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Abstract

In this paper, we propose a scalable community detection algorithm using hypergraph
modularity function, h–Louvain. It is an adaptation of the classical Louvain algorithm in
the context of hypergraphs. We observe that a direct application of the Louvain algorithm to
optimize the hypergraph modularity function often fails to find meaningful communities. We
propose a solution to this issue by adjusting the initial stage of the algorithm via carefully and
dynamically tuned linear combination of the graph modularity function of the corresponding
two-section graph and the desired hypergraph modularity function. The process is guided by
Bayesian optimization of the hyper-parameters of the proposed procedure. Various experiments
on synthetic as well as real-world networks are performed showing that this process yields
improved results in various regimes.

1 Introduction

Many networks that are currently modelled as graphs would be more accurately modelled as
hypergraphs. This includes the collaboration network [5] in which nodes correspond to researchers
and hyperedges correspond to papers that consist of nodes associated with researchers that co-author
a given paper. Social events may include more than two people which is not equivalent to social
interactions among all pairs of people participating in the event. Hypergraphs have shown promise in
modeling systems such as protein complexes and metabolic reactions [18]. Another natural examples
are co-purchases hypergraphs but there are plenty of other real-world hypergraphs.

After many years of intense research using graph theory in modelling and mining complex
networks [17, 23, 30, 45], hypergraphs start gaining considerable traction [4, 5, 6, 8]. Many higher-
order network data is being collected in recent years (see, for example, [5]). It has became clear
to both researchers and practitioners that dyadic relationships are insufficient in many real-world
scenarios. Higher-order network analysis, using the ideas of hypergraphs, simplicial complexes,
multilinear and tensor algebra, and more, is needed to study complex systems and to make an
impact across many important applications [6, 36, 52, 40]. Indeed, the inherent expressiveness of
hypergraphs has led to their applications across a diverse range of fields such as recommendation
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systems [54], computer vision [42], natural language processing [16], social network analysis [44],
financial analysis [56], bioinformatics [18], and circuit design [22]. Standard but important questions
in network science are currently being revisited in the context of hypergraphs. However, hypergraphs
also create brand new questions which did not have their counterparts for graphs. For example,
how hyperedges overlap in empirical hypergraphs [41]? Or how the existing patters in a hypergraph
affect the formation of new hyperedges [24]?

In this paper we concentrate on the classical problem of community detection in networks that
can be represented using hypergraphs [1, 7, 11, 12, 27, 28, 34, 35, 57, 58]. Community detection
is a challenging, NP-hard problem even for graphs [10, 19, 47] so obtaining an optimal solution
becomes computationally infeasible, even for small networks represented as graphs. Dealing with
hypergraphs is clearly much more difficult so, despite the fact that currently there is a vivid discussion
around hypergraphs, the theory and tools are still not sufficiently developed to tackle this problem
directly within this context. Indeed, researchers and practitioners, due to lack of proper solutions
for hypergraphs, often create the 2-section graph of a hypergraph of interest (that is, replace each
hyperedge with a clique, a process known also as clique expansion). Given the 2-section graph
representation, we can directly apply some graph clustering algorithm such as Louvain [9] and
Leiden [53]. Another approach is to perform agglomerative clustering via some definition of distance
between nodes, such as the derivative graph defined in Contreras-Aso et al. [15], and then select
the partition that maximizes the 2-section graph modularity. However, with the 2-section graph,
one clearly loses some information about hyperedges of size greater than two. In the experiments
presented in Section 5, we use the Louvain algorithm on the 2-section graph representations as our
basis of comparison for hypergraph-based algorithms.

As mentioned earlier, there are some recent attempts to deal with hypergraphs in the context of
clustering. For example, Kumar et al. [34, 35] still reduce the problem to graphs but use original
hypergraphs to iteratively adjust weights to encourage some hyperedges to be included in some
cluster but discourage other ones (this process can be viewed as separating signal from noise). In
Chodrow et al. [12], a hypergraph stochastic block model is defined, leading to a Louvain-type
clustering algorithm, in particular, for the “all or nothing” regime (AON), where edges must have
all nodes from the same community to improve the objective function. We provide more details
about these two algorithms at the beginning of Section 5.

Many of the successful graph clustering algorithms use the modularity function to benchmark
partitions to guide the associated optimization heuristics. Two widely used algorithms from this
family are the Louvain and Leiden algorithms mentioned earlier. Based on its spectacular success, a
number of extensions of the classical graph modularity function to hypergraphs are proposed [27, 28]
that can potentially be used by true hypergraph algorithms. In this paper, we concentrate on this
approach.

Unfortunately, there are many ways such extension of the modularity function to hypergraphs
can be done, depending on how often nodes in one community share hyperedges with nodes from
other communities. We believe that the underlying process that governs pureness of community
hyperedge is something that varies between networks at hand and also potentially depends on the
hyperedge sizes. Let us come back to the collaboration network we discussed earlier. Hyperedges
associated with papers written by mathematicians might be more homogeneous and smaller in
comparison with those written by medical doctors who tend to work in large and multidisciplinary
teams. Moreover, in general, papers with a large number of co-authors tend to be less homogeneous,
and other patterns can be identified [24]. The algorithm we propose in this paper, h–Louvain,
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is flexible and can use any of such hypergraph modularity function. In other words, there is no
unique way of extending the concept of modularity from graphs to hypergraphs. For this reason
we consider a family of such extensions parametrized by the user’s preference over homogeneity of
within-community hyperedges. At the same time we recognize that there can be situations in which
it might not be clear for a user what homogeneity level is desired. Therefore, in Section 5.1 we
provide some suggestions to help the user to make the right choice.

A significant challenge in optimizing modularity functions is that these objective functions have
their domains defined over all partitions of the set of nodes and they are known to be extremely
difficult to optimize. As already mentioned, one of the most popular and efficient heuristic methods
for modularity optimization for graphs is the Louvain algorithm [9]. In this paper, we show how
this algorithm can be adapted to optimize hypergraph modularity. One of the main challenges is the
fact that, when hyperedges of size two (edges) or three are not present in the hypergraph, then the
Louvain algorithm immediately gets stuck in its local minimum. Moreover, even if there are a few
hyperedges of size two or three, the algorithm may still get stuck almost immediately, and yield a
solution that is heavily biased toward small edges. Hence, in such situations, one cannot simply start
optimizing the hypergraph modularity right from the beginning. More importantly, we observe that
even if hyperedges of size two are present in the hypergraph, the algorithm often converges to a local
optimum that is of low quality. In order to address these two problems, we propose a method that
works reasonably well in practice in which we optimize a weighted average of the 2-section graph
modularity function and the hypergraph modularity function. For that we adjust the Louvain
algorithm in such a way that the weight of the hypergraph modularity function increases during the
optimization process. The pace of this weight change is governed by two hyperparameters of the
procedure, which we tune using Bayesian optimization.

The paper is structured as follows. We first introduce the necessary notation; in particular, we
state the definitions of graph and hypergraph modularity functions (Section 2). Synthetic as well as
real-world hypergraphs that are used in our experiments are introduced in Section 3. Section 4 is
devoted to explain details behind the proposed algorithm, h–Louvain. First, we discuss the classical
Louvain algorithm for graphs (Subsection 4.1) and explain why it is difficult to adjust it to directly
optimize hypergraph modularity (Subsection 4.2). Following this, we describe our solution that is
considering a linear combination of the 2-section graph modularity and the hypergraph modularity
as objective function (Subsection 4.3), and explain its implementation challenges (Subection 4.4).
In particular, the main challenge is to tune the two hyperparameters responsible for the speed of
convergence to the hypergraph modularity function. To find a “sweet spot” in an unsupervised
way, Bayesian optimization is used (Subsection 4.5). Section 5 highlights the results of numerical
experiments of using the proposed algorithm on synthetic hypergraphs (Subsections 5.2 and 5.3)
as well as real-world hypergraphs (Subsection 5.4). We also highlight important implications of
the choice of the modularity function to optimize (Subsection 5.1). The paper is concluded with a
summary of outlooks for further research in this area (Section 6).

Finally, let us mention that this paper is an extended, journal version of the short, proceeding
paper [25] that contained some preliminary experiments with a much simpler algorithm. The
algorithm as well as notebooks containing all experiments included in this paper can be found on
GitHub repository∗.

∗https://github.com/pawelwm/h-louvain
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2 Modularity Functions

Let us start with some basic definitions. In the hypergraph H = (V,E), each hyperedge e ∈ E is a
multiset of V of any cardinality d ∈ N called its size. Multisets in the context of hypergraphs are
natural generalization of loops in the context of graphs. Hypergraphs are natural generalization of
graphs in which edge is a multiset of size two. Even though H does not always contain multisets, it
is convenient to allow them as they may appear in the random hypergraph that will be used as the
null model to “benchmark” the edge contribution component of the modularity function. It will be
convenient to partition the hyperedge set E into {E1, E2, . . .}, where Ed consists of hyperedges of
size d. As a result, hypergraph H can be expressed as the disjoint union of d-uniform hypergraphs
H =

⋃
Hd, where Hd = (V,Ed). As for graphs, degH(v) is the degree of node v, that is, the number

of hyperedges v is a part of (taking into account the fact that hyperedges are multisets). Finally, the
volume of a subset of nodes A ⊆ V is volH(A) =

∑
v∈A degH(v).

Graph Modularity

The definition of modularity for graphs was first introduced by Newman and Girvan in [48]. Despite
some known issues with this function such as the “resolution limit” reported in [20], many popular
algorithms for partitioning nodes of large graphs use it [14, 38, 46] and perform very well. The two
prominent ones from this family are Louvain [9] and Leiden [53]. The modularity function favours
partitions of the set of nodes of a graph G in which a large proportion of the edges fall entirely
within the parts (often called clusters), but benchmarks it against the expected number of edges one
would see in those parts in the corresponding Chung-Lu random graph model [13] which generates
random graphs with the expected degree sequence following exactly the degree sequence in G.

Formally, for a graph G = (V,E) and a given partition A = {A1, A2, . . . , Ak} of V , the modularity
function is defined as follows:

qG(A) =
∑
Ai∈A

eG(Ai)

|E|
−

∑
Ai∈A

(
volG(Ai)

volG(V )

)2

, (1)

where eG(Ai) is the number of edges in the subgraph of G induced by set Ai. The first term in (1),∑
Ai∈A eG(Ai)/|E|, is called the edge contribution and it computes the fraction of edges that fall

within one of the parts. The second one,
∑

Ai∈A(volG(Ai)/volG(V ))2, is called the degree tax and it
computes the expected fraction of edges that do the same in the corresponding random graph (the
null model). The modularity measures the deviation between the two.

The maximum modularity q∗(G) is defined as the maximum of qG(A) over all possible partitions
A of V ; that is, q∗(G) = maxA qG(A). In order to maximize qG(A) one wants to find a partition
with large edge contribution subject to small degree tax. If q∗(G) approaches 1 (which is the trivial
upper bound), we observe a strong community structure; conversely, if q∗(G) is close to zero (which
is the trivial lower bound), there is no community structure. The definition in (1) can be generalized
to weighted edges (with weight function w : E → R+), by replacing edge counts with sums of the
corresponding edge weights.

Using Graph Modularity for Hypergraphs

Given a hypergraph H = (V,E), it is common to transform its hyperedges into complete graphs
(cliques), the process known as forming the 2-section of H or clique expansion, the graph H[2], on
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the same set of nodes as H. For each hyperedge e ∈ E with |e| ≥ 2 having weight w(e),
(|e|
2

)
edges

are formed, each of them with weight of w(e)/
(|e|
2

)
. This choice preserves the total weight. There

are other natural choices for the weight, for example the weighting scheme where w(e)/(|e| − 1) that
ensures that the degree distribution of the created graph matches the one of the original hypergraph
H [35, 34]. As hyperedges in H usually overlap, this process creates a multigraph. In order for H[2]

to be a simple graph, if the same pair of vertices appear in multiple hyperedges, the corresponding
edge weights are summed.

One of the approaches for finding communities in hypergraphs that practitioners use is to apply
one of the algorithms that aim to maximize the original, graph modularity function (such as Louvain,
Leiden, or ECG) to graph H[2]. Despite the fact that this procedure is simple, it has a drawback
that the 2-section graph looses some potentially useful information. Therefore, it is desired to define
modularity function that is tailored explicitly for hypergraphs and aim to optimize it directly.

Hypergraph Modularity

For edges of size greater than 2, several definitions can be used to quantify the edge contribution for
a given partition A of the set of nodes. As a result, the choice of hypergraph modularity function is
not unique. It depends on how strongly one believes that a hyperedge is an indicator that some
of its vertices fall into one community. The fraction of nodes of a given hyperedge that belong to
one community is called its homogeneity (provided it is more than 50%). In one extreme case, all
vertices of a hyperedge have to belong to one of the parts in order to contribute to the modularity
function; this is the strict variant assuming that only homogeneous hyperedges provide information
about underlying community structure. In the other natural extreme variant, the majority one,
one assumes that edges are not necessarily homogeneous and so a hyperedge contributes to one
of the parts if more than 50% of its vertices belong to it; in this case being over 50% is the only
information that is considered relevant for community detection. All variants in between guarantee
that hyperedges contribute to at most one part. This is an important difference from the modularity
on H[2], where a single original hyperedge is split into multiple graph edges that could be considered
as contributing to multiple different parts (communities). Once the variant is fixed, one needs to
benchmark the corresponding edge contribution using the degree tax computed for the generalization
of the Chung-Lu model to hypergraphs proposed in [27].

The hypergraph modularity function is controlled by hyper-parameters ηc,d ∈ [0, 1] (d ≥ 2,
⌊d/2⌋+ 1 ≤ c ≤ d). For a fixed set of hyper-parameters and a given partition A = {A1, A2, . . . , Ak}
of V , we define

qH(A) =
∑
d≥2

d∑
c=⌊d/2⌋+1

ηc,d qc,dH (A), (2)

where
qc,dH (A) =

1

|E|
∑
Ai∈A

(
ec,dH (Ai)− |Ed| · Pr

(
Bin

(
d,

vol(Ai)

vol(V )

)
= c

))
;

ec,dH (Ai) is the number of hyperedges of size d that have exactly c members in Ai, and Bin(d, p) is
the binomial random variable, that is,

Pr
(
Bin

(
d, p

)
= c

)
=

(
d

c

)
pc(1− p)d−c.
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Hyper-parameters ηc,d give us a lot of flexibility and allow to value some hyperedges more
than other ones depending on their size and homogeneity. However, there is a natural family of
hyper-parameters that one might consider, namely, ηc,d = (c/d)τ for some constant τ ∈ [0,∞). We
will refer to the corresponding modularity function as τ -modularity function. This family has only
one parameter to tune, τ , but it still covers a wide range of possible scenarios. For example, one
might want to value all hyperedges equally (τ = 0) or value more homogeneous hyperedges more
(τ > 0), including the extreme situation in which only fully homogeneous hyperedges are counted
(τ → ∞). In particular, we get the following four natural parameterizations of the modularity
function to optimize:

• strict modularity (τ →∞): ηd,d = 1 and ηc,d = 0 for ⌊d/2⌋+ 1 ≤ c < d,

• quadratic modularity (τ = 2): ηc,d = (c/d)2 for ⌊d/2⌋+ 1 ≤ c ≤ d,

• linear modularity (τ = 1): ηc,d = c/d for ⌊d/2⌋+ 1 ≤ c ≤ d,

• majority modularity (τ = 0): ηc,d = 1 for ⌊d/2⌋+ 1 ≤ c ≤ d.

Note that regardless of the parameter τ , the weights are normalized so that maxc ηc,d = 1 for all d.
This ensures that the modularity function is normalized to be between 0 and 1.

As already mentioned above, the choice of the parameter τ should be made depending on how
much more homogeneous hyperedges are valued compared to inhomogeneous ones. However, in an
absence of any external intuition about the nature of the ground-truth communities, our suggestion
is to use τ = 2. This choice is justified based on the connection to H[2], the corresponding 2-section
graph of H. Indeed, hyperedges of size d in H that have exactly c members in one of the communities
contribute

(
c
2

)
/
(
d
2

)
= c(c−1)

d(d−1) ≈ (c/d)2 fraction of their original weight to the graph modularity
function of H[2].

Having said that, let us stress the fact that optimizing the hypergraph 2-modularity function
of H is not equivalent to optimizing the graph modularity function of H[2] since hyperedges with
c ≤ d/2 members in one of the communities do not contribute to the hypergraph modularity whereas
they still do in the graph counterpart.

Indeed, this observation highlights the key difference between our approach to extracting com-
munities from the hypergraph and doing it via the corresponding 2-section graph H[2] that we
already indicated when introducing hypergraph modularity. Our assumption is that there exists an
underlying set of latent communities in the hypergraph (commonly referred to as the ground-truth).
A given set of nodes appears as a hyperedge with the probability that depends on whether the
majority of them are from one of the communities or not. As a result, hyperedges of size d in H that
have at most d/2 members in one of the communities are considered as noise, that unnecessarily
influences the modularity function of H[2]. Indeed, the hypergraph modularity is guaranteed to
count a single hyperedge at most for one community (as we require c > d/2). On the other hand,
the graph modularity of H[2] potentially treats a single hyperedge as a positive signal contributing
to multiple communities.

It is well known that optimizing modularity function in large networks might fail to resolve small
communities, even when they are well defined. This well-known potential problem of applying a
global null-models and is often referred to as the resolution limit [20]. A standard approach which
tries to solve the resolution limit is to multiply the degree tax in the definition of the modularity
function by a parameter γ > 0. This additional parameter controls the relative importance between

6



the edge contribution and the degree tax. The hypergraph modularity function may be tuned the
same way, if needed.

Finally, let us mention that for a given partition A, the values of different modularity functions
should not be compared, as they are scaled differently; rather the same modularity function should
be used to rank various partitions for a given graph.

3 Hypergraphs Used in Our Experiments

In this section, we introduce the hypergraphs we use in our experiments, both synthetic and real-world
ones. Despite the fact that there are several real-world hypergraphs with large hyperedges, we
restrict ourselves to hypergraphs with a relatively small hyperedges. Large hyperedges, spanning
multiple communities, are usually rare and do not provide any strong signal about the underlying
communities. (Such hyperedges could be useful for other tasks such as node classification.) From
that perspective, even if present, they are typically removed before running a clustering algorithm as
part of the exploratory data analysis (EDA).

3.1 Synthetic Hypergraph Model: h–ABCD

There are very few hypergraph datasets with ground-truth identified and labelled. Synthetic networks
are extremely useful to test various scenarios, such as the level of noise, via tuneable and interpretable
parameters. As a result, there is need for synthetic random graph models with community structure
that resemble real-world networks in order to benchmark and tune clustering algorithms that are
unsupervised by nature.

It is worth mentioning that the family of clustering algorithms we are interested in aims to
find partitions that maximize given modularity function, not to find the ground-truth partition.
Those are often very similar partitions (but not always). Note that ground truth partitions typically
influence the creation of a hypergraph in a noisy way, which means that just as a consequence of
this randomness a good community in a graph (after the randomness is resolved) does not have to
match exactly the ground truth community.

In particular, algorithm A would be considered better than algorithm B if it finds a partition
yielding larger modularity. Selecting the right modularity function to optimize is crucial for making
sure that the outcome of the algorithm is close to the ground-truth (or some specific requirements of
the user), but once the function is selected the algorithm should aim to maximize it. We propose a
simple, unsupervised method for making such selection (see Section 5.1) but this paper focuses on
the optimization algorithm.

The standard for the generation of synthetic graphs is rather clear. The LFR (Lancichinetti,
Fortunato, Radicchi) model [39, 37] generates networks with communities and at the same time it
allows for the heterogeneity in the distributions of both node degrees and of community sizes. It
became a standard and extensively used method for generating artificial networks. The Artificial
Benchmark for Community Detection (ABCD) [29] was recently introduced and implemented†,
including a fast implementation‡ that uses multiple threads (ABCDe) [33]. Undirected variant
of LFR and ABCD produce graphs with comparable properties but ABCD/ABCDe is faster
than LFR and can be easily tuned to allow the user to make a smooth transition between the two

†https://github.com/bkamins/ABCDGraphGenerator.jl/
‡https://github.com/tolcz/ABCDeGraphGenerator.jl/
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extremes: pure (disjoint) communities and random graph with no community structure. Moreover,
it is easier to analyze theoretically—for example, in [26, 2] various theoretical asymptotic properties
of the ABCD model are investigated including the modularity function and self-similarities of the
ground-truth communities.

The situation for hypergraphs is not as clear as for graphs. There are not only few real-world
datasets (with ground-truth) available, but also there are not so many synthetic hypergraph models.
Fortunately, the building blocks in the ABCD model are flexible and may be adjusted to satisfy
different needs. For example, the model was adjusted to include potential outliers in [31] resulting
in ABCD+o model. Adjusting the model to hypergraphs is more complex but it was also done
recently [32] resulting in h–ABCD model. We will use this model for our experiments.

The h–ABCD model generates a hypergraph on n nodes. The degree distribution follows power-
law with exponent γ, minimum and maximum value equal to δ and, respectively, D. Community
sizes are between s and S, and also follow power-law distribution, but this time with exponent β.
Parameter ξ is responsible for the level of noise. If ξ = 0, then each hyperedge is a community
hyperedge meaning that majority of its nodes belong to one community. On the other extreme, if
ξ = 1, then communities do not play any roles and hyperedges are simply “sprinkled” across the
entire hypergraph that we will refer to as background hypergraph. Vector (q1, . . . , qL) determines the
distribution of the number of hyperedges of a given size, where L is the size of largest hyperedges.

Finally, parameters wc,d specify how many nodes from its own community a given community
hyperedge should have. We call a community hyperedge to be of type (c, d) if it has size d and
exactly c of its nodes belong to one of the communities. Note that, in light of the discussion we had
at the end of the previous section, we require that a community hyperedge must have more than a
half of its nodes from the community. Therefore, wc,d is defined for d/2 < c ≤ d, where d ∈ [L].

The model is flexible and may accept any family of parameters wc,d satisfying specific needs of
the users, but here is a list of three standard options implemented in the code:

• majority model: wc,d is uniform for all admissible values of c, that is, for any d/2 < c ≤ d,
wc,d = 1

(d−⌊d/2⌋) =
1

⌈d/2⌉ ,

• linear model: wc,d is proportional to c for all admissible values of c, that is, for any d/2 < c ≤ d,
wc,d = 2c

(d+⌊d/2⌋+1)(d−⌊d/2⌋) =
2c

(d+⌊d/2⌋+1)⌈d/2⌉ ,

• strict model: only “pure” hyperedges are allowed, that is wd,d = 1 and wc,d = 0 for d/2 < c < d.

Let us note that the parameterizations of wc,d in h–ABCD and ηc,d in the definition of the
hypergraph modularity function have the same (due to matching functional form) name but they are
not equivalent. Parameters wc,d determine the composition of hyperedges in the generated synthetic
graph whereas parameters ηc,d specify the objective function that the analyst decided to optimize
against while looking for communities in the hypergraph at hand.

Specifically, we used the following parameters for our experiments:

• n = 300 nodes,

• power-law degree exponent α = 2.5, in the range [5, 30],

• power-law community size exponent β = 1.5, in the range [80, 120].

We generated 6 families of h–ABCD hypergraphs, namely:

8



• linear_2to5: linear model for wc,d, with edge sizes 2 to 5 (with respective probabilities
0.1, 0.4, 0.4, 0.1),

• majority_2to5: majority model for wc,d, with edge sizes 2 to 5 (with respective probabilities
0.1, 0.4, 0.4, 0.1),

• strict_2to5: strict model for wc,d, with edge sizes 2 to 5 (with respective probabilities
0.1, 0.4, 0.4, 0.1),

• linear_5: linear model for wc,d, with all edge of size 5,

• majority_5: majority model for wc,d, with all edge of size 5, and

• strict_5: strict model for wc,d, with all edge of size 5.

3.2 Real-world Hypergraphs

To illustrate various aspects of hypergraph modularity-based clustering, we analyze a few real-world
hypergraphs. The first is a contact hypergraphs in which nodes correspond to primary school
children or teachers and hyperedges represent close physical proximity between individuals within a
prescribed time period (see [12, 51, 43] for more details). There are 242 nodes labelled with respect
to their class (there are 10 classes), plus another label for the teachers. There are 12,704 hyperedges
of size up to 5. In Table 1 (left), we show the distribution of edge composition for this dataset with
respect to the ground-true communities. We see that there are many edges between communities, in
particular edges of size 2. Community edges (with c > d/2) are mostly “pure” edges (with c = d),
but there is a significant number of edges of type (c, d) = (2, 3), thus it is unclear if hypergraph
τ -modularity functions with large parameter τ would do well, or if a small value for τ should be
used.

primary-school

d c purity frequency

2 1 50% 5202
2 2 100% 2546
3 3 100% 2434
3 2 67% 1751
3 1 33% 415
4 4 100% 158
4 2 50% 93
4 3 75% 84
4 1 25% 12
5 3 60% 6

cora

d c purity frequency

2 2 100% 472
3 3 100% 307
4 4 100% 175
2 1 50% 151
3 2 67% 118
4 3 75% 91
5 5 100% 83
5 4 80% 55
4 2 50% 42
3 1 33% 39

Table 1: The number of hyperedges of type (c, d) (the top-10 most frequent ones) for the
primary-school dataset (left) and the cora co-citation dataset (right). (Combinations contributing
to hypergraph modularity are highlighted in grey.)

Another dataset we use for our experiments in the co-reference dataset between scientific
publication which belong to one of seven classes (cora); see [55] for more details. Hyperedges consist
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of co-cited scientific publications, and we only keep hyperedges of size 2 or more. There are 1,434
nodes appearing in at least one hyperedge (cited publications), and 1,579 hyperedges. In Table 1
(right), we show the top-10 distribution of edge composition with respect to the true communities.
We see that there are many pure community edges (with c = d), so we can expect that hypergraph
τ -modularity functions with large parameter τ would do well.

Having node attributes that represent a proxy of the corresponding ground-truth communities
is convenient, as one can easily test the quality of various algorithms by measuring the similarity
between partitions returned by them and the “ground-truth” partition. However, it is important to
keep in mind that, in general, the ground-truth is unknown and one can only make the hypothesis
that the attributes used are correlated to it. Indeed, it is often impossible to ensure that these
observed discrete-valued node attributes used as labels are good representation of an underlying
mechanism responsible for creation of communities [50].

4 Hypergraph Modularity Optimization Algorithm: h–Louvain

Let us fix the hypergraph modularity function qH(A), either by restricting ourselves to τ -modularity
function with some specific value of τ (such as τ = 2 that is recommended as the default value)
or by specifying the more general hyper-parameters ηc,d. The goal of this section is to highlight
challenges in designing a heuristic algorithm aiming to optimize qH(A) and to describe our solution
that overcame these challenges, producing an algorithm that we will refer to as h–Louvain.

4.1 Louvain Algorithm

Let us start by introducing one of the most popular algorithms for detecting communities in graphs,
namely, the Louvain algorithm [9]. It is a hierarchical clustering algorithm that tries to optimize
the modularity function we described in Section 2.

In the first pass of this algorithm, small communities are found by optimizing the graph modularity
function locally on all nodes. Then, each small community is grouped together into a single node
that we will refer to as super-node. This process is repeated recursively on those smaller graphs
consisting of super-nodes (the subsequent passes) until no improvement on the modularity function
can be further achieved.

One pass of the algorithm consists of two phases that are repeated iteratively. In the first
phase, each node in the network is assigned to its own community. For each node v, we consider all
neighbours u of v and compute the change in the modularity function if v is removed from its own
community and moved into the community of u. It is important to mention that this value can be
easily and efficiently calculated without the need to recompute the modularity function from scratch.
Once all the communities that v could belong to are considered, v is placed into the community that
resulted in the largest increase of the modularity function. If no increase is possible, v remains in its
original community. The process is repeated for the remaining nodes following a given (typically
random) permutation of nodes, possibly multiple times, until a local maximum value is achieved and
the first phase ends.

During the second phase, the algorithm contracts all nodes that belong to one community into a
single super-node. All edges within that community are replaced by a single weighted loop. Similarly,
all edges between two communities are replaced by a single weighted edge. Once the new network
is created, the second phase ends. The resulting graph is typically much smaller than the original
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graph. As a result, the first pass is typically the most time consuming part of the algorithm.

4.2 Challenges with Adjusting the Algorithm to Hypergraphs

One could try to directly apply the Louvain algorithm to optimize hypergraph modularity, since in
both cases the goal is to find a partition of the set nodes. However, as the algorithm moves only one
node at a time, it creates a problem in the case of hypergraphs.

Consider, for example, a hypergraph in which all hyperedges have size at least four. In this case,
regardless which two nodes u and v are considered for possible merging into one community, the
edge contribution would not change (that is, it would stay equal to zero), even if u and v are part of
some hyperedge. (Recall that only hyperedges with majority of nodes from the same community
may affect the edge contribution). On the other hand, the degree tax would increase after such a
move and, as a result, the modularity function would decrease. Therefore, no move would be made
and the algorithm would get immediately stuck. We will refer to this issue as a lift off from the
ground problem.

The above, extreme, situation is not the only problem one should be aware of. This time consider
a hypergraph that consists of a mixture of hyperedges of various sizes, including edges of size two. In
this scenario there is no problem with lifting off from the ground but small hyperedges clearly play a
much more important role than large ones during the initial merging in the first phase of the algorithm.
On the other hand, very large hyperedges would be mostly ignored. This behaviour is not desirable
either. In order to illustrate a potential danger, consider a hypergraph representing interactions
between researchers at some institution. Nodes in this hypergraph correspond to researchers and
hyperedges correspond to meetings of some groups of people. For simplicity, assume that there are
two communities, say, faculty of science and faculty of engineering. Many hyperedges within the two
communities are large (e.g. hyperedges associated with departmental meetings) whereas hyperedges
between the two communities are mostly of size two (e.g. two members of different teams meet
individually from time to time). In this scenario, the algorithm would start merging people from
different communities during the first phase.

Finally, let us note that one could alternatively consider modifying the algorithm and allow for
not only merging two nodes into one community in a single move but entire hyperedges. Again, this
does not seem to be desirable as hyperedges might consist of members from different communities
and so such operations would generate many incorrect merges too fast.

4.3 Our Approach to Hypergraph Modularity Optimization

In order to overcome the above mentioned challenges, we want to design an algorithm that, as in
the classical Louvain algorithm, merges single pairs of nodes while, at the same time, takes into
account information stored in hyperedges of all sizes. To that end we propose to optimize a linear
combination of the hypergraph modularity qH(A) and the graph modularity of the corresponding
2-section graph H[2], that is, optimize function

q(A, α) := α · qH(A) + (1− α) · qH[2]
(A), (3)

where α ∈ [0, 1]. For simplicity, we will refer to our algorithm as h–Louvain.
To understand the motivation behind this approach, let us observe the following. The hypergraph

modularity, equation (2), is flexible and may approximate well the graph modularity for the
corresponding 2-section graph H[2]. Indeed, if c vertices of a hyperedge e of size d and weight
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w(e) fall into one part of the partition A, then the contribution to the graph modularity is
w(e)

(
c
2

)
/
(|e|
2

)
≈ w(e)(c/|e|)2 (in the variant of the 2-section where the total weight is preserved) or

w(e)
(
c
2

)
/(|e| − 1) (if the degrees are preserved). Hence, the hyper-parameters of the hypergraph

modularity can be adjusted to approximate H[2] modularity. The only difference is that (2) does not
allow to include contributions from parts that contain at most d/2 vertices which still contributes to
the graph modularity of H[2].

The observation justifies using q(A, α) for optimizing the hypergraph modularity. It is a linear
combination of the actual hypergraph modularity we want to optimize, qH(A), and an approximation
of the hypergraph modularity for special value of hyper-parameter (τ = 2) and without the restriction
of hyperedge contribution, qH[2]

(A). The benefit of the second part is that it is sensitive to merging
two nodes and so it always gives some indication of how nodes should be merged (even if the first
part qH(A) does not give such an indication). In short, it resolves the lifting off from the ground
problem. If α is close to zero, then we concentrate mostly on the approximation part, while if α is
close to one, then we mostly concentrate on the actual hypergraph modularity we aim to optimize.

The above discussion leads us to the conclusion that the parameter α ∈ [0, 1] should be
appropriately tuned during the algorithm. The main questions are: a) when the change should
be made, and b) what values of this parameter should be used? In [25], we performed various
experiments and made the following observations. The optimization process should start with
low values of the parameter α (to let the process lift off from the ground) and then it should be
gradually increased till it reaches one by the end of the process. The algorithm should start increasing
parameter α when the communities induce enough edges so that merging additional nodes makes a
difference in the edge contribution of the qH function value; this, in particular, means that since the
strict hypergraph modularity pays attention to only pure hyperedges (all members belong to one
community), in this case, the algorithm needs to start with lower values of α and increase it slower
than for the majority or the linear counterparts of the hypergraph modularity for which it is enough
that over 50% of nodes in some hyperedge are captured in one community.

Based on these observations, we propose the following schema for setting the successive values of α
used in the objective function (3), which leads to monotonic (non-decreasing) sequences (α1, α2, . . . ).
The schema is guided by the following two parameters: pb ∈ [0, 1] and pc ∈ (0, 1). The parameter pb
is used to determine the values of αi, while pc governs when the algorithm switches from αi−1 to αi

(for i ≥ 2) as the optimization progresses.
For a given pair of parameters (pb, pc), the values of αi are determined as follows: for any i ∈ N,

αi = 1− (1− pb)
i−1.

(We use the convention that 00 = 1.) Note that α1 = 0 and αi → 1 as i → ∞, unless pb = 0. In
the degenerate case, if pb = 0, then αi = 0 for all i. The algorithm switches from αi−1 to αi’s (for
i ≥ 2) when the number of communities drops to npi−1

c or below for the first time (note that the
number of communities typically decreases but it is not always the case; as usual, n denotes the
number of nodes). In summary, the two parameters have the following interpretation: pb controls
the rate of change of α (values close to zero make αi converge to one slowly, values close to one make
convergence fast); pc controls the speed of change of α.

There are two possible endings once the algorithm reaches a partition in which no improvement
of the modularity function is possible via local changes. (Note that it might happen when the value
of αi is still away from one.) By default, we fix αi = 1 and continue optimizing the hypergraph
modularity function on the small graph consisting of super-nodes until no further improvement can
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be achieved. Alternatively, the local optimization can be performed on the original graph consisting
of nodes. The pseudo-code of h–Louvain can be found in the Appendix (see Section A). As it is
discussed in Section 4.5, we use the default ending when doing Bayesian optimization to select a good
pair (pb, pc) of parameters because it is faster. Once the final pair is chosen, we do an additional
tuning process with local-optimization enabled which typically yields better values of the objective
function.

4.4 Parameters of the h–Louvain Algorithm

In this subsection, we aim to investigate the quality of the h–Louvain algorithm for different pairs
of parameters (pb, pc). To that end, we analyzed the performance of the algorithm using 9 different
h–ABCD graphs on 1,000 nodes. For each of the three options for community hyperedges in the
h–ABCD model (namely, strict, linear, and majority), we used the following three settings with
respect of different levels of noise and sizes of hyperedges:

1. small level of noise (ξ = 0.15, ξemp = 0.29), hyperedges of size between 2 and 5, the degree
distribution following power-law with exponent γ = 2.5, minimum and maximum degree 5 and
20,

2. large level of noise (ξ = 0.6, ξemp = 0.62), hyperedges of size between 2 and 5, the degree
distribution following power-law with exponent γ = 2.5, minimum and maximum degree 5 and
20,

3. large hyperedges (sizes between 5 and 8), large level of noise (ξ = 0.3, ξemp = 0.63), the degree
distribution following power-law with exponent γ = 2.5, minimum and maximum degree 5 and
60.

(In the above description, ξemp refers to the actual level of noise in the produced hypergraph. The
model ensures that ξemp ≈ ξ for graphs without small communities. In our scenario, it is not the case
but the generated hypergraphs still have drastically different levels of noise.) In all three settings, the
distribution of community sizes follows power-law with exponent β = 1.5, minimum and maximum
size 10 and 30. The distribution of hyperedges of different sizes is (0.4, 0.3, 0.2, 0.1), that is, there
are slightly more hyperedges of smaller size.

Figure 1 presents the performance of the algorithm for three selected hypergraphs out of the 9
we experimented with. (Results for the remaining six hypergraphs can be found in the associated
GitHub repository.) For each hypergraph, we present the quality of the algorithm optimizing the
corresponding modularity function (that is, for example, for strict hypergraph we optimize the strict
modularity function) as a function of (pb, pc). The parameters were tested from the 2-dimensional
grid (pb, pc), where pb ∈ {0.05, 0.1, 0.3, 0.5, 0.7, 0.9, 0.95} and pc ∈ {0.1, 0.2, . . . , 0.9}. For each pair
of parameters, the average modularity function is reported over 10 independent runs with different
random seeds. (Recall that h–Louvain is a randomized algorithm.)

The general conclusion is that the optimal choice of parameters depends on many factors: property
of the hypergraph (such as the composition of community hyperedges, the level of noise, sizes of
hyperedges) as well as the modularity function that one aims to maximize. However, not surprisingly,
it is not recommended to set both parameters to be close to zero (the case of slow and small increases
of the alpha parameter, so optimizing mainly the graph modularity of the corresponding 2-section
graph H[2]), or to be close to one (the case of fast and significant changes of the alpha parameter, so
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Figure 1: Quality of h–Louvain on h–ABCD as a function of parameters pb, pc. Optimal
combinations of the two parameters depend on the choice of h–ABCD variant and hypergraph
modularity function: strict, large level of noise (left), majority, large level of noise (middle), or linear,
small level of noise (right).

optimizing the hypergraph modularity qH almost from the beginning of algorithm execution). The
optimal values are often obtained for settings with balanced values of both parameters, namely, with
pb + pc ≈ 1. In order to find a “sweet spot” in an unsupervised way, we use Bayesian optimization
that we discuss next. Let us remark that one can expect to see large regions of the parameter space
yielding low quality solutions (blue and light red zones on Figure 1). Therefore, using a simpler
hyperparameter tuning technique such as the grid search would be less efficient. The algorithm
would spend a lot of time investigating regions of the hyperparameter space that are not promising.
On the other hand, Bayesian optimization avoids scanning such regions in detail and performs more
dense search in more promising regions instead.

4.5 Bayesian Optimization: Selecting the Parameters

In order to find a good pair of the two parameters (pb, pc) guiding the h–Louvain algorithm that
yield large hypergraph modularity function, we use the Bayesian optimization approach [21]. We
chose this tool for our problem as this approach is best suited for optimizing objective functions
that take a long time to evaluate over continuous domains of less than 20 dimensions, and tolerates
well non-negligible local variability of the evaluation of the function. It builds a surrogate for the
objective function and quantifies the uncertainty in that surrogate using a Bayesian machine learning
technique, Gaussian process regression, and then uses an acquisition function defined from this
surrogate to decide where to sample the domain in an on-line fashion. Specifically, we use the [49]
package providing the Bayesian optimization procedure. All general properties of time complexity
and performance follow this implementation. Below we describe in detail how we specifically prepare
an input for this optimization in our specific optimization problem.

Specifically, in our case the Bayesian optimization aims to explore the two dimensional space
(pb, pc) with pb ∈ [0, 1] and pc ∈ (0, 1). The target function is defined as the average modularity
function of the outcome partition for 10 independent executions of the h–Louvain algorithm with
different (but fixed across runs) random number generator seeds. Note that in this setting we
maximize a deterministic function (since the seeds are fixed). We take the average over 10 different
seeds because we aim to identify the region of the (pb, pc) domain that leads to good values of
the obtained evaluations of modularity and taking the average reduces the noise that is present in

14



modularity values observed in single runs of the algorithm.
Because tuning hyper-parameters is computationally intensive, we initially use the default ending

of the algorithm, that is, without the local-optimization approach for the last phase (see Section 4.3
for an explanation how the optional ending works). The reason for this choice is that in this phase
of the process we are mostly interested in capturing the shape of the response surface (recall that we
take the average of 10 runs of the algorithm for the very same reason, namely, to smooth-out the
results and to better capture the shape of the response surface). The default ending is sufficient for
this purpose and it is substantially faster. After finding an approximation of the optimal (pb, pc)
combination, the algorithm comes back to the partition obtained with these parameters but this time
the local-optimization approach is used during the last phase. It is more computationally expensive,
but at this stage of the procedure we are interested in finding the maximum value of the hypergraph
modularity, and so this additional computational cost is justified.

We configured the Bayesian optimization procedure so that it starts with evaluation of 5 initial
pairs of parameters selected randomly from the domain and at least 10 pairs are tested in total. Once
the Bayesian optimization converges, the algorithm returns the partition of the largest modularity
from all partitions generated during the entire process. Note that this partition might not be one of
the 10 partitions that contributed to the largest value of the target function; these partitions only
have the best average modularity.

In order to visualize the Bayesian optimization procedure, we performed the following experiment.
We selected one of the nine h–ABCD hypergraphs we experimented with (namely, the linear
hypergraph with small level of noise, but this time with only n = 300 nodes) and one of the three
modularity functions (namely, the linear one) to be our target function. For cleaner visualization, we
fixed pb = 0.9 and used the procedure to find the optimum value of pc that maximizes the selected
modularity function. Figure 2 presents situation at step k of the algorithm for k ∈ {8, 9, 10, 11}.
The blue curve is the target function that we independently computed but it is not available to
the Bayesian optimization. The orange curve is a surrogate for the target function based on k − 1
sampled points that are marked on this curve. The level of uncertainty is represented by the shaded
area around this curve. Based on this information, the Bayesian optimization selects the next point
to sample at this step which is depicted as a green point that lies outside of the orange curve and
a green vertical line. Note that the blue curve is deterministic (as we use fixed seeding of random
number generator), as discussed above. It still has visible local variability, although it is possible to
identify the region of good values of the parameter pc (in this case around 0.2). This variability is
expected and is the reason why when computing it we take the average of 10 independent evaluations
of the algorithm (this approach significantly reduces the level of noise).

4.6 Computational Complexity

The computational complexity of the proposed algorithm is the same as for Louvain algorithm
(both in terms of the number of nodes |V | and in terms of the number of hyperedges |E|), as we
follow the same 2-phase process. The difference is that for computing the hypergraph modularity
function we have additional parameters that affect the runtime of our algorithm.

The first one is the maximum hyperedge size dmax = maxe∈E{|e|}, where the worst-case com-
plexity of the algorithm is quadratic, i.e., O(d2max); recall that the hypergraph modularity function
consists of O(d2max) “slices” (see (2)). However, in practice, this cost is lower as in the implementation
we use caching of the intermediate results of the computations. This approach has proven empirically
to significantly lower the run-time of the algorithm.
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(a) Step 8 (b) Step 9

(c) Step 10 (d) Step 11

Figure 2: Visualization of the Bayesian optimization approach optimizing the modularity function
returned by the h–Louvain algorithm.

The second one is associated with the selection of the hyperparameters of the hypergraph
optimization procedure. This part only adds a constant multiplicative term to the total cost of
computations. This constant term depends on the decision of the user when to stop Bayesian
optimization and, in general, it can be potentially significant.

5 Experiments

In this section, we present several experiments aimed at testing our h–Louvain clustering algorithm
as well as comparing outcomes of selecting various hypergraph modularity functions. One general
observation is that the choice of the objective function to optimize, here the hypergraph τ -modularity,
typically has an enormous impact on the quality of the results (see Subsection 5.1). Fortunately, one
should be able to make a reasonable selection of a good value of τ in an unsupervised way.

In general, in most of our experiments, we compare results obtained with our h–Louvain
algorithm with results obtained by classical Louvain algorithm on the corresponding (weighted)
2-section graphs, as well as results using Kumar’s algorithm; see [35]. Kumar’s algorithm is a
modification of the Louvain algorithm on 2-section graphs in which edges are re-weighted by taking
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into account the underlying hypergraph structure, and the hyperedge composition (with respect to
the communities).

We consider synthetic hypergraphs with community structures, obtained via the h–ABCD
benchmark, as well as two real-life hypergraphs, all of them described earlier in Section 3. Syn-
thetic hypergraphs allow us to investigate the performance of algorithms in various scenarios (see
Subsection 5.2), from hypergraphs with low level of noise (ξ close to 0) that are easy to deal
with to noisy hypergraphs (ξ close to 1) that are challenging to find communities in. We also
investigate a challenging case in which there are many hyperedges between two small communities
(see Subsection 5.3). It is known that many networks exhibit self-similar, “fractal-type” structure
(see [2, 3] and references therein) so such example aims to reproduce typical scenarios. This example
highlights the power of our h–Louvain algorithm that in this particular setting clearly outperforms
its competitors.

For the real hypergraphs, we additionally consider the “all of nothing” (AON) variant of the
Louvain algorithm. Specifically, we consider the version aiming to optimize the strict modularity,
referred to as AON, as described in the associated GitHub repository§. Note that, unless we start
from some non-trivial partition such as the one obtained from the 2-section graph with Louvain,
this algorithm requires 2-edges to be present. This is the case for the real hypergraphs we considered
(but not so for several h–ABCD benchmark hypergraphs).

In general, the experiments on real-world hypergraphs (see Subsection 5.4) show that for
appropriate value of τ affecting the choice of the objective function to optimize, one can improve the
quality of the clusters measured by the AMI score with respect to the ground-truth.

5.1 Selecting the Modularity Function to Optimize

Selecting an appropriate hypergraph modularity function to optimize is an important part of the
process. The choice depends on how strongly one believes that a hyperedge is an indicator that at
least some fraction of its nodes fall into one of the communities. In some situations, a reasonable
assumption could be that not necessarily all members of that hyperedge must be in a single community
but majority should (in such situations, quadratic modularity function might work well). On the
other hand, some situations might have some underlying physical constraints that make one believe
that all members should belong to one community unless such hyperedge is simply a noise (this time,
strict modularity might be the one to optimize). If an analyst has some reasonable assumptions
about the underlying process that created a hypergraph, then the decision which modularity function
to use should be made based on this expert knowledge. In this section, we provide a general strategy
for selecting a modularity function if such expert knowledge is not available, based on the structure
of the hypergraph that can be detected in an unsupervised way.

Let us first start with highlighting important implications of the choice of the modularity function
one decides to optimize. Recall that a community hyperedge (hyperedge with more than 50% of
members from one of the communities) of size d that have exactly c members from one of the
communities is said to be of type (c, d). In the absence of having the ground-truth available, one way
to compare partitions returned by the algorithm aiming to optimize different modularity functions is
to look at the distribution of edges of certain types. In our first experiment, we consider a synthetic
h–ABCD graphs with only edges of size 5 and generated with the strict or the majority model,
strict_5 and majority_5 with noise parameters ξ = 0.3 and ξ = 0.2. We run this experiment to

§https://github.com/nveldt/HyperModularity.jl
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show how the (c, d) hyperedge composition changes under various modularity functions optimized. We
expect that there should be visible difference in this distribution between strict_5 and majority_5
graphs independent of the choice of the objective function for community detection.

In Table 2, we compare the distribution of edge types for 5 different partitions, namely, (i) the
ground-truth partition, and partitioned returned by (ii) 2-section Louvain, (iii) h–Louvain with
τ = 2 (quadratic modularity), (iv) h–Louvain with τ = 3 (cubic modularity), and (v) h–Louvain
with τ →∞ (strict modularity). We count the number of edges with 5, 4 or, respectively, 3 nodes in
the most frequent community; the remaining edges are considered to be noise.

Majority Ground-truth Louvain h–Louvain
class size communities 2-section τ = 2 τ = 3 τ →∞ (strict)

Strict with noise parameter ξ = 0.2

5 352 352 349 352 352
4 36 36 41 36 36
3 92 92 91 92 92
≤ 2 42 42 41 42 42

Strict with noise parameter ξ = 0.3

5 314 314 311 314 314
4 30 30 35 30 30
3 123 123 122 123 123
≤ 2 55 55 54 55 55

Majority with noise parameter ξ = 0.2

5 169 170 137 169 264
4 175 165 171 174 154
3 137 138 161 137 104
≤ 2 41 49 53 42 0

Majority with noise parameter ξ = 0.3

5 158 129 88 158 206
4 145 140 148 144 147
3 158 151 196 161 169
≤ 2 61 102 90 59 0

Table 2: The number of hyperedges of each type for h–ABCD hypergraphs with 5-edges generated
with strict (strict_5) or majority (majority_5) assignment rule.

In the second column of in Table 2 we show hyperedge composition of the ground truth. As
expected, for hypergraph with the strict model used the (5, 5) hyperedges are most common, and for
hypergraph with the majority model used (5, 5), (4, 5), and (3, 5) hyperedges have similar frequencies
(this holds both for ξ = 0.2 and ξ = 0.3). The crucial observation is that regardless of which
of the modularity function is optimized (Louvain 2-section or h–Louvain with varying τ), the
recovered hyperedge composition is similar to the ground truth. This observation suggests using the
following approach in cases where the user does not have a prior preference for the τ parameter in
the h–Louvain algorithm.

As a rule of thumb, running a quick clustering (for example with 2-section Louvain) as a part of
Exploratory Data Analysis (EDA), and looking at the composition of edge types is a recommended
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first step that can be used to decide on the value(s) of τ one wants to use as the objective τ -modularity
function for h–Louvain. In general, there are two major possible scenarios that the user could
consider. Seeing mostly “’pure” edges suggests using large value of τ (or strict modularity), while
the opposite suggests using a smaller values of τ such as τ = 2 or τ = 3.

5.2 Synthetic h–ABCD Hypergraphs

We ran a series of experiments using the synthetic h–ABCD benchmark hypergraphs. For each
family of hypergraphs, we considered a wide range of values for the noise parameter ξ, and for each
ξ, we generated 30 independent copies of h–ABCD hypergraphs. For each hypergraph, we obtained
clusterings in various ways:

• taking the 2-section (weighted) graph and applying the Louvain algorithm several times,
keeping the partition with the largest (graph) modularity;

• running Kumar’s algorithm;

• running our h–Louvain algorithm with Bayesian optimization for τ = 2 and τ = 3, and

• running our h–Louvain algorithm with Bayesian optimization using the strict modularity
(τ →∞) as the objective function.

In the analysis of the results, we computed the AMI of each partition with respect to the ground
truth communities. The plots in Figures 3–5 show the difference of the AMI of a given algorithm
and the AMI of 2-section result. In other words, we measure how much gain/loss is obtained
by switching from a standard 2-section approach to finding communities in a hypergraph to our
algorithm designed specifically for hypergraphs.

Figure 3: Results with h–ABCD hypergraphs with strict model for the community edge composition,
(strict_5 and strict_2to5) showing AMI difference between 2-section communities and the
considered algorithms. Positive values indicate increase of AMI for a given algorithm.
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Figure 4: Results with h–ABCD hypergraphs with linear model for the community edge composition,
(linear_5 and linear_2to5) showing AMI difference between 2-section communities and the
considered algorithms. Positive values indicate increase of AMI for a given algorithm.

Figure 5: Results with h–ABCD hypergraphs with majority model for the community edge compo-
sition, (majority_5 and majority_2to5) showing AMI difference between 2-section communities
and the considered algorithms. Positive values indicate increase of AMI for a given algorithm.

Here are some general remarks from those experiments:

• The hypergraph specialized (h-Louvain and Kumar) algorithms give the most substantial
benefits for moderately noisy hypergraphs. The reason is that for hypergraphs with very
low level of noise (values of ξ close to zero) all algorithms produce similar results, as the
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community-finding problem is simple, and for very noisy graph (values of ξ close to one) the
noise itself creates spurious communities that the algorithm start to recover (this effect has
been previously studied and analytically analyzed for the ABCD graphs in [26]).

• Our h–Louvain algorithm with τ = 2 and τ = 3 outperforms Kumar’s algorithm most of the
time. The exceptions are a few cases with large amount of noise in the hypergraph (values of ξ
close to one).

• Strict h–Louvain modularity function (τ →∞) may work poorly for hypergraphs that have
many non-pure community hyperedges. For this reason, in the case of absence of a prior
preference, users should follow the initial verification procedure described in Section 5.1 before
using this parameterization. The reason is that for τ → ∞, all hyperedges of type (c, d)
with c < d are not counted as community hyperedges, which would loose potentially valuable
information in cases when they are indeed informative.

5.3 More Challenging Case—Synthetic Hypergraphs with Localized Noise

In this experiment, we simulate an example in which the difficulty in recovering communities is due
to the fact that several “noise” edges touch a small number of communities instead of being sprinkled
over several communities. To that end, we generated a h–ABCD hypergraph with n = 300 nodes,
degree exponent α = 2.5 in the range [5, 30], community size exponent β = 1.5 in the range [40, 60],
edges of size 5 with purity distribution for community hyperedges set to (0.7, 0.2, 0.1), i.e. 70%
of them have 3 community nodes (type (3, 5)), 20% have 4 (type (4, 5)), and 10% have 5 (pure
hyperedges, type (5, 5)). The overall noise is set to ξ = 0.2. To this hypergraph, we added 35 5-edges
where the nodes are randomly sampled only from the two smallest communities. This simulates
“localized” noise which should make the community detection more challenging.

First, simulating a real-life application of the procedure we proposed in Subsection 5.1, we look
at the edge composition when running a 2-section clustering, which is reported in Table 3 along with
the edge composition for the ground-truth communities. Running this quick experiment is indicative
that smaller values for τ are likely to be a better choice than using the strict modularity version,
since there are not that many “pure” edges.

frequency
d c ground-truth Louvain

5 5 58 73
5 4 158 150
5 3 247 215
5 2 120 146
5 1 7 6

Table 3: Number of edges of each type for h–ABCD hypergraphs with 5-edges and localized noise
added respectively for the ground-truth partition, and for a partition obtained by running Louvain
on the weighted 2-section graph.

We did 100 runs for each choice of the τ -modularity for our h–Louvain: strict (τ →∞) and
τ ∈ {0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4}. We also did 100 runs using the 2-section modularity with Louvain,
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and Kumar’s algorithm. The results are presented in Figure 6. From those results, we see that
clustering the 2-section graph or using Kumar’s algorithm yield good results, but we can improve
those results when optimizing the hypergraph τ -modularity when choosing τ ≈ 2. As expected from
the preliminary EDA analysis we performed earlier, using small values for τ (close to zero) or large
values for τ (including strict modularity, τ →∞) are bad choices in this case.

Figure 6: Results of 100 runs for several choices of hypergraph τ -modularity for h–Louvain (strict,
and with 0 ≤ τ ≤ 4) as well as using Louvain on 2-section modularity and Kumar.

5.4 Real-world Hypergraphs

We consider two real-world hypergraphs the primary-school contact and the cora. We first run the
EDA procedure, suggested in Subsection 5.1, on both graphs by looking at the hyperedge composition
associated with the corresponding 2-section clusterings. The results are presented in Table 4. We
can see that the primary-school hypergraph (left) has relatively more non-pure hyperedges than
the cora hypergraph. This indicates that one should expect that for the primary-school case the
optimal τ is smaller than the one for the cora hypergraph.

5.4.1 Contact Hypergraph

Let us first consider the primary-school contact hypergraph described in Section 3.2. The results
are shown in Figure 7, where we compare 2-section (graph) clustering with Louvain, Kumar, and
AON clustering as well as our h–Louvain using different values of τ for the modularity function.
The AMI scores are averaged over 30 runs. The variance is negligible and is not shown. From this
experiment, we see that one can get some improvement over 2-section and Louvain or Kumar’s
algorithm when using small values for τ in our h–Louvain.
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primary-school

d c purity frequency

2 1 50% 4051
2 2 100% 3697
3 3 100% 3385
3 2 67% 1054
3 1 33% 161
4 4 100% 240
4 3 75% 58
4 2 50% 47
5 4 80% 3
5 3 60% 3

cora

d c purity frequency

2 2 100% 512
3 3 100% 354
4 4 100% 212
5 5 100% 108
3 2 67% 85
4 3 75% 62
2 1 50% 60
5 4 80% 41
4 2 50% 32
5 3 60% 21

Table 4: The number of edges of each type (top-10 most frequent) for the primary-school contact
(left) and cora (right) hypergraphs. The corresponding partitions were obtained by running Louvain
on the weighted 2-section graph.

Figure 7: Results for several choices of hypergraph τ -modularity for h–Louvain (strict and with
0 ≤ τ ≤ 4) as well as using 2-section modularity and Louvain, Kumar’s, and AON algorithms.

5.4.2 Co-citation Hypergraphs

Next, we consider the cora co-citation hypergraph described in Subsection 3.2 in which nodes are
publications which belong to 7 categories, and hyperedges represent co-citations. Since the graph
has several small disconnected components, we restrict ourselves to the giant component which has
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1,330 nodes and 1,503 hyperedges.
We ran each clustering algorithm 50 times, with the results reported in Figure 8. The results with

AON were worse in this case (with AMI around 0.21, not reported in Figure 8). Instead, we report
the results when starting from a partition returned by the 2-section graph clustering before running
AON, which give better results. As expected from the EDA analysis comparing primary-school
and cora hypergraphs, for the cora hypergraph, we get good results running h–Louvain with
values of τ larger than for the primary-school hypergraph, slightly improving on the results with
2-section graph clustering with Louvain, Kumar’s algorithm, or AON.

Figure 8: Clustering the cora co-citation hypergraph.

6 Conclusions

In this paper, we proposed a modification of the classical Louvain algorithm that allows us to
optimize the hypergraph modularity, h-Louvain. Our approach is to optimize a weighted average
of the 2-section graph modularity and the hypergraph modularity, with an increasing weight of
hypergraph modularity component as the optimization process progresses. We presented both
theoretical arguments as well as empirical evidence that the approach of increasing the weight of
the hypergraph modularity component is efficient. Since there are several ways to update this
weight, we developed a method allowing for automatic selection of hyperparameters of this process
using Bayesian optimization. We have shown that the h–Louvain algorithm is competitive and, in
particular, that it can outperform both Louvain on 2-section graph and Kumar’s algorithms in
terms of recovering ground truth communities both for synthetic and real networks.

Additionally, let us mention about another important and interesting aspect. Since in h–Louvain
the optimization process is stochastic by nature, the results of a single optimization pass can be
easily improved by running many such optimizations in parallel. Therefore, an important extension
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to the algorithm is for allowing it to learn how to dynamically set the tuneable parameters when
multiple optimization processes are executed.
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A Appendix—Pseudo-code of the h-Louvain Algorithm

Algorithm 1 h-Louvain(H, Γ)
Input: H = (V,E) – input hypergraph; Γ – policy to control α ∈ [0, 1] defined using parameters pb and pc
Output: A – partition of V ; qH(A) - hypergraph modularity
1: Initialize: Build G = (V,EG) (2-section), and set partition A with all vertices v ∈ V in their own cluster
2: modified ← True
3: α← 0
4: n← |V |
5: while modified do
6: modified ← False
7: improved ← True
8: while improved do
9: improved ← False

10: randomize the order of vertices in V
11: for v ∈ V do
12: bestCommunity ← Ai (current community of v)
13: bestDelta← 0
14: for all neighbouring communities Aj of v do
15: deltaModularity ← (1− α)∆qG(A

′) + α∆qH(A′) (A′: v moved from Ai to Aj)
16: if deltaModularity > bestDelta then
17: bestDelta← deltaModularity
18: bestCommunity ← Aj

19: improved← True
20: end if
21: end for
22: if improved then
23: change A by moving v to bestCommunity
24: modified← True
25: α← UpdateAlpha(A,n,α,Γ)
26: end if
27: end for
28: end while
29: if modified then
30: update H = (V,E) (merge current communities into supernodes and update edges)
31: else if α < 1 then
32: α← 1
33: revert the last merging communities step
34: modified← True
35: end if
36: end while
37: return A, qH(A)
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Algorithm 2 UpdateAlpha(A, n, α, Γ)
Input: current partition A, total number of nodes n, previous value of α, policy Γ to control α ∈ [0, 1]

defined using parameters pb and pc
Output: new value of α
1: if α < 1 then
2: |A| ← number of communities in current partition A

3: j ← argmaxk∈N(k : |A|
n ≤ pkc )

4: α← 1− (1− pb)
j

5: return α
6: else
7: return 1
8: end if
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