be added to communities they should not belong to because the algorithm finds the
local best solution without considering the broader structure of the graph. Then, during the second
phase, it merges the community into a supernode making it impossible to backtrack and fix these
bad early connections.

This shortcoming might be addressed in two manners; either by allowing the algorithm to
backtrack and refine the created communities in each step, which was proposed in the Leiden
algorithm [44], or by ensuring that the initial partitioning is stable and contains the nodes that
certainly belong to the same community, as in ECG (Ensemble Clustering algorithm for Graphs), a
consensus clustering algorithm [36]. At the beginning, it generates k independent initial partitions:
P1,P2, . . . ,Pk based on different random permutations of nodes. Each partition is created by
running the first iteration(s) of Louvain. Then ECG aggregates outputs into Gw, a weighted
modification of graph G, where the weight of an edge vivj belonging to the 2-core of G depends on
the number of co-appearances in the previously obtained partitions. Finally, the Louvain algorithm
is run on Gw.

1.1 Contributions

In the conference version of this paper [32], we proposed a new, three-step method of community
detection with initial partitioning obtained on the embedded representation of a graph. The procedure
starts with embedding the graph nodes in the space of real numbers. Then, clustering algorithm is
run on the data. The algorithm is fine-tuned to obtain a stable partition which is finally used to
initialize the Louvain or Leiden algorithms. In this paper, we use the EC prefix (EC stands for
Embedding-Clustering) to denote the proposed extension of Louvain or Leiden algorithms.

The reasoning behind this approach is as follows: carefully selected embeddings preserve the
proximity of nodes belonging to the same community and clearly separate them from the other

3

ones, reducing the chance of misguided connections at the early stages of the algorithm. However,
relying only on the embedded representation causes problems on its own; by their nature (typically
local), embeddings preserve some properties of the nodes but filter some other ones, resulting in
the inherent information loss that might induce a significant bias if we decide to run the clustering
algorithm only on the embedded data and use it as the final partition. Therefore, the most promising
approach is to combine both methods.

Initial experiments show that, indeed, this method is capable of improving the performance of
both, Louvain and Leiden algorithms. However, rerunning the presented procedure for every graph
is tedious and impractical. Thus, it is necessary to deepen the analysis and find patterns that will
serve as guidance for potential users of this combined approach.

The goal of this paper is to find such regularities in data and better understand the reasons behind
the performance of the presented method. To achieve that, we run far more complex experiments using
the artificial networks generated by the ABCD (Artificial Benchmark for Community Detection)
model [23, 20] and perform various tests on the obtained results. Using artificial networks, we could
try out the proposed method in various, yet controllable, environments and better understand the
relations between the properties of the network and the performance of the additional clustering
step. Moreover, to ensure that results are valid for different networks, we run similar experiments on
datasets containing various mutual like networks among verified Facebook pages [40].

2 Method Description

Let G = (V,E) be a graph on the set of n nodes V = {v1, v2, . . . , vn} and the set of m edges
E = {e1, e2, . . . , em}. In order to find the partition P = {P1, P2, . . . , Pℓ} of V that tries to maximize
the modularity function qG(P), we perform the following three steps:

Step 1: Find an embedding function E : V → Rs which embeds each node of graph G into a
s-dimensional vector E(v) = {z1, z2, . . . , zs}, where s ≪ n.

Step 2: Run the clustering algorithm on the obtained latent representation E to get partition
A = {A1, A2, . . . , Ak}. The goal is to use A as an initializing partitioning for the Louvain (or
Leiden) algorithm, so the number of clusters k should be significantly larger than the desired
number of parts in the partition P: k ≫ ℓ.

Step 3: Run the Louvain (or Leiden) algorithm on graph G using partition A as a starting
point. The result of this procedure, partition P, is the outcome of our algorithm.

Figure 1 summarizes the proposed method.
One of the main reasons why one might want to use the embeddings is the nature of graphs

as data structures; they are discrete objects. As a result, the number of possible approaches to
community detection problem is far smaller than in the case of clustering of real numbers data. It
forces one to use heuristic-based approaches such as the classical Louvain algorithm. On the other
hand, embedded latent representation is a vector of real numbers, which creates new possibilities.
Mainly because there are more algorithms designed for working with real numbers and they are often
more efficient [3]. Also, a properly selected embedding might be considered a form of “denoising”
data. It retains only the properties of nodes that are important for the task at hand, removing the
remaining useless relations, resulting in a representation of data that is significantly lower dimensional
and possibly easier to cluster.

4

Node

embedding

Initial clustering

Louvain

a) b)

c) d)

Figure 1: Schematic of the proposed method. Graph G (a) is embedded into latent space (b).
Then, the clustering is performed on the embedded data (c). Obtained clusters are used as a starting
point for the Louvain (or Leiden) algorithm (d).

However, experimental results [42] show that using only an embedded representation to obtain
the desired partition is not enough. Embeddings are usually too reductive, and the representation
gap between graph G and its latent representation E is too large. Indeed, embeddings preserve some
proximity of nodes but remove other useful global information that might be crucial to achieving a
satisfactory result. Overcoming this issue is the main reason why the proposed solution consists of
two separate partitioning steps. The reasoning is as follows: starting the Louvain with a visibly
smaller starting set of nodes in which most sensitive elements are already connected should improve
the results and decrease the volatility of the method.

Moreover, such a combined method has one more important advantage over traditional greedy
algorithms; it combines different definitions of communities, giving a more complex and refined
perspective on the task. Greedy algorithms, such as Louvain, optimize a score function (usually
modularity), which defines communities on a global scope, considering the graph as a whole. This is
reasonable in many cases, but it is also somewhat reductive; it ignores the specificity of the singleton
community as a separate entity, with its own dynamic and characteristics. On the other hand,
embedding algorithms aim at preserving the proximity of nodes. As a result, using them in the first

5

step of the described procedure will help preserve the local properties of communities, resulting in a
more nuanced approach to the community detection problem.

Similarly, it is expected that these ideas will also improve the quality of the results obtained
by Leiden algorithm—because of additional refinement stage, it gives significantly better results
compared to Louvain algorithm, but still, it is a greedy algorithm with all the inherent issues
mentioned above.

Starting any of the two community detection algorithms from a properly generated initial partition
seems to be a good idea but there are two problematic issues that we need to deal with: selection of
embedding E and selection of clustering algorithm. There are plenty of different embedding methods
to choose from [8, 18, 14, 24], that measure the proximity between nodes in different manners, which
makes the selection of the algorithm a demanding task, often requiring a domain expert knowledge or
time-consuming experiments. One of the goals of this work is to look at various embedding algorithms
and test their behaviour in this particular task in order to find the best solution to create guidance
for future users. We use following embedding algorithms: Locally Linear Embedding (LLE) [39],
Laplacian Eigenmaps (LE) [4], deepWalk [34], node2vec [15], LINE (Large-scale Information
Network Embedding) [43], SDNE (Structural Deep Network Embedding) [48], GraRep [9] and
HOPE (High-Order Proximity preserved Embedding) [31]. Selected algorithms vary in complexity
level and the way of measuring the proximity, allowing us to cover many different scenarios.

For each embedding, we also want to compare the results with divergence scores obtained by
the CGE (Comparing Graph Embeddings) [22, 19]—unsupervised framework created to compare
and asses different embeddings. The CGE framework computes for a given embedding two scores:
global and local. The CGE global score verifies how well the embedding captures the edge densities
within and between communities of the graph, i.e. if an embedding is a good predictor of graph’s
global structure on an aggregate level. To complement it, the CGE local score verifies the quality of
the embedding for predicting the presence of edges in the graph, i.e. if an embedding is a good local
predictor of individual entries of graph’s adjacency matrix. We believe that this framework might
become a useful tool, significantly simplifying the selection process of a suitable embedding.

The biggest advantage of the embedded representation of graph’s nodes is the fact that the data is
not discrete anymore. Because of that, we might use a broader array of clustering algorithms [46, 49].
However, finding a proper one might be challenging.

There are plenty of well-known, efficient, and scalable algorithms; they might result in vastly
different behaviour of the initial partitioning. Density-based algorithms, such as DBSCAN (Density-
Based Spatial Clustering of Applications with Noise) [11] or HDBSCAN (Hierarchical Density-
Based Spatial Clustering of Applications with Noise) [29], will cluster only the points occupying
the same densely connected regions. In contrast, the points in the sparsely inhabited areas will be
considered noise and will not be assigned to any cluster. Thus, the initial partition A will contain
only nodes, which are almost surely parts of the same communities, leaving the more ambiguous
nodes for Louvain or Leiden algorithm. Another possibility is to use distribution-based clustering
methods, such as Gaussian Mixture Models (GMM) [38], or traditional, centroid-based methods,
such as k-Means [27]. The most significant advantage of these algorithms is that they will not leave
nodes without initial assignment, further reducing the ambiguity of the task. Moreover, they allow
users to fine-tune the number of clusters in the initial partition A, making it possible to adjust the
impact of embedding step on the final partitioning P.

The experiment presented in this work aims to find a proper, generalized recipe for the proposed
three-step procedure. It is necessary to test and understand how embeddings and clustering algorithms

6

behave and interact in the context of community detection problem—especially if we do not want
the proposed approach to become merely a thought experiment. Iterating between all the possible
combinations of embedding methods and clustering algorithms without any prior is time-consuming
and cumbersome. It will render this method unusable in any practical context.

3 Experiment Design

The main body of the experiment was written in Julia 1.7.0 programming language with additional
code and packages written in Python 3.7.10. The code for execution and analysis of the experiments
is available on the GitHub repository, and so are Jupyter notebooks used to generate plots and
tables ∗.

The experimental design was as follows: at the beginning, a comprehensive family of graphs
with various properties was generated using the ABCD model [23, 21, 20]. This random graph
model generates networks with community structure and power-law distribution for both degrees
and community sizes. We used the following parameter sweep: the number of nodes n = 1000,
tail exponents of the power-law distributions for community sizes β ∈ {1.1, 1.5, 1.9} and degree
distributions γ ∈ {2.1, 2.5, 2.9}, community sizes cmin = 0.005n and cmax = 0.2n, the minimum
degree δ ∈ {1, 2, 5}, the maximum degree D =

√
n and, finally, we set the mixing parameter

ξ ∈ {0.15, 0.25, 0.35, 0.5, 0.65, 0.75, 0.85} that controls the level of noise in the resulting graph.
In the experiments, we use artificially created networks for one important reason—such models

are fully controllable and they cover a variety of different network topologies. Another advantage of
synthetic models is so-called ground-truth planted in them. We can define ground-truth as a set of
attributes assigned to nodes of graph G that influence how edges, and as a result, communities in G,
are formed. With such knowledge, the quality of obtained partitioning P can be easily assessed with
standard clustering similarity measures.

Unfortunately, there are two major issues with measuring the similarity of ground-truth and
partitioning P; firstly, real-world networks rarely have predefined ground-truth. As a result,
performance of algorithm relative to ground-truth in synthetic model is not easily translatable
to the general case. Processes that create the community structure are different, depending on
the phenomenon that given network represents. We cannot ensure that algorithm able to match
ground-truth in one case will perform as good in another scenario. Secondly, one might argue if
using the ground-truth is a proper approach [33] in general. We cannot ensure, neither theoretically
nor practically, that some observed discrete-valued node attributes used as labels are indeed, a good
representation of an underlying mechanism responsible for creation of communities.

Considering these facts, we evaluated the performance of community detection algorithms using
the score function, namely modularity. Our goal is to find an algorithm that maximizes the modularity
function. In our opinion, this approach will result in the most unbiased comparison of different
algorithms. However, in the case of synthetic ABCD graphs, we also measured the similarity (using
the Adjusted Mutual Information Index (AMI) [47]) of obtained partitioning and the ground-truth
in order to discuss the differences between both approaches.

To further test the performance of EC methods, experiments using real-world networks were
also conducted. The used datasets were initially collected for GEMSEC (Graph Embedding with
Self Clustering) paper [40]. They represent mutual like networks among verified Facebook pages
(edge denotes a situation when two pages give like to each other) —data was collected based on

∗https://github.com/bartoszpankratz/ECCD

7

https://github.com/bartoszpankratz/ECCD

Facebook official page categories. Types of sites included TV shows, politicians, athletes, and
artists among others. Table 1 summarizes the datasets, they vary in size, density and clustering
strength. It is worth mentioning that dataset contains only the basic structure of the networks,
without any additional metadata or ground-truth. As we mentioned previously, our goal is to find
an algorithm that maximizes the modularity.

Table 1: Description of the empirical social networks used in the experiment, data is taken from [40].

Clustering
Dataset |V | Density Coefficient

Artists 50,515 0.0006 0.1140
Athletes 13,866 0.0009 0.1292

Celebrities 11,565 0.0010 0.1666
Companies 14,113 0.0005 0.1532

Government 7,057 0.0036 0.2238
Media 27,917 0.0005 0.1140

Politicians 5,908 0.0024 0.3011
TV Shows 3,892 0.0023 0.5906

Louvain, Leiden, and ECG algorithms were each run 50 times for every given graph. As a
result, we were able to compute the average modularity and volatility of each algorithm. These
statistics were later used as a baseline for the comparison with EC methods Then, every graph
was embedded using the following algorithms from the Python OpenNE package †: LLE, LE,
deepWalk, node2vec, LINE, SDNE, GraRep and HOPE. For each of the selected algorithms,
the dimensions d ∈ {8, 16, 32, 64, 128, 256} were tested for ABCD artificial graphs. For real networks,
the value of d was extended to the range {8, 16, 32, 64, 128, 256, 512, 1024}.

For deepWalk and node2vec, we use the following fixed values of parameters: number of
walks per node r = 10, length of the random walk ℓ = 100 and context window size k = 10.
Additionally, for node2vec, we tested values of parameters p and q in [0.25, 0.50, 1, 2, 4]. For
LINE, we set the number of negative edges drawn from the noise distribution K to 5. In the case
of the SDNE algorithm, we tested values of the reconstruction weight of the non-zero elements
β ∈ [2, 3, 4, 5, 6, 7, 8, 9, 10] and sizes of the hidden layer in h ∈ [128, 256, 512]. For GraRep, the order
proximity k was in the range [1, 2, 4, 8]. Finally, the HOPE algorithm was run for all four proximity
measures: Katz index, Personalized PageRank, Common neighbours and Adamic-Adar.

To find the most suitable clustering algorithm we tested the following three methods for every
embedding E : k-Means, HDBSCAN and GMM. For HDBSCAN, we fix the minimum cluster
size to 2 and test the minimum sample size, the parameter measuring how conservative the clustering
will be, ranging from 1 to 10 with step 1. The larger the value of minimum sample size is, the more
nodes will be declared as noise, and only really similar ones will be merged into the clusters. For
k-Means and GMM, a number of clusters k depends on the experiment. For artificial networks, we
test k from 500 to 32 with step 2. For Facebook graphs, the number of clusters was set to k = |V |/ℓ,
where ℓ, the expected volume of each cluster Ai, changes from 2 to 2048 with step 2, but cannot
exceed 0.2×|V |. Finally, every partition A was used as the initial partitioning for both Leiden and

†https://github.com/thunlp/OpenNE

8

https://github.com/thunlp/OpenNE

Louvain algorithms. To achieve comparable results, both methods were run 50 times on every A.

4 Results

In this section, we discuss the results of the aforementioned experiments. Subsection 4.1 focuses on
general results. We compare the performance of baseline algorithms (Louvain, Leiden and ECG)
with EC extensions of Louvain and Leiden on the artificial networks generated by the synthetic
ABCD model. It allow us to test a vast array of possible networks, with different topologies.
In comparisons we use the best performing EC algorithm (if not otherwise stated), namely, a
combination of embedding algorithm and clustering algorithm that results in the largest modularity
increase, compared to the respective baseline—Louvain or Leiden algorithm. In the latter part of
the section, we discuss the results in relation to ground-truth communities, namely, we compare the
obtained partitions with the ground-truth for each graph, with AMI index. In Subsection 4.2, we
discuss the impact of different embedding algorithms on the performance of EC method. Our goal is
to find which embedding algorithms are the most suitable for the proposed procedure. Subsection 4.3
discusses how clustering algorithm impact the quality of the results. Finally, in Subsection 4.4 results
of the experiments on real-world networks are presented.

4.1 Results on ABCD Networks

Table 2 presents the results for one representative set of parameters: β = 1.5, γ = 2.5, and δ = 5
and different values of ξ. The results obtained by Louvain after using a proposed initialization
procedure are improved, which is not always the case for the ECG algorithm, which seems very
sensitive to the graph’s parametrization. Both EC-Louvain and EC-Leiden can improve over the
vanilla Louvain or in the worst case scenario, return the same value of modularity. In some rare
cases, EC-Louvain can achieve performance similar to Leiden, but in most cases, it gives small to
mediocre improvement. What is most interesting is that adding the initial partitioning A to Leiden
significantly improves its quality and reduces volatility.

Table 2: Modularity increase with respect to baseline (plain Louvain) for ABCD graphs with
different values of ξ and fixed β = 1.5, γ = 2.5, and δ = 5. Column Baseline Louvain shows the
average modularity index (modularity × 100) with standard deviation. Other columns present the
modularity change relative to Louvain (in percentage). For EC methods, the best performing
combination of embedding and clustering algorithms was chosen.

Relative Change (in %)

ξ
Baseline
Louvain ECG Leiden EC-Louvain EC-Leiden

0.25 68.04 ± 0.05 -0.35 ± 0.01 0.05 ± 0.01 0.03 ± 0.03 0.06 ± 0.00
0.35 58.13 ± 0.50 0.05 ± 0.02 0.50 ± 0.04 0.25 ± 0.24 0.52 ± 0.00
0.5 45.26 ± 0.85 2.00 ± 0.12 3.52 ± 0.29 1.32 ± 0.70 4.24 ± 0.02

0.75 30.53 ± 0.36 -6.50 ± 0.28 6.40 ± 0.29 3.20 ± 0.45 10.14 ± 0.21

The impact of ξ, a noise parameter that controls the expected fraction of edges between

9

communities, on the performance of the algorithms is visible in Table 2. When ξ is small, we have a
graph with strongly separated communities. When ξ is large, then communities are more blurred
and mixed together. We see that the advantage of using the augmented methods is diminishing with
a decreasing ξ, which seems natural—for small ξs task is easy enough for the baseline algorithms,
so there is no need to augment them in any way. Similarly, when a change of the other structural
parameters of ABCD model distorts the community structure of the graph, then the advantage of
using the augmented methods is more visible as presented in Table 3.

Table 3: Modularity increase with respect to baseline (plain Louvain) for synthetic ABCD graphs
with different parametrizations. Column Baseline Louvain shows the average modularity index
(modularity × 100) with standard deviation. Other columns present the modularity change relative
to Louvain (in percentage). For EC methods, the best performing combination of embedding and
clustering algorithms was chosen.

(a) Different values of δ and fixed ξ = 0.5, β = 1.5 and γ = 2.5.

Relative Change (in %)

δ
Baseline
Louvain ECG Leiden EC-Louvain EC-Leiden

1 91.50 ± 0.09 -0.79 ± 0.09 0.13 ± 0.08 0.01 ± 0.10 0.33 ± 0.03
2 56.47 ± 0.28 -8.96 ± 0.23 1.81 ± 0.29 0.19 ± 0.22 3.23 ± 0.15
5 45.26 ± 0.85 2.00 ± 0.12 3.52 ± 0.29 1.32 ± 0.70 4.24 ± 0.02

(b) Different values of β and fixed ξ = 0.5, γ = 2.5 and δ = 5.

Relative Change (in %)

β
Baseline
Louvain ECG Leiden EC-Louvain EC-Leiden

1.1 41.13 ± 1.16 5.29 ± 0.42 7.06 ± 1.19 2.05 ± 1.11 11.09 ± 0.04
1.5 45.26 ± 0.85 2.00 ± 0.12 3.52 ± 0.29 1.32 ± 0.70 4.24 ± 0.02
1.9 43.22 ± 1.00 2.12 ± 0.21 3.22 ± 0.54 1.20 0.89 4.91 ± 0.02

(c) Different values of γ and fixed ξ = 0.5, β = 1.5 and δ = 5.

Relative Change (in %)

γ
Baseline
Louvain ECG Leiden EC-Louvain EC-Leiden

2.1 44.87 ± 1.05 2.13 ± 0.14 2.93 ± 0.31 1.00 ± 0.77 (3.40 ± 0.01
2.5 45.26 ± 0.85 2.00 ± 0.12 3.52 ± 0.29 1.32 ± 0.70 4.24 ± 0.02
2.9 41.77 ± 0.73 1.95 ± 0.46 5.88 ± 0.66 0.84 ± 1.09 9.83 ± 0.07

When minimum degree is set to δ = 1, the difficulty is significantly reduced because the substantial
portion of nodes have only one neighbour and inevitably belong to the same community. But even
then, EC methods improve over baseline algorithms. When δ grows, the problem becomes more

10

demanding and gains from using the augmented methods are more visible. But EC-Leiden has
one interesting property: relative to the plain Leiden, the improvement of modularity gained by
EC-Leiden decreases when δ grows. For δ = 1, the gain from using EC-Leiden is about 2.7 times
greater than the gain from the usage of regular Leiden. When δ = 5, it is only 1.2 times. This
shows an interesting property of the proposed framework. With a proper embedding selected, which
learns non-trivial relationships in a given graph, it is possible to deal with even the most ambiguous
nodes and refine the final partition far better than other methods.

β is a parameter of the power-law distribution used to generate the sequence of cluster sizes of
every graph G. With a small β, e.g. equal to 1.1, we get a smaller number of communities with more
evenly distributed nodes. When β grows, the number of communities rises, but they become smaller.
When we look at the results, we can see that gains from using algorithms other than Louvain are
larger when β is small. It is directly caused by the well-known phenomena of resolution limit [13]
that can be summarized as follows: optimizing modularity function in large networks cannot find
small communities, even if they are well defined. Sadly, even if the proposed solution can improve
the results, it is still prone to this problem.

Finally, the impact of γ on the results might be explained somewhat similarly to the role of δ. γ
is a parameter of the power-law distribution used to generate the degree distribution. When γ is
small, degrees are much more evenly distributed in G. When γ is large, the vast majority of nodes
have a relatively low degree (usually close or equal to δ) with only a small fraction of hubs . In this
particular scenario, when using the plain Louvain, there is a serious risk that connectors (nodes
with the majority of external edges, connecting different communities) will be wrongly assigned
resulting in a poorly connected or even disconnected community. This problem was one of the main
reasons for introduction of Leiden algorithm [44] and from Table 3c, we see that Leiden really
improves over Louvain. However, for noisy graphs, the backtracking and refinement offered by
Leiden is not enough; EC-Leiden further improves modularity by initially using the embedding
and clustering and avoiding greedy enumeration over all neighbours, that is the source of problem.

Now, let us discuss how well obtained results match with the ground-truth of the ABCD model.
Table 4 presents the results for one representative set of parameters: β = 1.5, γ = 2.5, and δ = 5 and
different values of ξ. Similarly to the modularity comparison, EC-Louvain and EC-Leiden improve
the plain versions of algorithms. Moreover, we see that the scale of the improvement depends on ξ –
for small values of ξ the gain is nearly negligible whereas for noisy graphs, with large values of ξ, EC
methods are far better than the respective baseline. However, interestingly, ECG outperforms EC
methods in all cases and typically the difference between algorithms is quite substantial. Considering
that EC methods are substantially better in modularity optimization, it might seem counteractive.
However, there is a good reason why it happens.

ABCD is a stochastic model. Firstly, nodes are assigned into communities randomly, based on
the degree distribution and the distribution of community sizes. Then, nodes are paired into edges
also randomly. As a result, edge density is not homogeneous, neither between communities nor inside
each community. As proven in [21], it has two important implications: a) even purely random graph
exhibits some community structure and b) some subsets of each planted ground-truth community
could be denser than the density of the community; in extreme cases they could be considered as a
separated community. Other synthetic benchmark models and real-world networks possibly exhibit
the same behaviour. As a result, the ground-truth might not coincide with a partition with the
highest possible edge density within communities, thus modularity maximization is not equivalent to
ground-truth retrieval task.

11

Table 4: Adjusted Mutual Information (AMI) increase with respect to baseline (plain Louvain)
for ABCD graphs with different values of ξ and fixed β = 1.5, γ = 2.5, and δ = 5. Column Baseline
Louvain shows the average AMI index (AMI × 100) with standard deviation. Other columns
present the AMI change relative to Louvain (in percentage). For EC methods, the best-performing
combination of embedding and clustering algorithms was chosen.

Relative Change (in %)

ξ
Baseline
Louvain ECG Leiden EC-Louvain EC-Leiden

0.25 95.13 ± 0.48 4.87 ± 0.05 (0.40 ± 0.26 0.16 ± 0.40 0.73 ± 0.27
0.35 95.24 ± 1.26 4.99 ± 0.04 0.99 ± 0.21 0.25 ± 0.83 1.28 ± 0.24
0.5 79.86 ± 4.09 17.29 ± 0.67 9.84 ± 1.98 3.97 ± 3.62 14.32 ± 0.64

0.75 12.50 ± 0.93 41.53 ± 0.84 1.06 ± 0.96 5.75 ± 0.88 23.03 ± 0.86

This argument explains why EC methods, despite being better in maximizing modularity, perform
worse relative to the ground-truth. They can identify densely interconnected sub-communities within
larger communities and separate them. Answering the question of why ECG performs so well in
the ground-truth retrieval on ABCD graph is far less obvious; it would require its own separate
research focusing on the design of this algorithm, which is not in the scope of this research. Finally,
it is worth mentioning that EC methods could be used with different score functions; there are
plenty of possibilities [26, 50]. Some of them perform better, relative to the ground-truth, and it is
worth experimenting with them in future research.

4.2 Performance of Embedding Algorithms

Figure 2 shows the relation between modularity and CGE scores obtained by the unsupervised
framework for comparing graph embeddings for a single sweep of parameters (ξ = 0.5, β = 1.5,
γ = 2.5 and δ = 5). The framework assigns two scores, local and global, to each embedding that
measure the quality of an evaluated embedding for tasks that require good representation of local
and, respectively, global properties of the network. Embeddings with a lower score better describe
the respective properties of the network. Both, local and global points on the plot represent the best
performing embedding for different combinations of embedding algorithms and dimensionality. We
could see that a correlation exists between the quality of the embedding and obtained score—stronger
for EC-Leiden, weaker for EC-Louvain. Figure 2 also shows that in most cases, when we decide to
use EC method, even if we do not select the best possible embedding, EC still improves the results
over the baseline algorithm. In such a scenario, the gain will not be as large as in the best case.
However, initializing modularity optimization algorithm with an initial partitioning A improves the
results. What is most important, this plot confirms our presumptions about the dimensionality of
embedding—it should be rather small, around 32.

But still, even if CGE scores help with detecting the best performing embeddings, running the
procedure multiple times will be too tedious. Thus, it is necessary to dig deeper into the data and
find emerging patterns that will further improve the user-friendliness of EC scheme. Figure 3 shows
the results for the best embedding algorithms for all tested values of ξ, β and γ.

12

Embedding
 Algorithm

SDNE
GraRep
LLE
LINE
LE
deepWalk
node2vec
HOPE

Embedding
 Dimension

32
64
16
8
128
256

0.452 0.453 0.454 0.455 0.456 0.457 0.458
Modularity

0.02

0.04

0.06

0.08

Gl
ob
al
 C
GE

 S
co
re

Louvain algorithm

0.452 0.453 0.454 0.455 0.456 0.457 0.458
Modularity

0.0

0.1

0.2

0.3

Lo
ca
l C

GE
 S
co
re

Louvain algorithm

0.4685 0.4690 0.4695 0.4700 0.4705 0.4710 0.4715
Modularity

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Gl
ob
al
 C
GE

 S
co
re

Leiden algorithm

0.4685 0.4690 0.4695 0.4700 0.4705 0.4710 0.4715
Modularity

0.0

0.1

0.2

0.3

Lo
ca
l C

GE
 S
co
re

Leiden algorithm

Figure 2: Modularity (dashed line represents modularity of the baseline algorithm) and Global/Local
CGE scores (the lower score, the better) for different embeddings in ABCD graph with parameters:
ξ = 0.5, β = 1.5, γ = 2.5, and δ = 5.

Figure 3 confirms the previously mentioned findings. The advantage of using EC methods is
clearly growing with ξ and γ, while growing β negatively impacts the results. We also see a relation
between the parametrization of the graph, embeddings and their dimensionality. For graphs with
strongly separated communities, node2vec is usually the best performing one, although it offers
a relatively small gain in modularity value. When ξ rises, we see higher gains, but also the best
embeddings change gradually to simpler methods. In the case of EC-Louvain the best performing
algorithm shifts from node2vec to SDNE and, in the case of EC-Leiden—from node2vec to
LLE or LE. We will discuss embeddings later—firstly, let us focus on their dimensionality.

With some exceptions for small ξ we see that the best performing embeddings have rather small
dimensionality. The only exception is EC-Louvain for ξ ≥ 0.75, where the best results are given
by a combination of the SDNE embedding and high dimensionality (usually 256). For any other
embedding, we should generally choose a relatively small value of d, usually around 32. Our goal is
to preserve the most important information about the node’s role in G; thus, we choose moderately
small d, which will filter the unnecessary information while not being too reductive.

As we expect, for a small ξ, gains are minimal, almost insignificant. But when graphs became
noisier, some interesting patterns emerge. For both baselines, node2vec is the best performing
algorithm for small ξ, followed by HOPE and GraRep for the larger values of ξ and SDNE for
EC-Louvain and LE or LLE for EC-Leiden when we reach the highest values of ξ. LINE is

13

2.1 2.5 2.9
γ

1.1

1.5

1.9

β
ξ = 0.25

SDNE 8
HDBSCAN 1

0.03

LINE 128
HDBSCAN 9

0.01

node2vec 128
K-Me ns 500

0.33

node2vec 32
K-Me ns 500

0.0

node2vec 256
GMM 500

0.03

node2vec 16
GMM 500

0.28

SDNE 256
K-Me ns 500

0.02

node2vec 16
GMM 500

0.01

node2vec 64
K-Me ns 500

0.08

2.1 2.5 2.9
γ

1.1

1.5

1.9

β

ξ = 0.35

SDNE 8
K-Me ns 500

0.09

node2vec 64
K-Me ns 500

0.41

SDNE 64
K-Me ns 500

1.25

node2vec 32
K-Me ns 500

0.44

node2vec 256
K-Me ns 500

0.25

node2vec 256
HDBSCAN 1

0.78

SDNE 32
K-Me ns 500

0.16

Gr Rep 256
GMM 500

0.17

SDNE 64
HDBSCAN 2

0.81

2.1 2.5 2.9
γ

1.1

1.5

1.9

β

ξ = 0.5

deepW lk 8
K-Me ns 250

1.41

node2vec 128
GMM 500

2.05

node2vec 128
HDBSCAN 10

1.76

node2vec 32
GMM 500

1.0

SDNE 64
GMM 500

1.32

LE 64
K-Me ns 500

0.84

SDNE 8
GMM 500

0.74

SDNE 32
K-Me ns 500

1.2

node2vec 128
HDBSCAN 1

1.07

2.1 2.5 2.9
γ

1.1

1.5

1.9

β

ξ = 0.65

SDNE 32
HDBSCAN 6

0.33

node2vec 128
HDBSCAN 10

0.44

node2vec 8
HDBSCAN 2

2.14

node2vec 8
K-Me ns 500

0.95

SDNE 8
HDBSCAN 1

0.88

SDNE 256
GMM 500

1.45

LINE 64
HDBSCAN 1

0.45

node2vec 16
HDBSCAN 1

0.56

node2vec 16
HDBSCAN 2

1.03

2.1 2.5 2.9
γ

1.1

1.5

1.9

β

ξ = 0.75

SDNE 64
GMM 500

1.89

SDNE 256
GMM 500

3.09

SDNE 256
GMM 500

3.15

SDNE 256
K-Me ns 500

0.72

SDNE 256
GMM 500

3.2

SDNE 256
K-Me ns 500

3.06

SDNE 128
GMM 500

2.47

SDNE 256
GMM 500

2.51

SDNE 256
K-Me ns 500

2.93

2.1 2.5 2.9
γ

1.1

1.5

1.9

β

ξ = 0.85

SDNE 128
GMM 500

2.59

SDNE 256
K-Me ns 500

2.56

SDNE 256
GMM 500

3.17

SDNE 64
K-Me ns 500

2.07

SDNE 64
GMM 500

2.93

Gr Rep 8
HDBSCAN 8

3.27

SDNE 128
GMM 500

2.42

SDNE 256
GMM 500

3.75

SDNE 256
GMM 500

2.22

0

2

4

6

8

0

2

4

6

8

0

2

4

6

8

0

2

4

6

8

0

2

4

6

8

0

2

4

6

8

(a) EC-Louvain

2.1 2.5 2.9
γ

1.1

1.5

1.9

β

ξ = 0.25

LLE 8
K-Me ns 125

0.0

LLE 8
K-Me ns 32

0.0

node2vec 64
K-Me ns 32

0.0

node2vec 32
GMM 34
0.01

node2vec 8
GMM 36
0.01

SDNE 128
K-Me ns 50

0.0

node2vec 32
K-Me ns 36

0.01

node2vec 64
HDBSCAN 3

0.01

node2vec 32
K-Me ns 42

0.01

2.1 2.5 2.9
γ

1.1

1.5

1.9

β

ξ = 0.35

node2vec 256
K-Me ns 56

0.01

node2vec 256
K-Me ns 50

0.02

LLE 16
K-Me ns 34

0.07

node2vec 256
K-Me ns 50

0.01

node2vec 32
GMM 32
0.02

node2vec 16
HDBSCAN 8

0.11

SDNE 64
K-Me ns 39

0.04

node2vec 8
HDBSCAN 4

0.04

node2vec 16
K-Me ns 36

0.05

2.1 2.5 2.9
γ

1.1

1.5

1.9

β

ξ = 0.5

node2vec 8
GMM 32
2.07

node2vec 16
HDBSCAN 2

3.77

Gr Rep 64
K-Me ns 72

9.02

node2vec 256
K-Me ns 46

0.45

HOPE 32
GMM 46

0.7

LE 16
K-Me ns 36

3.73

node2vec 16
K-Me ns 125

0.15

HOPE 32
GMM 50
1.64

LE 32
K-Me ns 56

1.41

2.1 2.5 2.9
γ

1.1

1.5

1.9

β

ξ = 0.65

Gr Rep 64
K-Me ns 84

2.67

LE 16
K-Me ns 36

2.45

LLE 16
K-Me ns 32

3.37

LE 32
GMM 46
2.56

LE 32
K-Me ns 34

2.2

HOPE 16
K-Me ns 34

2.79

Gr Rep 64
GMM 125

2.92

Gr Rep 64
HDBSCAN 4

2.4

LLE 32
K-Me ns 32

2.62

2.1 2.5 2.9
γ

1.1

1.5

1.9

β

ξ = 0.75

LE 16
K-Me ns 34

2.09

node2vec 128
K-Me ns 34

2.79

HOPE 32
K-Me ns 46

3.45

node2vec 8
GMM 42
1.72

LLE 32
K-Me ns 32

3.51

LLE 16
K-Me ns 32

2.93

LLE 32
K-Me ns 36

2.42

LLE 16
K-Me ns 36

3.05

LE 16
K-Me ns 34

3.03

2.1 2.5 2.9
γ

1.1

1.5

1.9

β

ξ = 0.85

LLE 16
K-Me ns 32

2.75

LLE 16
GMM 32
2.65

LLE 32
K-Me ns 32

3.38

LLE 16
K-Me ns 32

2.46

HOPE 16
K-Me ns 36

3.15

LE 16
K-Me ns 34

3.53

HOPE 16
K-Me ns 32

3.04

LLE 16
K-Me ns 32

3.46

LLE 32
K-Me ns 34

2.53

0

2

4

6

8

0

2

4

6

8

0

2

4

6

8

0

2

4

6

8

0

2

4

6

8

0

2

4

6

8

(b) EC-Leiden

Figure 3: Heatmap with relative modularity increase (in percentage) for various ABCD graphs.
Each cell corresponds to ABCD graph with given parameters β, γ, ξ and fixed δ = 5. Modularity
increase is represented in a color scale mapping. Each cell also records embedding (together with its
dimensionality) and clustering (together with its parametrization: number of clusters for k-Means
and GMM, minimum sample size for HDBSCAN.)

consecutively the worst performing algorithm, and deepWalk gives worse results than node2vec
in all scenarios—we might think of it as a cruder version of node2vec—thus such performance is
expected. What we see here is that we start with very sophisticated, random-walk based methods,
then move to simpler algorithms, which still preserve the higher order proximities, and end up with
the matrix factorization methods that preserve only the first order proximity. Even if we consider

14

the fact that EC-Louvain relies on the SDNE, the pattern still holds. SDNE is a variational
autoencoder network that relies on the adjacency matrix to measure the proximity of the nodes. As
such, SDNE can be understood as a form of a non-linear LLE and it is clear why it is used in
conjunction with a more volatile Louvain algorithm, where LLE is sufficient enough for the stabler
Leiden.

Experiments conducted for various properties of generated graphs give other interesting insights
into the construction and behaviour of EC procedure. We focus on properties, that are the most
easily computable and also have the strongest impact on the design, namely, selection of embedding
algorithm. It is important, especially in the context of possible real-world applications, where it
might be the only prior knowledge available. For a comprehensive comparison, please refer to the
complementary Jupyter notebooks ‡.

Embedding
 Algorithm

SDNE
GraRep
LLE
LINE
LE
deepWalk
node2vec
HOPE

Minimum
 Degree

δ = 1
δ = 2
δ = 5

0.00 0.02 0.04 0.06 0.08 0.10 0.12
Glo al Cl1s0e.ing Coefficien0

0

1

2

3

4

5

M
od

ul
ar
ity

 G
ai
n
(in

 %
)

EC-Louvain

0.00 0.02 0.04 0.06 0.08 0.10 0.12
Global Clustering Coefficient

0

1

2

3

4

5

M
od

ul
ar
ity

 G
ai
n
(in

 %
)

EC-Leiden

(a) Global Clustering Coefficient

Embedding
 Algorithm

SDNE
GraRep
LLE
LINE
LE
deepWalk
node2vec
HOPE

Minimum
 Degree

δ = 1
δ = 2
δ = 5

−0.10 −0.05 0.00 0.05
Deg−ee Co−−ela.ion Coeffi ien.

0

1

2

3

4

5

M
od

ul
ar

ity
 G

ai
n
(in

 %
)

EC-Louvain

−0.10 −0.05 0.00 0.05
Deg−ee Co−−ela.ion Coeffi ien.

0

1

2

3

4

5

M
od

ul
a−
i.1

 G
ai
n
(in

 %
)

EC-Leiden

(b) Degree Correlation Coefficient

Figure 4: Modularity increase (in percentage) from various embedding-clustering combinations as
a function of a) global clustering coefficient and b) correlation coefficient. EC-Louvain is plotted in
the left column, EC-Leiden in the right.

Figure 4a shows the relation between the global clustering coefficient and the modularity gain
given by EC method for all possible combinations of parameters β, γ, µ and δ. For a graph G,
the global clustering coefficient is defined as the ratio of three times the number of triangles to
the number of pairs of adjacent edges. It could be easily interpreted as the presence of the triadic

‡https://github.com/bartoszpankratz/ECCD

15

https://github.com/bartoszpankratz/ECCD

closures in the graph G – the probability that three nodes in a given random pair of adjacent edges
will form a triangle (for further explanation see: [24], Chapter 1). Relationship between the global
clustering coefficient and the modularity gain is negative, which is intuitive – higher value of the
global clustering coefficient indicates a stronger tendency to cluster among nodes, thus an easier
graph to work on for the baseline algorithms. However, the most interesting part of this plot is the
relation between the global clustering coefficient, minimum degree δ and the selection of the best
performing embedding algorithm. For both, EC-Louvain and EC-Leiden reductive embeddings
(SDNE and LE or LLE respectively) are the best ones only in a very specific scenario - graphs
with δ = 5 and very low, close to 0, global clustering coefficient. In such a scenario, embedding in
EC method is used to reduce the amount of unnecessary information held by the excess edges in
the graph. In all the other cases, it is preferable to use the more sophisticated, random walk-based
embedding, which will learn the role of each node in a broader context, that is unobtainable for
simple, greedy optimization.

Similar conclusions came from the inspection of figure 4b. The degree correlation coefficient
measures the strength of the overall assortativity of a graph G (see Chapter 4 in [24]). A positive
value indicates an assortative network, where high degree nodes tend to be adjacent to other high
degree nodes and low degree nodes link with other low degree nodes. A negative value is a mark of a
disassortative network – one where high degree nodes tend to link with low degree nodes. Finally, a
value close to zero represents a neutral network. For graphs with a strong degree correlation (either
positive or negative) modularity gain is rather low, also the best performing embeddings are either
deepWalk or node2vec. This is understandable, in the networks with a stronger degree correlation
we could expect visible communities. Either in the form of nodes with similar degree clustering
together (in assortative networks) or in the form of communities of high degree hubs, surrounded by
low degree neighbours (in disassortative networks). As a result, such networks are easier tasks for
the baseline community detection algorithms, thus EC methods are usable as a refinement tool. On
the other hand, when a network displays a weak degree correlation, it resembles a random network,
then EC methods are useful for filtering the data. This results in scenarios, where the gain from
using EC methods is higher, but also the usage of more reductive embeddings is required.

Figure 5a shows the relation between a modularity gain and the average degree of a graph. With
a growing average degree, gain from using EC method is growing substantially, also the shift in
preferred embedding algorithm is clearly visible. This result confirms our previous intuition: for
dense graphs (ones with a high average degree) we want to simplify the problem, removing possibly
misleading information, thus we use more reductive, adjacency matrix based embedding methods.
Otherwise, we want to use more complex embedding algorithms, that will learn non-trivial relations
in the graph to refine the results of the baseline community detection algorithm. The same pattern is
visible, when we look at figure 5b. When skewness of degree distribution is close to 0, then degrees in
G are evenly distributed around the average degree, resulting in a graph that structurally somewhat
resembles a random network. On the other hand, heavily positive skewed distribution indicates
that communities in the network are built from large degree hub nodes, surrounded by low degree
peripheral nodes. The latter situation naturally results in a more visible community structure, thus
EC algorithms give lower modularity gain because they are used for improving and fine-tuning the
results of the baseline algorithms.

Figure 6 shows the relation between modularity and AMI index for a single sweep of parameters
(ξ = 0.5, β = 1.5, γ = 2.5, and δ = 5) for different embedding and clustering combinations.
There is a strong, linear relationship between both measures. It means that the parametrization of

16

Embedding
 Algorithm

SDNE
GraRep
LLE
LINE
LE
deepWalk
node2vec
HOPE

Minimum
 Degree

δ = 1
δ = 2
δ = 5

2 4 6 8 10
Average Degree

0

1

2

3

4

5

M
od

ul
ar

ity
 G

ai
n
(in

 %
)

EC-Louvain

2 4 6 8 10
Average Degree

0

1

2

3

4

5

M
od

ul
ar
ity

 G
ai
n
(in

 %
)

EC-Leiden

(a) Average Degree

Embedding
 Algorithm

SDNE
GraRep
LLE
LINE
LE
deepWalk
node2vec
HOPE

Minimum
 Degree

δ = 1
δ = 2
δ = 5

2 3 4 5 6 7
Degree Distribution Ske1ness

0

1

2

3

4

5

M
od

ul
ar

ity
 G

ai
n
(in

 %
)

EC-Louvain

2 3 4 5 6 7
Degree Distribution Skewness

0

1

2

3

4

5

M
od

ul
ar
ity

 G
ai
n
(in

 %
)

EC-Leiden

(b) Skewness

Figure 5: Modularity increase (in percentage) from various embedding-clustering combinations as
a function of a) average degree and b) skewness of degree distribution. EC-Louvain is plotted in
the left column, EC-Leiden in the right.

EC method will perform similarly well on both tasks, despite the difference between modularity
optimization and ground-truth retrieval described in Subsection 4.1. It means that EC are somewhat
“measure-agnostic”, namely we could use the same combination of embedding and clustering for
different tasks or with different score functions and expect similarly good outcomes, which is a
promising result.

4.3 Performance of Clustering Algorithms

Now, let us examine the role of clustering algorithms and their parameters in EC framework.
Figure 3 shows the clustering algorithm with parametrization for the best EC method. In most
cases, k-Means is the best-performing algorithm, followed by GMM. Cases when HDBSCAN
outperforms the rest are rather rare. HDBSCAN was chosen mostly in the cases when the gain
from EC method is almost negligible. Also, the selected values of minimum samples do not show any
reasonable pattern. It may be explained by the fact that HDBSCAN is a density-based algorithm;
by definition, HDBSCAN merges similar nodes into communities, leaving the rest as noise. It is
quite likely that many of the merged nodes are neighbours in the graph that are also merged by the
baseline algorithms, whereas the truly ambiguous nodes, challenging cases, will be left untouched.

17

0.450 0.452 0.454 0.456 0.458
Modularity

0.79

0.80

0.81

0.82

0.83
AM

I I
nd

ex
Louvain algorithm

LLE
LE
deepWalk
node2vec
LINE
SDNE
GraRep
HOPE
LLE
LE
deepWalk
node2vec
LINE
SDNE
GraRep
HOPE

0.4685 0.4690 0.4695 0.4700 0.4705 0.4710 0.4715
Modularity

0.88

0.89

0.90

0.91

AM
I I

nd
ex

Leiden algorithm
LLE
LE
deepWalk
node2vec
LINE
SDNE
GraRep
HOPE
LLE
LE
deepWalk
node2vec
LINE
SDNE
GraRep
HOPE

Figure 6: Modularity (dashed line represents modularity of the baseline algorithm) and AMI Index
(dashed red line represents results for the baseline algorithm) for different embeddings in ABCD
graph with parameters: ξ = 0.5, β = 1.5, γ = 2.5, and δ = 5.

As a result, HDBSCAN negates the impact of additional embedding and clustering steps.
As expected, performance of k-Means and GMM is similar. They serve the same role but the

slight edge of k-Means might be explained by the fact that it does not introduce new bias in the
form of the assumed probability distribution over given data (embedded nodes). In both clustering
algorithms, the number of clusters k varies from 500 to 32; k = 500 gives us the most conservative
scenario, merging only the two closest points into a cluster. With growing k, we significantly shrink
and simplify the problem but we also rely gradually more and more on the embedding quality.
Interestingly, there is a major difference between EC-Louvain and EC-Leiden—EC-Louvain
almost exclusively achieves the best performance for k = 500, whereas EC-Leiden works best with
the number of clusters k, roughly around 40.

4.4 Facebook Datasets

Table 5 summarizes results of experiments on Facebook Datasets. As in ABCD experiments, EC
methods improve on the baseline methods and reduce volatility. Improvement does not depend on
the size of a graph but on its properties. Gain from using the EC methods is larger when graphs are
sparser and have a lower clustering coefficient.

As seen in Table 6, the best combinations of embedding and clustering algorithms follow a pattern
resembling the results obtained on the artificial networks. What is worth mentioning, dimensionality
of embedding does not depend on the size of the graph, but rather on the embedding algorithm and
the complexity of the problem. For graphs with a higher clustering coefficient neural network-based
algorithms (SDNE for EC-Louvain and deepWalk for EC-Leiden) with high dimensionality are
preferred, whereas for simpler problems, the best performance is achieved for matrix factorization
algorithms with small dimensionality. This observation is important, especially considering the fact

18

Table 5: Modularity increase with respect to baseline (plain Louvain) for Facebook networks.
Column Baseline Louvain shows the average modularity index (modularity × 100) with standard
deviation. Other columns present the modularity change relative to Louvain (in percentage). For
EC methods, the best performing combination of embedding and clustering algorithms was chosen.

Relative Change (in %)

ξ
Baseline
Louvain ECG Leiden EC-Louvain EC-Leiden

Artists 61.18 ± 0.52 0.79 ± 0.33 0.67 ± 0.34 1.03 ± 0.11 1.59 ± 0.01
Athletes 71.08 ± 0.33 -1.88 ± 0.14 1.37 ± 0.09 0.40 ± 0.14 1.59 ± 0.03

Celebrities 68.39 ± 0.11 -0.88 ± 0.07 0.66 ± 0.06 0.00 ± 0.13 0.87 ± 0.02
Companies 72.83 ± 0.27 -2.39 ± 0.10 1.58 ± 0.08 0.42 ± 0.19 1.93 ± 0.04

Government 72.74 ± 0.09 -1.57 ± 0.11 0.16 ± 0.06 0.04 ± 0.06 0.32 ± 0.01
Media 62.56 ± 0.21 -3.57 ± 0.13 1.85 ± 0.16 0.07 ± 0.14 2.11 ± 0.04

Politicians 86.82 ± 0.05 -1.40 ± 0.23 0.14 ± 0.04 0.05 ± 0.04 0.21 ± 0.00
TV Shows 87.20 ± 0.08 -1.38 ± 0.11 0.14 ± 0.01 0.04 ± 0.04 0.18 ± 0.01

that the bigger gain is achieved in the latter situation. It shows that EC methods can be used
efficiently even for substantial networks, without becoming too computationally expensive.

For EC-Louvain, k-Means and GMM, with a large initial number of clusters are giving the
best results. The value of ℓ, the expected volume of every subset Ai, is close to 2 for almost all
datasets, which follow the intuition presented in Section 4.3. The goal of clustering in EC-Louvain
is to slightly truncate the initial graph and allow the Louvain algorithm to do the rest. EC-Leiden
behave differently, ℓ is roughly equal to 64, similar to the expected volume of subsets in ABCD
networks, despite differences in the size between ABCD networks and Facebook datasets.

5 Summary of the Procedure

Results of the numerical experiments show that both EC methods prove to be viable improvements
over their baseline counterparts. Especially EC-Leiden turned out to improve the performance by a
fair margin. Thus, we suggest using it, rather than EC-Louvain algorithm, which is less stable and
gives worse overall results. For a graph G = (V,E) we could summarize EC-Leiden steps as follows:

Step 1: Compute some basic descriptive statistics of G (density, clustering coefficient, degree
correlation coefficient, etc.). For dense G with a low clustering coefficient and degree correlation
coefficient around 0, embed each node of graph G into a low-dimensional (e.g. 32) vector using
the LE or LLE embedding algorithm. Otherwise, use node2vec algorithm § with a similarly
small dimensionality.

Step 2: Run k-Means clustering algorithm on the obtained latent representation E to get
partition A = {A1, A2, . . . , Ak}. EC-Leiden gives the best results when k, size of partition

§In a case of node2vec, hyperparameters do not impact the results in a significant manner, thus we suggest using
the parametrization proposed in [15] or a default one in the preferred implementation of node2vec

19

Table 6: Best performing EC methods for Facebook datasets. Columns Embedding Algorithm and
Dimensions show the best embedding algorithm and its dimensions. Columns Clustering Algorithm
and Parameters show the best clustering algorithm and its parametrization (number of clusters for
k-Means and GMM, minimum sample size for HDBSCAN.

(a) EC-Louvain

Embedding Clustering
Dataset Algorithm Dimensions Algorithm Parameters

Artists node2vec 16 GMM 8420
Athletes HOPE (ppr) 8 K-Means 6933

Celebrities SDNE 64 GMM 5783
Companies SDNE 1024 HDBSCAN 4
Government LINE 1024 K-Means 3529

Media LLE 256 K-Means 13959
Politicians SDNE 64 HDBSCAN 1
TV Shows SDNE 1024 HDBSCAN 2

(b) EC-Leiden

Embedding Clustering
Dataset Algorithm Dimensions Algorithm Parameters

Artists LLE 128 GMM 395
Athletes LLE 16 K-Means 55

Celebrities LLE 128 K-Means 181
Companies node2vec 8 GMM 442
Government LE 32 K-Means 111

Media node2vec 32 GMM 931
Politicians LE 32 K-Means 93
TV Shows deepWalk 1024 K-Means 217

A, is roughly equal to size of the final partition P. However, the results are still reasonable
when k is just high enough - we suggest setting the value of k = |V |/64, thus assuming that
each community will contain roughly 64 nodes .

Step 3: Run Leiden algorithm on graph G using partition A as a starting point. The result
of this procedure, partition P, is the outcome of our algorithm.

Let us discuss The difference between EC-Louvain and EC-Leiden and explain why EC-Leiden
is a more suitable procedure.

Louvain merges two nodes if such a move maximizes modularity locally, without any broader
context. It is especially problematic in the early stages, when the structure is still unclear because the

20

merge of nodes belonging to different communities might (and most often does) result in the largest
possible increase of the target function. The obvious drawback here is that Louvain algorithm
cannot later separate the nodes if they are wrongly connected.

The initial partitioning A was designed to overcome this issue, guaranteeing the stability of
the first step of the algorithm and reducing the impact of wrongly connected nodes. EC-Louvain
aims to find a stable initial partitioning, that is, merge nodes that are certainly part of the same
community into one cluster. However, if there is an error in initial partitioning, there is no chance
that the algorithm will be able to correct it: it will rather exaggerate it. And we know that all
embeddings have some inevitable representation error, thus it is better to use a more sophisticated
algorithm (e.g. non-linear SDNE instead of linear LLE) with higher dimensionality. Also, the initial
number of clusters k is rather high—again, to avoid any possible information loss only certain nodes
are connected into communities in the initial step.

The problem of inherent greediness of Louvain algorithm prevails in later steps until the
algorithm reaches the stage when the communities are large enough. As a result, the impact of the
initial “good” partitioning is minimized. This problem might be fixed by repeating the embedding
process after every iteration, up to the moment when the algorithm reaches its stable stage, but
obviously, such a procedure would be unfeasible for large graphs as it is very time-consuming.

In the case of Leiden algorithm, the refinement stage is designed to solve the aforementioned
issue of wrongly connected nodes. After every iteration, when communities are created in the same
manner as in Louvain, they are split and recombined into new, better partitions, ensuring that all
nodes are optimally assigned in the context of a given subgraph induced by a single community. The
scope of such refinement is somewhat limited; it cannot backtrack more than a single iteration. As a
result, in the early stages, when initialized with a singleton partition, it might still merge nodes that
should not belong to the same community—and that will be irreversible. By initializing it with a
fine-tuned initial partitioning A, we reduce ambiguity in the crucial first step by giving an algorithm
some base structure to work with and allowing the refinement stage to show its importance.

The addition of the refinement stage in Leiden algorithm means that Leiden will not amplify
the inherent error caused by embedding, but it might also be able to reduce it. So, in this case,
we might start with a rather simple and reductive embedding and already quite an aggregated
initial partitioning A. This split does not need to be overly complicated and accurate because
it will be further refined by Leiden, and then sewn together into a final, optimal partition P.
Thus, the best strategy is to use simpler methods than in EC-Louvain, e.g. matrix factorization
methods (LE or LLE) instead of the neural network-based SNDE, with small dimensionality d.
Also, the initial number of clusters k is smaller than in EC-Louvain case, usually close to the
final number of communities ℓ. In this context, EC-Leiden is a method that handles a non-trivial,
NP-hard optimization problem by dividing it into a set of far more manageable smaller independent
sub-problems, solving them, and then aggregating them into the final solution.

Finally, let us focus on the last interesting pattern, which is the behaviour of the best performing
embedding algorithms in relation to the community structure of a given graph. In the cases of both
EC methods, when the community structure is strong, communities are visible and separated, then
the best strategy is to use rather sophisticated algorithms with a proximity measure able to capture
the structural role of each node, such as node2vec. When a graph is “noisy”, with less pronounced
communities and many edges between them, then the best solution is to rely on simpler adjacency
matrix-based methods—SDNE for EC-Louvain and LE or LLE for EC-Leiden.

When the graph exhibits a strong community structure, baseline algorithms already give good

21

results and high modularity value. The reason why we want to use EC is to properly assign the small
fraction of the ambiguous nodes, that join two or more different communities. Thus, we are using an
algorithm that can learn complicated and deep relations between nodes but offers a rather minuscule
gain of modularity. For graphs with a high level of “noise” we want to achieve a somewhat opposite
goal. Nodes usually have more neighbours belonging to many different communities. In this case, we
are interested in filtering the excessive information and leave only the crucial one. Our goal is to
embed nodes in a way that will ensure that closely related (adjacent or sharing common neighbours)
nodes will not be embedded far apart without accounting for the more distant relationships and
structural role of a node in the graph. In such case, EC method with simple, reductive embedding
will result in significant modularity gain compared to the baseline.

6 Discussion

The most important advantage of the proposed EC method is its flexibility. EC algorithms use
two different measures to achieve the final partitioning. Firstly, they use local distances between
the embedded nodes and then modularity which measures the strength of communities globally.
Measuring community structure in two ways improves the results in two ways, either by refining the
results via learning more complex relations between nodes or by simplifying the structure of a graph,
depending on selected embedding algorithms.

On the other hand, multilevel methods rely on aggregating the results of different runs of
modularity-based algorithms in the form of a weighted graph that is later refined into the final
partition P. Usually, a weighted graph is created using the low-level coarsening of the input graph
G. They indeed reduce the volatility of the baseline algorithm, but they are not able to adjust their
way of acting depending on the properties of the graph.

As a result, multilevel methods are unable to overcome inherent issues of the modularity
optimization approach. Especially in the early steps, merging nodes from different communities will
result in significant modularity gain, thus we might expect that greedy modularity optimization will
often assign nodes to wrong communities. The issue is especially visible in two cases: when nodes
have neighbours in many different communities (that is, when the graph is “noisy”) and when the
graph contains a significant amount of low-degree nodes (see Table 2 and Table 3a) that might have
neighbours in different communities.

When the multilevel method creates weights, it looks at how often a node vi is placed in the
same community as its neighbour vj . The weight wij between nodes vi and vj is large when vi and
vj are often paired, and small when they are rarely merged by the algorithm. In the aforementioned
two cases, we might expect that ambiguous nodes will have a close to uniform distribution of weights,
but only in cases when the number of initial partitioning k is large enough. When k is too small,
the multilevel algorithm amplifies volatility, resulting in ill-defined weights that perform worse
than modularity optimization on the unweighted graph. On the other hand, creating the initial
partitioning A on the embedded representation of G will always filter data and reduce volatility.

However, in its current form, EC methods have one drawback—their computational complexity
might be overwhelming for practitioners who want to use such algorithms on a daily basis. However,
in many cases the computational power is currently not a major constraint when doing graph analysis,
especially when cloud computing resources are available. Moreover, there are some specific scenarios
when we suggest using EC methods, even if computation resources are scarce.

First and the most obvious situation is finding communities in dense graphs with evenly distributed

22

degrees—graphs that we consider “noisy”. The sheer amount of edges and lack of visible hub nodes
in such networks make them a hard task for traditional community detection algorithms. Their
results exhibit significant volatility, forcing users to run given algorithm multiple times to find
the acceptable partition. Embedding step in EC methods reduces the complexity of a problem,
allowing the baseline algorithm to find a better, far more robust and repetitive, partitioning of a
given network.

Secondly, there are situations when properly aligning the most ambiguous nodes is crucial.
For example, nodes that connect many different communities play a key role in propagation of
disinformation and fake news in social media. Thus, placing such nodes in a proper community (e.g.
together with other misinformation spreading accounts) is important to prevent the further spread
of potentially dangerous and misleading news. In this scenario, even if the difference in modularity
between a baseline algorithm and EC method might seem negligible, the impact of the improved
solution is notable.

Finally, EC methods can be used in a situation when one already has a proper embedded
representation prepared for another task, e.g. training a neural network. In this situation, the
computational complexity of EC method, caused by the necessity of computing an embedding, is
negligible. As a result, by using EC method one might improve the community detection results
without significant additional cost.

7 Conclusions

The Embedding-Clustering (EC) scheme introduced in this paper improves the results of popular
community detection algorithms. Using the initial partitioning C obtained by clustering nodes in
graph embeddings improves the results of the popular community detection algorithms. In the case
of Louvain the impact is rather small, almost negligible, but the initial partitioning of Leiden
significantly improves its performance and reduces the volatility. Moreover, we show which classes of
embeddings and clustering algorithms are the most suitable for this particular task.

Acknowledgements

Hardware used for the computations was provided by the SOSCIP consortium¶. Launched in 2012,
the SOSCIP consortium is a collaboration between Ontario’s research-intensive post-secondary
institutions and small- and medium-sized enterprises (SMEs) across the province. Working together
with the partners, SOSCIP is driving the uptake of AI and data science solutions and enabling
the development of a knowledge-based and innovative economy in Ontario by supporting technical
skill development and delivering high-quality outcomes. SOSCIP supports industrial-academic
collaborative research projects through partnership-building services and access to leading-edge
advanced computing platforms, fuelling innovation across every sector of Ontario’s economy.

References

[1] William Aiello, Fan Chung, and Linyuan Lu. A random graph model for massive graphs. In
Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing, STOC

¶https://www.soscip.org/

23

https://www.soscip.org/

’00, page 171–180, New York, NY, USA, 2000. Association for Computing Machinery. doi:
10.1145/335305.335326.

[2] Samin Aref, Hriday Chheda, and Mahdi Mostajabdaveh. The bayan algorithm: Detecting
communities in networks through exact and approximate optimization of modularity, 2023.
arXiv:2209.04562.

[3] Thomas Bartz-Beielstein and Martin Zaefferer. Model-based methods for continuous and discrete
global optimization. Applied Soft Computing, 55:154–167, 2017. doi:10.1016/j.asoc.2017.
01.039.

[4] Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps and spectral techniques for embedding
and clustering. In Proceedings of the 14th International Conference on Neural Information
Processing Systems: Natural and Synthetic, NIPS’01, page 585–591, Cambridge, MA, USA,
2001. MIT Press. doi:10.5555/2980539.2980616.

[5] Gema Bello Orgaz, Julio Hernandez-Castro, and David Camacho. Detecting discussion
communities on vaccination in twitter. Future Generation Computer Systems, 66, 07 2016.
doi:10.1016/j.future.2016.06.032.

[6] Vincent D. Blondel, Jean Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. Fast
unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and
Experiment, 2008(10):10008, 2008. doi:10.1088/1742-5468/2008/10/P10008.

[7] Ulrik Brandes, Daniel Delling, Marco Gaertler, Robert Gorke, Martin Hoefer, Zoran Nikoloski,
and Dorothea Wagner. On modularity clustering. IEEE Transactions on Knowledge and Data
Engineering, 20(2), 2008. doi:10.1109/TKDE.2007.190689.

[8] Hongyun Cai, Vincent Zheng, and Kevin Chang. A comprehensive survey of graph embedding:
Problems, techniques and applications. IEEE Transactions on Knowledge and Data Engineering,
30, 09 2017. doi:10.1109/TKDE.2018.2807452.

[9] Shaosheng Cao, Wei Lu, and Qiongkai Xu. GraRep: Learning graph representations with
global structural information. In Proceedings of the 24th ACM International on Conference on
Information and Knowledge Management, CIKM ’15, page 891–900, New York, NY, USA, 2015.
Association for Computing Machinery. doi:10.1145/2806416.2806512.

[10] William Deitrick and Wei Hu. Mutually enhancing community detection and sentiment analysis
on twitter networks. Journal of Data Analysis and Information Processing, 01:19–29, 01 2013.
doi:10.4236/jdaip.2013.13004.

[11] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based algorithm
for discovering clusters in large spatial databases with noise. In Proceedings of the Second
International Conference on Knowledge Discovery and Data Mining, KDD’96, page 226–231,
Palo Alto, California, USA, 1996. AAAI Press. doi:10.5555/3001460.3001507.

[12] Santo Fortunato. Community detection in graphs. Physics Reports, 486(3-5):75–174, feb 2010.
doi:10.1016/j.physrep.2009.11.002.

24

https://doi.org/10.1145/335305.335326
https://doi.org/10.1145/335305.335326
https://arxiv.org/abs/2209.04562
https://doi.org/10.1016/j.asoc.2017.01.039
https://doi.org/10.1016/j.asoc.2017.01.039
https://doi.org/10.5555/2980539.2980616
https://doi.org/10.1016/j.future.2016.06.032
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1109/TKDE.2007.190689
https://doi.org/10.1109/TKDE.2018.2807452
https://doi.org/10.1145/2806416.2806512
https://doi.org/10.4236/jdaip.2013.13004
https://doi.org/10.5555/3001460.3001507
https://doi.org/10.1016/j.physrep.2009.11.002

[13] Santo Fortunato and Marc Barthelemy. Resolution limit in community detection. Proceedings
of the National Academy of Sciences, 104(1):36–41, Dec 2006. doi:10.1073/pnas.0605965104.

[14] Palash Goyal and Emilio Ferrara. Graph embedding techniques, applications, and performance:
A survey. Knowledge-Based Systems, 151:78–94, Jul 2018. doi:10.1016/j.knosys.2018.03.
022.

[15] Aditya Grover and Jure Leskovec. Node2vec: Scalable feature learning for networks. In
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’16, page 855–864, New York, NY, USA, 2016. Association for Computing
Machinery. doi:10.1145/2939672.2939754.

[16] Roger Guimerà and Luís Amaral. Functional cartography of complex metabolic networks.
Nature, 23:22–231, 01 2005. doi:10.1038/nature03288.

[17] Leanne S. Haggerty, Pierre-Alain Jachiet, William P. Hanage, David A. Fitzpatrick, Philippe
Lopez, Mary J. O’Connell, Davide Pisani, Mark Wilkinson, Eric Bapteste, and James O.
McInerney. A Pluralistic Account of Homology: Adapting the Models to the Data. Molecular
Biology and Evolution, 31(3):501–516, 11 2013. doi:10.1093/molbev/mst228.

[18] William L. Hamilton, Rex Ying, and Jure Leskovec. Representation learning on graphs: Methods
and applications. IEEE Data Engineering Bulletin, 40(3):52–74, 2017.

[19] Bogumił Kamiński, Łukasz Kraiński, Paweł Prałat, and François Théberge. A multi-purposed
unsupervised framework for comparing embeddings of undirected and directed graphs. Network
Science, page 1–24, 2022. doi:10.1017/nws.2022.27.

[20] Bogumił Kamiński, Tomasz Olczak, Bartosz Pankratz, Paweł Prałat, and François Théberge.
Properties and performance of the ABCDe random graph model with community structure.
Big Data Research, 30:100348, 2022. doi:10.1016/j.bdr.2022.100348.

[21] Bogumił Kamiński, Bartosz Pankratz, Paweł Prałat, and François Théberge. Modularity of the
ABCD random graph model with community structure. Journal of Complex Networks, 10(6),
12 2022. doi:10.1093/comnet/cnac050.

[22] Bogumił Kamiński, Paweł Prałat, and François Théberge. An unsupervised framework for
comparing graph embeddings. Journal of Complex Networks, 8(5):cnz043, 2020. doi:10.1093/
comnet/cnz043.

[23] Bogumił Kamiński, Paweł Prałat, and François Théberge. Artificial benchmark for community
detection (ABCD)—fast random graph model with community structure. Network Science,
pages 1–26, 2021. doi:doi:10.1017/nws.2020.45.

[24] Bogumił Kamiński, Paweł Prałat, and François Théberge. Mining Complex Networks. Chapman
and Hall/CRC, New York, 2021. doi:10.1201/9781003218869.

[25] Andrea Lancichinetti and Santo Fortunato. Community detection algorithms: A comparative
analysis. Physical Review E, 80(5), Nov 2009. doi:10.1103/physreve.80.056117.

25

https://doi.org/10.1073/pnas.0605965104
https://doi.org/10.1016/j.knosys.2018.03.022
https://doi.org/10.1016/j.knosys.2018.03.022
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.1038/nature03288
https://doi.org/10.1093/molbev/mst228
https://doi.org/10.1017/nws.2022.27
https://doi.org/10.1016/j.bdr.2022.100348
https://doi.org/10.1093/comnet/cnac050
https://doi.org/10.1093/comnet/cnz043
https://doi.org/10.1093/comnet/cnz043
https://doi.org/doi:10.1017/nws.2020.45
https://doi.org/10.1201/9781003218869
https://doi.org/10.1103/physreve.80.056117

[26] Jure Leskovec, Kevin J. Lang, and Michael Mahoney. Empirical comparison of algorithms for
network community detection. In Proceedings of the 19th International Conference on World
Wide Web, WWW ’10, page 631–640, New York, NY, USA, 2010. Association for Computing
Machinery. doi:10.1145/1772690.1772755.

[27] Stuart P. Lloyd. Least squares quantization in PCM. IEEE Transactions on Information Theory,
28:129–137, 1982. doi:10.1109/TIT.1982.1056489.

[28] Arya D. McCarthy, Tongfei Chen, and Seth Ebner. An exact no free lunch theorem for community
detection. In Hocine Cherifi, Sabrina Gaito, José Fernendo Mendes, Esteban Moro, and
Luis Mateus Rocha, editors, Complex Networks and Their Applications VIII, pages 176–187,
Cham, 2020. Springer International Publishing. doi:10.1007/978-3-030-36687-2_15.

[29] Leland McInnes, John Healy, and Steve Astels. HDBSCAN: Hierarchical density based clustering.
Journal of Open Source Software, 2(11):205, 2017. doi:10.21105/joss.00205.

[30] Mark E. J. Newman. Modularity and community structure in networks. Proceedings of the
National Academy of Sciences, 103(23):8577–8582, May 2006. doi:10.1073/pnas.0601602103.

[31] Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu. Asymmetric transitivity
preserving graph embedding. In Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’16, page 1105–1114, New York, NY, USA,
2016. Association for Computing Machinery. doi:10.1145/2939672.2939751.

[32] Bartosz Pankratz, Bogumił Kamiński, and Paweł Prałat. Community detection supported
by node embeddings (searching for a suitable method). In Hocine Cherifi, Rosario Nunzio
Mantegna, Luis M. Rocha, Chantal Cherifi, and Salvatore Micciche, editors, Complex Networks
and Their Applications XI, pages 221–232, Cham, 2023. Springer International Publishing.
doi:10.1007/978-3-031-21131-7_17.

[33] Leto Peel, Daniel B. Larremore, and Aaron Clauset. The ground truth about metadata
and community detection in networks. Science Advances, 3(5):e1602548, May 2017. doi:
10.1126/sciadv.1602548.

[34] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. DeepWalk. Proceedings of the 20th ACM
SIGKDD international conference on Knowledge discovery and data mining, Aug 2014. doi:
10.1145/2623330.2623732.

[35] Carlos A. R. Pinheiro. Community detection to identify fraud events in telecommunications
networks. In SAS SUGI Proceedings: Customer Intelligence, 2012.

[36] Valérie Poulin and François Théberge. Ensemble clustering for graphs: comparisons and
applications. Applied Network Science, 4(1), Jul 2019. doi:10.1007/s41109-019-0162-z.

[37] Tahereh Pourhabibi, Kok-Leong Ong, Booi H. Kam, and Yee Ling Boo. Fraud detection: A
systematic literature review of graph-based anomaly detection approaches. Decision Support
Systems, 133:113303, 2020. doi:10.1016/j.dss.2020.113303.

[38] Carl Edward Rasmussen. The infinite gaussian mixture model. In Proceedings of the 12th
International Conference on Neural Information Processing Systems, NIPS’99, page 554–560,
Cambridge, MA, USA, 1999. MIT Press. doi:10.5555/3009657.3009736.

26

https://doi.org/10.1145/1772690.1772755
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1007/978-3-030-36687-2_15
https://doi.org/10.21105/joss.00205
https://doi.org/10.1073/pnas.0601602103
https://doi.org/10.1145/2939672.2939751
https://doi.org/10.1007/978-3-031-21131-7_17
https://doi.org/10.1126/sciadv.1602548
https://doi.org/10.1126/sciadv.1602548
https://doi.org/10.1145/2623330.2623732
https://doi.org/10.1145/2623330.2623732
https://doi.org/10.1007/s41109-019-0162-z
https://doi.org/10.1016/j.dss.2020.113303
https://doi.org/10.5555/3009657.3009736

[39] Sam T. Roweis and Lawrence K. Saul. Nonlinear dimensionality reduction by locally linear
embedding. Science, 290(5500):2323–2326, 2000. doi:10.1126/science.290.5500.2323.

[40] Benedek Rozemberczki, Ryan Davies, Rik Sarkar, and Charles Sutton. GEMSEC: Graph
embedding with self clustering. In Proceedings of the 2019 IEEE/ACM International Conference
on Advances in Social Networks Analysis and Mining, ASONAM ’19, page 65–72, New York,
NY, USA, 2019. Association for Computing Machinery. doi:10.1145/3341161.3342890.

[41] Didi Surian, Dat Quoc Nguyen, Georgina Kennedy, Mark Johnson, Enrico Coiera, and Adam G
Dunn. Characterizing twitter discussions about HPV vaccines using topic modeling and
community detection. J Med Internet Res, 18(8):e232, Aug 2016. doi:10.2196/jmir.6045.

[42] Aditya Tandon, Aiiad Albeshri, Vijey Thayananthan, Wadee Alhalabi, Filippo Radicchi, and
Santo Fortunato. Community detection in networks using graph embeddings. Phys. Rev. E,
103:022316, Feb 2021. doi:10.1103/PhysRevE.103.022316.

[43] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. LINE: Large-
scale information network embedding. Proceedings of the 24th International Conference on
World Wide Web, May 2015. doi:10.1145/2736277.2741093.

[44] Vincent Traag, Ludo Waltman, and Nees Jan van Eck. From Louvain to Leiden: guar-
anteeing well-connected communities. Scientific Reports, 9:5233, 03 2019. doi:10.1038/
s41598-019-41695-z.

[45] Beethika Tripathi, Srinivasan Parthasarathy, Himanshu Sinha, Karthik Raman, and Balaraman
Ravindran. Adapting community detection algorithms for disease module identification in
heterogeneous biological networks. Frontiers in Genetics, 10:164, 2019. doi:10.3389/fgene.
2019.00164.

[46] Sandro Vega-Pons and Jose Ruiz-Shulcloper. A survey of clustering ensemble algorithms.
International Journal of Pattern Recognition and Artificial Intelligence, 25(03):337–372, 2011.
doi:10.1142/S0218001411008683.

[47] Nguyen Xuan Vinh, Julien Epps, and James Bailey. Information theoretic measures for
clusterings comparison: Variants, properties, normalization and correction for chance. Journal
of Machine Learning Research, 11(95):2837–2854, 2010. URL: http://jmlr.org/papers/v11/
vinh10a.html.

[48] Daixin Wang, Peng Cui, and Wenwu Zhu. Structural deep network embedding. In Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’16, page 1225–1234, New York, NY, USA, 2016. Association for Computing Machinery.
doi:10.1145/2939672.2939753.

[49] Rui Xu and Donald Wunsch. Survey of clustering algorithms. Neural Networks, IEEE Transac-
tions on, 16:645 – 678, 06 2005. doi:10.1109/TNN.2005.845141.

[50] Jaewon Yang and Jure Leskovec. Defining and evaluating network communities based on ground-
truth. In Proceedings of the ACM SIGKDD Workshop on Mining Data Semantics, MDS ’12, New
York, NY, USA, 2012. Association for Computing Machinery. doi:10.1145/2350190.2350193.

27

https://doi.org/10.1126/science.290.5500.2323
https://doi.org/10.1145/3341161.3342890
https://doi.org/10.2196/jmir.6045
https://doi.org/10.1103/PhysRevE.103.022316
https://doi.org/10.1145/2736277.2741093
https://doi.org/10.1038/s41598-019-41695-z
https://doi.org/10.1038/s41598-019-41695-z
https://doi.org/10.3389/fgene.2019.00164
https://doi.org/10.3389/fgene.2019.00164
https://doi.org/10.1142/S0218001411008683
http://jmlr.org/papers/v11/vinh10a.html
http://jmlr.org/papers/v11/vinh10a.html
https://doi.org/10.1145/2939672.2939753
https://doi.org/10.1109/TNN.2005.845141
https://doi.org/10.1145/2350190.2350193

	Introduction
	Contributions

	Method Description
	Experiment Design
	Results
	Results on ABCD Networks
	Performance of Embedding Algorithms
	Performance of Clustering Algorithms
	Facebook Datasets

	Summary of the Procedure
	Discussion
	Conclusions

