
1. Department of Mathematics, Ryerson University, Toronto. ferrando@ryerson.ca. Corre-
spondence should be sent to this author at: Department of Mathematics, Ryerson University, 350
Victoria St., Toronto, ON, M5B 2K3, Canada.

Adaptive Vector Valued Martingales. Applications to Image
Compression

Sebastian E. Ferrando

Department of Mathematics, Physics and Computer Science, Ryerson Polytechnic University, Toronto, Ontario M5B
2K3, Canada. Email: ferrando@acs.ryerson.ca

Abstract

Given a finite collection of functions defined on a common domain, the paper describes an algo-
rithm that constructs a vector valued approximating martingale sequence. The orthonomal basis
functions used to construct the martingale approximation are optimally selected, in each greedy
step, from a large dictionary. The resulting approximations are characterized as generalized H-
systems and provide scalar and vector valued orthonormal systems which can be employed to
perform lossy compression for the given set of input functions. The filtration associated to the
martingale allows for a multiresolution analysis/synthesis algorithm to compute the approximat-
ing conditional expectation via a Fourier expansion. Convergence of the algorithm as well as
several computational properties are established. Numerical examples are also provided for col-
lection of images and video frames in order to study the approximating power of the constructed
sequences.

Key words: Vector valued martingales, Simultaneous approximation, Image and video
compression, Conditional expectations.

Preprint submitted to Elsevier April 8, 2009

1. Introduction

The reference [4] introduced the formalism of H-systems to perform adaptive approxima-
tions. These systems allow computation of conditional expectations via Fourier expansions and
are a generalization of the Haar orthonormal system. The present paper is a continuation and
extension of [4], this last reference provided an analysis of the scalar greedy splitting algorithm
which is adapted to a single input function. Presently, we concentrate on the vector greedy split-
ting (VGS) algorithm which is our key tool to construct adapted vector valued orthonormal sys-
tems which also provide martingale approximating sequences. The VGS was briefly described
in [4] but no mathematical properties of the algorithm were established nor was it described in
detailed computational terms.

A natural application of our approximations is to lossy image compression, it is apparent that
the bit cost of encoding the adapted orthonormal system is relatively high, to offset this cost we
work in a vector setting which allows for simultaneous approximations. Moreover, our nonlinear
approximations are restricted in such a way that they can be realized by a tree data structure
which allows for a more efficient encoding. Our approach can be considered as a constrained
non-linear approximation as described in [5] and [6].

A main aspect of the present paper is the detailed description and proof of pointwise conver-
gence for the vector approximation provided by the VGS algorithm. The paper also extends the
previous set up to generalized H-systems which require n-ary trees as data structures for their
realization (as opposed to binary trees in the case of H-systems). Another important aspect of
our paper is to provide several set of examples, based on a software implementation, and their
bit cost analysis, in order to assess the approximation power of our approach.

The reason for our emphasis on approximations that are martingales is twofold. They are a
natural setting when imposing a tree structure as we do, moreover we concentrate in pointwise
convergence which, by its very nature, will bring to the fore the underlying geometric structure
(actually through the natural σ-algebras) of the input images. Our constructions can also be used
to approximate stochastic processes, some details for this setup and more motivations for our
approach are described in [4].

In order to motivate our construction we briefly discuss some aspects of the Matching Pursuit
algorithm as it will be the basis for our main construction. The reader can consult [10], [11] and
[7] for references on the Matching Pursuit algorithm.

Consider X ∈ L2(Ω,Rd) with an inner product [,], also assume a given subsetD ⊆ L2(Ω,Rd)
is given. Define R0X ≡ X and the 1− residue by R1X = X− [X,U0] U0 where U0 ∈ D, ||U0|| = 1,
satisfies

[X,U0] = sup
ψ∈D,||ψ||=1

[X, ψ].

Continue inductively defining the nth. − residue by Rn+1X = RnX − [RnX,Un] Un, where Un

satisfies
[RnX,Un] = sup

ψ∈D,||ψ||=1
[RnX, ψ]. (1)

Notice that

X =

n∑

k=0

[RkX,Uk]Uk + Rn+1X, and ||Rn+1X||2 = ||RnX||2 − |[X,Un]|2. (2)

In this setup, lossy transform compression is based on retaining a few terms in the sum of the
2

right hand side of (2) and dropping the remainder term Rn+1X. For the dictionaries D that will
be considered in the present paper the cost of storing each element Uk in the pursuit expansion
will be too high and for this reason we will impose a tree structure on the pursuit algorithm.
Moreover, in order to obtain further storage savings, the construction of the orthonormal system
{Uk} is based on a common set of scalar orthonormal functions (what we will call later in the
paper generalized H-systems).

One consequence of the tree structure is that [Ui,U j] = 0 for i , j, this will imply

[RnX,Un] = [X,Un].

Therefore, in our context, the pursuit algorithm can be described by indicating that it maximizes
|[X,Un]|2, or equivalently, it minimizes ||RnX||2, under the constraint of constructing a tree. The
maximization in (1) is greedy because it is only one look ahead, namely it searches for one func-
tion at a time. In general, unless D has a special structure, it is expected that the maximization
of |[X,Un]|2 requires an impractically large number of computations. A main contribution of the
construction described in this paper is a practical and insightful approach to handle (1) for two
large dictionariesD.

The paper is organized as follows, Section 2 introduces notation and the setting of generalized
H-systems. The brief Section 3 points to the key aspects of the constructions and the algorithm
to be discussed in the remaining of the paper. Section 4 presents in detail all the computational
preliminaries required to set up the VGS algorithm. In particular, the relationship between the
two different dictionaries used and the optimization is made clear. Section 5 formally describes
the VGS algorithm and proves its pointwise convergence. Section 6 describes how to encode
the approximations and the data structures required, illustration of the different tradeoffs are
provided. Section 7 presents a suite of examples used to illustrate an implementation of the algo-
rithm. Section 9 summarizes the paper and draws conclusions. Appendix A states optimizations
results needed in the main body of the paper and describes a more general dictionary where our
approach could also be realized. Appendix B describes important relationships between vector
and scalar approximations. An alternative optimization for one of our main constructions is also
sketched.

2. Generalized H-Systems

Let (Ω,A, P) denote an arbitrary probability space. The generators of a discrete σ-algebra B ⊆
A will be called atoms.

Consider the space L2(Ω,Rd) ≡ L2((Ω,A, P),Rd) , where d is a fixed positive integer. This
space consists of vector valued random variables Y = (Y[1], . . . , Y[d]) and it is endowed with the
following inner product

[Z,Y] ≡
∫

Ω

〈Z(ω),Y(ω)〉 dP(ω),

where 〈 , 〉 is the Euclidean inner product in Rd, namely,

〈Z(ω),Y(ω)〉 =

d∑

i=1

Z[i](ω) Y[i](ω).

We will use ‖ ‖2 for the squared of the norm for the two different inner products, namely ‖Z‖2 =

[Z,Z] and ‖B‖2 = 〈B, B〉. The reader should be able to distinguish the different meanings from
3

the context. It will be important to single out the scalar case, namely d = 1, and so we need
to specialize the above notation. Whenever possible, we denote vector quantities with capital
letters; we will take, for Z ∈ Rd, Z[i] ≡ z[i] and use either notation indistinguishably. Whenever
it is not clear that a given object is a scalar quantity, we will use a subscript to denote that we are
actually dealing with a scalar, for example ψs means ψs ∈ L2(Ω,R) also [u, v]s is given by (3)
with d = 1 and u, v ∈ L2(Ω,R) should be understood from the given context. Dependencies on
the point w will be suppressed from the notation whenever possible.

The following definition generalizes the notion of H-systems introduced in [8] (see also [4]).
H-systems are a particular case of the definition below by taking kn = n. The classical Haar and
Walsh systems, on L2([0, 1]), are examples of H-systems and generalized H-systems respectively.

Definition 1. An orthonormal system of functions {uk}k≥0 ∈ L2(Ω,R) defined on Ω is called a
generalized H-system if and only if there exists a sequence of integers {ki}, 0 = k0 < k1 < . . . <
kn < . . ., such that for any z ∈ L2(Ω,R)

zAkn
≡ E(z|u0, u1, . . . , ukn) =

kn∑

i=0

[z, ui]s ui, for all n ≥ 0, (3)

whereAn = σ(u0, . . . , un). Also define

Bn ≡ Akn and |Bn| will denote the number of generating atoms in Bn.

The intended meaning of n ≥ 0 in the above definition is to allow the system {uk}k≥0 to be finite
or infinite. We also use the notation A∞ = σ(∪n≥0An); also, for a given A ∈ A, with P(A) > 0,
σA(z1, . . . , zN) denotes the sigma algebra generated by given random variables zi relative to the
measurable space (A,AA, PA). Notice thatAn, for finite n, is necessarily finite.
The following proposition gives an alternative characterization of generalized H-systems equiv-
alent to Definition 1. It is convenient to set k−1 = −1.

Proposition 1. An orthonormal system {uk}k≥0 ⊆ L2(Ω,R) is a generalized H-system if and only
if the following three conditions hold for all n ≥ 0:

i) For each atom A ∈ Bn, |σA(uk : kn−1 < k ≤ kn)| ≤ kn − kn−1 + 1.

ii) The σ-algebras Bn satisfy |Bn| = kn + 1.

iii) E(uk |u0, u1, . . . , ukn) = 0; for kn < k ≤ kn+1.

Proof. Suppose first that {uk} is an orthonormal system that satisfies the three properties above,
consider y ∈ L2(Ω,R), then yBn can be written as a linear combination of the kn + 1 characteristic
functions of the atoms of Bn. At the same time, the functions u0, . . . , ukn are an orthonormal
basis for the subspace given by the range of the projection operator E(.|u0, u1, . . . , ukn). These
facts imply (3).

Conversely, assume now that the given orthonormal system {uk} satisfies (3). We will first
prove iii) above. Consider the martingale difference dn+1 ≡ zBn+1−zBn , so

∑kn+1
j=kn+1 [z, u j]sE(u j|Bn) =

0. Take now z = uk, kn < k ≤ kn+1, then E(uk |Bn) = 0. To prove i) and ii) above we proceed
by induction. Consider z = 1 ∈ Rd, then it follows that u0 = 1Ω, this indicates that ii) is true
for n = 0, notice that i) is also true for n = 0 by our convention. Assume both statements hold
for n = N. From (3) the range of the projection operator E(.|u0, u1, . . . , ukN+1) is an kN+1 + 1

4

dimensional subspace, therefore BN+1 is generated by kN+1 + 1 atoms, i.e. |BN+1| = kN+1 + 1.
To establish i) for N + 1 we proceed by contradiction, consider there is an atom A ∈ BN and
uk, kN < k ≤ kN+1, such that uk takes more than kN+1 − kN + 1 distinct values on A. Then
|BN+1| > |BN | − 1 + kN+1 − kN + 1 = kN + 1 − 1 + kN+1 − kN + 1 = kN+1 + 1.

Notice that in the case kn = n, the inequality in part i) of Proposition 1 becomes for n ≥ 1
and A ∈ Bn, |σA(uk : n − 1 < k ≤ n)| = 2. This last equality forces the increasing sequence of
partitions generating the sigma algebrasAn to form a binary tree and the support of the functions
uk to be localized to nodes of this binary tree.

From now on we restrict our attention to generalized H-systems that satisfy a stronger version
of i) in Proposition 1, namely, for each n there exists An ∈ Bn such that

|σAn (uk : kn−1 < k ≤ kn)| = kn − kn−1 + 1

and for all other A ∈ Bn

|σA(uk : kn−1 < k ≤ kn)| = 1.

The following definition formalizes the class of generalized H-systems considered in the remain-
ing of the paper. We will set Sprt(u) to denote the support of a given function u.

Definition 2. A generalized H-system is called admissible if for each n there exists A ∈ Bn, a
generating atom, such that we have Sprt(uk) ⊂ A for all kn < k ≤ kn+1.

For the remaining of the paper we will restrict ourselves to admissible generalized H-systems
and therefore will drop the word admissible and only refer to generalized H-systems. Clearly,
this H-systems can be realized by tree data structures.

3. Overview of Results

Generalized H-systems is the guiding general framework for the class of orthonormal systems
constructed in this paper, the actual construction given by the VGS algorithm will realize a special
class of these systems. In particular, the VGS construction will be optimized to a given collection
of input random variables x[1], . . . , x[d], the optimization is achieved by collecting the given
random variables into a single vector valued random variable X. We emphasize the fact that
the underlying (scalar) orthonormal system is common to all the given random variables, this
is crucial for compression applications as the relative cost of storing the orthonormal system
decreases as d increases.

Definition 3. Given A ∈ A, P(A) > 0, a function Ψ is called an admissible (vector valued)
function on A if there exist Ai ∈ A, Ai ⊆ A, i = 0, 1 , Ψ = B0 1A0 + B1 1A1 , B0, B1 ∈ Rd, and

∫

Ω

Ψ(ω) dP(ω) = 0,
∫

Ω

||Ψ||2(ω) dP(ω) = 1. (4)

Remark 1. If , A0 ∩ A1 = ∅ and A = A0 ∪ A1 is also satisfied, we call Ψ a (vector valued) Haar
function on A.

The following two dictionaries will be key for our developments. For a fixed A ∈ A define

D0
A ≡ {Ψ : a Haar function on A} ⊆

5

D1
A ≡ {Ψ : an admissible function on A and A0 ∩ A1 = ∅}.

Our results will apply to the two sets Dk
A, k = 0, 1 (using specific arguments in each case) and

the notationDA will be used as a generic notation to denote any of the two setsDk
A. We will also

use the notation Dk ≡ ∪A∈A Dk
A. In Appendix A we explain how one may extend our approach

to functions of the form Ψ = B0 ϕ0 + B1 ϕ1, B0, B1 ∈ Rd, ϕi ∈ A, Sprt(ϕi) ⊆ A, 0 ≤ ϕi ≤ 1,
i = 0, 1.

Consider Ψ = B01A0 + B11A1 ∈ DA, let B′ ≡ B1
||B1 || , hence B′ ∈ S d, where S d is the unit sphere

in Rd. Notice that using (4) we can write:

Ψ(B′) = Ψ =

√
u0 u1

(u0 + u1)
B′

(
1A1

u1
− 1A0

u0

)
. (5)

We will show in Theorem 1 that, for a fixed X ∈ L2(Ω,Rd), there exists Ψ0
A ∈ DA such that

[X,Ψ0
A] = sup

Ψ∈DA

[X,Ψ].

Together with the companion function Ψ1
A, defined in (79) (see also (83)), these two functions

are used to define the vector valued orthonormal system H = {Uk} defined in (40). The vectors
Dk ≡ [X,Uk]Uk are a martingale sequence with respect to Fn ≡ σ(U0, . . . ,Un) which gives the
vector valued martingale sequence

n∑

k=0

Dk =

n∑

k=0

[X,Uk]Uk.

In Appendix B we relate H = {Uk} to the generalized H-system G = {uk} defined in (81), this
allow us to prove that for all n ≥ 0,

XAkn
≡ E(X|u0, u1, . . . , ukn) =

kn∑

k=0

[X,Uk] Uk. (6)

We also note thatAk ≡ σ(u0, . . . , uk) = σ(U0, . . . ,Uk). Actually, (6) follows from

XAkn
[i] = xAkn

[i] ≡ E(x[i]|u0, u1, . . . , ukn) =

kn∑

k=0

[x[i], uk]s uk =

kn∑

k=0

[X,Uk] Uk[i],

which is basic in our paper and is proved in Appendix B. Our proof of pointwise convergence

X(w) = lim
n→∞

XAkn
(w)

relies on the conditional expectation expression (6) for our approximation. In fact, {uk} is an
unconditional martingale basis for the spaces Lp((Ω, σ(X), P),R), 1 < p < ∞, using the filtration
Bn ≡ Akn .

6

4. Optimization Results

This section establishes the results needed to setup the computational realization of the VGS
algorithm for the function classes DA, possible extensions are also described in Appendixes A
and B. The main result needed in the construction is the following theorem.

Theorem 1. Let A ∈ A be an arbitrary measurable set and X ∈ L2(Ω,Rd) then there exists
Ψ0

A ∈ DA so that
[X,Ψ0

A] = sup
Ψ∈DA

[X,Ψ]. (7)

Proof. In order to evaluate the supremum in (7), consider Ψ = B0 1A0 + B1 1A1 ∈ DA and set
u0 = P(A0), u1 = P(A1) ∈ (0, P(A)). With this notation we now write the inner product [,]

[X,Ψ] ≡
∫

Ω

〈X(w),Ψ(w)〉dP(w) =

∫

A
〈X(w),Ψ(w)〉dP(w) =

−u1

u0

∫

A0

〈X(w), B1〉 dP(w) +

∫

A1

〈X(w), B1〉 dP(w),

and introduce the following functional to be optimized,

γ(B′, u0, u1, A0, A1) ≡ [X,Ψ] = (8)

||B1|| u1

(
1
u1

∫

A1

〈X(w), B′〉 dP(w) − 1
u0

∫

A0

〈X(w), B′〉 dP(w)
)

=

(
1
u1

∫

A1

〈X(w), B′〉dP(w) − 1
u0

∫

A0

〈X(w), B′〉 dP(w)
)
.

Where we have used

||B1|| =
√

u0

u0 u1 + u2
1

(9)

with B′ as introduced in (5).
The supremum in (7) can be written as iterated suprema, the two innermost suprema will

depend on the specific class of functions Dk
A, k = 0, 1, introduced earlier. To deal with the

different cases we need some notation. For A ∈ A with P(A) > 0 given, define

I0 ≡ {(u0, u1) : u0 + u1 = P(A), 0 < ui < P(A), i = 0, 1},

I1 ≡ {(u0, u1) : 0 < u0 + u1 ≤ P(A), 0 < ui < P(A), i = 0, 1}.
The notation Īk represents the closure (in R2) of the set Ik, k = 0, 1. We will use the notations I
and Ī as a generic reference to any of the sets Ik, Īk k = 0, 1. Define for fixed 0 < u0, u1 < P(A),

sup
A0,A1

0 ≡ sup
A0,A1∈A,A0∩A1=∅, A0∪A1=A,P(Ai)= ui,i=0,1

.

Define for fixed 0 < u0, u1 < P(A)

sup
A0,A1

1 ≡ sup
A0,A1∈A,A0∩A1=∅, A0,A1⊆A,P(Ai)= ui,i=0,1

.

7

Moreover,
sup
u0,u1

k ≡ sup
(u0,u1)∈Ik

, k = 0, 1.

We will use the notations supA0,A1
and supu0,u1

as generic notation for any of supA0,A1
k and

supu0,u1
k, k = 0, 1. Finally let,

sup
B′
≡ sup

B′∈S d
.

Therefore (7) can be written as iterated suprema as follows

sup
Ψ∈DA

[X,Ψ] = sup
B′

[
sup
u0,u1

(
sup
A0,A1

γ(B′, u0, u1, A0, A1)
)]
. (10)

In the above expression, and for later use below, we set γ(B′, u0, u1, A0, A1) = 0 if for given
u0 and u1 there is no A0 or A1 so that u0 = P(A0) or u1 = P(A1). The maximization of this
functional is done through a series of results described next. In this way, we will then obtain (7)
from Corollary 1 and Proposition 4.

We concentrate first on evaluating the innermost supremum above i.e.

sup
A0,A1

γ(B′, u0, u1, A0, A1).

Therefore, for fixed (u0, u1) ∈ I and B′ ∈ S d, we need to maximize the following functional for
the variables Ai

γB′,u0,u1 (A0, A1) ≡ γ(B′, u0, u1, A0, A1). (11)

Using (62) and (63) from Appendix A, suitable interpreted when restricted to the given set
A, we define ϕ0 and ϕ1 are given by

ϕ0(.) = 1{w∈A:〈X(w),B′〉<yu0 }(.) + cu0 1{w∈A:〈X(w),B′〉=yu0 }(.), (12)

ϕ1(.) = 1{w∈A:〈X(w),B′〉>zu1 }(.) + du1 1{w∈A:〈X(w),B′〉=zu1 }(.). (13)

Notice that ϕi = ϕi(B′, ui), i = 0, 1.
For a fixed B′ ∈ S d, define for any (u0, u1) ∈ I,

ρB′(u0, u1) ≡ ρB′ (u0, u1, ϕ0(B′, u0), ϕ1(B′, u1)) ≡ (14)
√

u0 u1

u0 + u1

[(
1
u1

∫
〈X, B′〉 ϕ1dP − 1

u0

∫
〈X, B′〉 ϕ0dP

)]
.

Proposition 2. Fix (u0, u1) ∈ I, A ∈ A with P(A) > 0 and B′ ∈ S d, then

sup
A0,A1

γB′,u0,u1 (A0, A1) ≤ max{ρB′ (u0, u1), 0}. (15)

Proof. If there are Ai ∈ A, Ai ⊆ A, A0 ∩ A1 = ∅, so that ui = P(Ai), for i = 0, 1, then (15) follows
from Theorem 5 and Corollary 2 , stated in Appendix A. If either such A0 or A1 do not exist the
left hand side of (15) is equal to 0.

8

Remark 2. Theorem 5 and Corollary 2 are actually applied to the set A considered as a measure
space (this structure is inherited from the probability space (Ω, P,A)).

Lemma 1. Fix B′ ∈ S d and A ∈ A with P(A) > 0, then ρB′(u0, u1) is continuous on each of the
sets Ik. Moreover, if K ≡ Ī \ I denotes the boundaries of the sets Ī, then by setting

ρB′ (u0, u1) ≡ 0, for all (u0, u1) ∈ K (16)

ρB′(u0, u1) can be extended continuously to Ī.

Proof. Continuity of ρB′(u0, u1, ϕ0(B′, u0), ϕ1(B′, u1)), on each Ik, k = 0, 1, follows from the fact
that yu0 and cu0 as well as zu1 and du1 depend continuously on u0 and u1 respectively.

We study next continuity at the boundaries. Consider first the set I0 and its boundary K0 =

{(0, P(A)), (P(A), 0)}. Given (u0, u1) ∈ I0, we will show that (14) converges to 0 as (u0, P(A) −
u0) → (0, P(A)). The summation term in (14) converges to 0 given that

√
u0(P(A)−u0)

P(A) approaches
0. The second term in (14) also converges to 0 by an application of Jensen’s inequality, details
for this argument are provided in [4]. The same arguments prove that (14) converges to 0 as
(u0, P(A) − u0)→ (P(A), 0).

Now consider the set I1 and its boundary K1 ≡ Ī1 \ I1 = {(0, u1), 0 ≤ u1 ≤ P(A)}∪{(u0, 0), 0 ≤
u0 ≤ P(A)}. Fix (û0, 0) with û0 ∈ (0, P(A)], we will show that for a given ε > 0, there is a δ > 0
so that for all (u0, u1) ∈ I1 with ||(u0, u1)− (û0, 0)|| < δ then |ρB′(u0, u1, ϕ0(B′, u0), ϕ1(B′, u1))| < ε.
To check this it is enough to indicate that the term

√
u0 u1

(u0+u1)
1
u1

∫
〈X, B′〉 ϕ1 in (14) is controlled

by 1√
u1

∫
〈X, B′〉 ϕ1 (as long as u0 remains close to û0 > 0) which goes to zero as u1 → 0+

by applying Jensen’s inequality as detailed in [4]. The term
√

u0 u1
(u0+u1)

1
u0

∫
〈X, B′〉 ϕ0 in (14) is

controlled by
√

u1
∫
〈X, B′〉 ϕ0 (as long as u0 remains close to û0 > 0) which goes to zero as

u1 → 0+. The same arguments apply to the case of a boundary point of the form (0, û1) for a
fixed û1 ∈ (0, P(A)].

It remains to consider the boundary point (0, 0), notice that√
u0 u1

(u0+u1) ≤ min(
√

2 u0,
√

2 u1), hence

|ρB′ (u0, u1, ϕ0(B′, u0), ϕ1(B′, u1))| ≤
(√

2u1

u1
|
∫

X ϕ1| +
√

2u0

u0
|
∫

X ϕ0|
)
, (17)

each of the two terms in the right hand side of (17) can be made arbitrarily small (as we argued
previously) by taking (u0, u1) sufficiently close to (0, 0).

Using Lemma 1, let (u∗0, u
∗
1) denote the element in Ī such that ρB′ (u0, u1) ≤ ρB′ (u∗0, u

∗
1) for all

(u0, u1) ∈ Ī. Given that the optimization is carried over the set I, it follows that

yu∗0 ≤ zu∗1 . (18)

It is also important to keep in mind that:

u∗i ≡ u∗i (B′), i = 0, 1. (19)

Proposition 3. Fix B′ ∈ S d and A ∈ A with P(A) > 0. If 〈X, B′〉 is constant a.e. on A then

sup
(u0,u1)∈I

sup
A0,A1

γ(B′, u0, u1, A0, A1) = 0. (20)

9

If 〈X, B′〉 is not constant on A, then, without loss of generality, we may assume (u∗0, u
∗
1) ∈ I.

Moreover,
cu∗0 = 0 or cu∗0 = 1, (21)

and
du∗1 = 0 or du∗1 = 1. (22)

If cu∗0 = 0 set A∗0 ≡ {w ∈ A : 〈X, B′〉 < yu∗0 } and if cu∗0 = 1 set A∗0 ≡ {w ∈ A : 〈X, B′〉 ≤ yu∗0 }.
If du∗1 = 0 set A∗1 ≡ {〈X, B′〉 > zu∗1 }, and du∗1 = 1 set A∗1 ≡ {w ∈ A : 〈X, B′〉 ≥ zu∗1 }. In any case,
equations (12) and (13) become:

ϕi = ϕi(B′, u∗i) = ϕi(u∗i (B′)) = 1A∗i ,

and
0 < sup

(u0,u1)∈I
sup
A0,A1

γ(B′, u0, u1, A0, A1) = ρB′ (u∗0, u
∗
1, ϕ0(u∗0(B′)), ϕ1(u∗1(B′))) = (23)

γ(B′, u∗0, u
∗
1, A

∗
0, A

∗
1).

Proof. If 〈X, B′〉 is constant on A, then [X,Ψ] = 0 for all Ψ ∈ DA, hence (20) follows from
(65). Whenever 〈X, B′〉 is not constant on A, it follows that ρB′ (u0, u1) > 0 for some (u0, u1) ∈ I.
Also ρB′ is equal to zero in the boundary of I by (16); hence, without loss of generality, we may
assume (u∗0, u

∗
1) ∈ I. Therefore, we need only to establish (21) and (22) as (23) will then follow

from Proposition 2.
We rewrite (14) as follows

ρB′(u0, u1) =

√
u0 u1

u0 + u1
[(

1
u1

∫

{〈X,B′〉>zu1 }∩A
(〈X, B′〉 − zu1) dP− (24)

1
u0

∫

{〈X,B′〉<yu0 }∩A
(〈X, B′〉 − yu0) dP) + (zu1 − yu0)],

and define

φ(u0, u1) ≡
√

u0 u1

u0 + u1
[

1
u1

∫

{〈X,B′〉>zu∗1 }∩A
(〈X, B′〉 − zu∗1) dP−

1
u0

∫

{〈X,B′〉<yu∗0 }∩A
(〈X, B′〉 − yu∗0) dP + (zu∗1 − yu∗0)].

We will first consider u∗0 + u∗1 = P(A), handling this case will also prove all the required
statements for the case when DA = D0

A. Notice that under this condition yu∗0 = zu∗1 . If we take
u1 = P(A) − u0, with some abuse of notation, we then have

φ(u0) ≡ φ(u0, P(A) − u0) =

1√
P(A)u0(P(A) − u0)

u0

∫

A
(〈X, B′〉 − yu∗0) − P(A)

∫

{〈X,B′〉<yu∗0 }∩A
(〈X, B′〉 − yu∗0)

 =

√
P(A) [P(A) A2 − u0 A1]√

u0(P(A) − u0)

10

where
A1 ≡ −1

P(A)

∫

A
(〈X, B′〉 − yu∗0), A2 ≡ −1

P(A)

∫

{〈X,B′〉≤yu∗0 }∩A
(〈X, B′〉 − yu∗0).

Notice that

a0 ≡ P({w ∈ A : 〈X(w), B′〉 < yu∗0 }) ≤ u∗0 ≤ a1 ≡ P({w ∈ A : 〈X(w), B′〉 ≤ yu∗0 }),

and that
yu0 = yu∗0 for all u0 ∈ [a0, a1].

It follows that
φ(u0) = ρB′(u0, P(A) − u0) for all u0 ∈ [a0, a1]. (25)

In particular φ(u∗0) = ρB′(u∗0, P(A) − u∗0) therefore, it is enough to consider u0 ∈ [a0, a1] in the
analysis that follows. A computation gives the derivative of φ with respect to u0; by noticing that
A2 ≥ A1, a simple analysis allow us to conclude that φ(u0) reaches its maximum value at a0 or
a1. This result combined with (25) proves that u∗0 = a0 or u∗0 = a1 which is exactly (21). Now,
under the present case, namely, u∗0 = P(A) − u∗1, cu∗0 = 0 gives du∗1 = 1. Similarly cu∗0 = 1 implies
du∗1 = 0, therefore (22) also holds.

We will consider next the case when u∗0 + u∗1 < P(A). The idea is the same as above, namely
equations (21) and (22) are a necessary condition of the fact that (u∗0, u

∗
1) gives the maximum

value.
Introducing the notation

B1 ≡ −
∫

{〈X,B′〉>zu∗1 }∩A
(〈X, B′〉 − zu∗1), B0 ≡ −

∫

{〈X,B′〉<yu∗0 }∩A
(〈X, B′〉 − yu∗0).

we can then write,

φ(u0, u1) =
u1B0 − u0B1 + (zu∗1 − yu∗0) u0 u1√

u0 u1 (u0 + u1)
.

In order to prove (21) we will consider u1 = u∗1 fixed and u0 ∈ [a0, a1], a0, a1 as defined above.
As we indicated, yu0 = yu∗0 for all u0 ∈ [a0, a1], this gives

φ(u0, u∗1) = ρB′ (u0, u∗1) for all u0 ∈ [a0, a1]. (26)

Therefore, it is enough to consider u0 ∈ [a0, a1] in the analysis that follows. Calculating the
derivative φ′ of φ(u0, u∗1) with respect to u0, a simple analysis using the fact that B1u∗1 ≥ 0 shows
that φ(u0, u∗1) reaches a maximum at a0 or a1. This implies (21). In order to prove (22), notice
that

b0 ≡ P({w ∈ A : 〈X(w), B′〉 > zu∗1 }) ≤ u∗1 ≤ b1 ≡ P({w ∈ A : 〈X(w), B′〉 ≥ zu∗1 }).
We will then consider φ(u∗0, u1) with u1 ∈ [b0, b1]. Computing the derivative of φ with respect
to u1 and using the fact that B1u∗0 ≤ 0 reveals that u∗1 = b0 or u∗1 = b1 which concludes the
proof.

It is important to remark that, as noted in (19),

A∗i = A∗i (u∗i (B′)), i = 0, 1. (27)

11

Corollary 1. Fix A ∈ Awith P(A) > 0, then: X is constant on A a.e. if and only if supΨ∈DA
[X,Ψ] =

0. Moreover, if X is not constant on A:

0 < sup
Ψ∈DA

[X,Ψ] = sup
B′

[
sup
u0,u1

(
sup
A0,A1

γ(B′, u0, u1, A0, A1)
)]

= sup
B′

[X,Ψu∗0,u
∗
1
(B′)]. (28)

Where

Ψu∗0,u
∗
1
(B′) ≡

√
u∗0 u∗1

u∗0 + u∗1
B′

(1A∗1

u∗1
−

1A∗0

u∗1

)
∈ DA, (29)

and we have used the notation introduced in Proposition 3 and (5).

Proof. If X is constant on A a.e. then supΨ∈DA
[X,Ψ] = 0 is obvious, conversely, assume X is not

constant on A, then there is B′ ∈ S d and a constant c such that A0 ≡ {w ∈ A : 〈X(w), B′〉 ≤ c} and
A1 ≡ {w ∈ A : 〈X(w), B′〉 > c} with P(Ai) > 0, i = 0, 1, it is then clear that there exists Ψ ∈ DA so
that [X,Ψ] > 0.

Equation (28) follows from (23), it only remains to check that Ψu∗0,u
∗
1
(B′) ∈ DA, in turn, this

only requires that we check if A∗0 ∩ A∗1 = ∅ (up to sets of measure zero). From (18), and the
definitions of A∗0 and A∗1 introduced in Proposition 3, it follows that it is enough to consider the
case in which yu∗0 = zu∗1 and P({w : 〈X(w), B′〉 = yu∗0 }∩A) > 0 and A∗0 = {w ∈ A : 〈X(w), B′〉 ≤ yu∗0 }
and A∗1 = {w ∈ A : 〈X(w), B′〉 ≥ zu∗1 }. Notice that this situation will be impossible as it contradicts
the optimization constraint u∗0 + u∗1 ≤ P(A).

Proposition 4. Given A ∈ A with P(A) > 0, there exists Ψ0
A ∈ DA so that

[X,Ψ0
A] = sup

B′
[X,Ψu∗0,u

∗
1
(B′)]. (30)

Proof. We may assume that X is not constant on A, then, using the notation described in (14)
and (27) we define the following function of B′ ∈ S d:

δ(B′) ≡ ρB′ (u∗0(B′), u∗1(B′), 1A∗0(u∗0(B′)), 1A∗1(u∗1(B′))), whenever 〈X, B′〉 is not constant a.e. on A

and δX(B′) ≡ 0, otherwise.

Then, (30) will follow if we can prove that δ(B′) is continuous on S d for d ≥ 2. The proof
of (30) in the simpler case d = 1 (which degenerates into B′ ∈ {−1, 1}) was treated in [4].
Consider first B̂′ ∈ S d with δ(B̂′) = 0. Given ε > 0 define the neighborhood ||B′ − B̂′|| ≤ β with
23/2 P(A) ||X|| β ≤ ε. Let B′ be in such a neighborhood, we may assume 〈X, B′〉 is not constant
on A, it follows then that

|δ(B′) − δ(B̂′)| = |δ(B′)| ≤ 23/2 P(A) ||X|| β ≤ ε. (31)

Consider next B̂′ ∈ S d with δ(B̂′) , 0. Then, it can be seen that there exists a neighborhood of
B̂′ such that for any B′ in such a set, there is a subset of A of full measure where 〈X, B′〉 is not
constant on that subset. We remark that this statement is easy to prove when X is discrete but
not easy in the general case. If we concentrate on such a small neighborhood, continuity at B̂′

will follow from the continuity of u∗i = u∗i (B′) as a function of B′. This in turn follows from the
following argument. Consider, ∫

Ai

〈X, B′〉 dP (32)

12

where A0 is of the form {w ∈ A : 〈X, B′〉 < yu0 } or {w ∈ A : 〈X, B′〉 ≤ yu0 }. With similar
expressions for A1. To complete the argument, notice that the expression in (32) is continuous
as a function of both arguments, ui and B′, this fact plus the definition (14) for ρB′ proves that
u∗i (B′) depends continuously on B′.

From Proposition 4 it follows that there exists B′∗ ∈ S d so that

Ψ0
A = Ψu∗0,u

∗
1
(B′∗) (33)

where we have used the notation in (29).
Allowing for some abuse in the notation used in (19), from now on (and in particular in the

next Proposition) we will use the following notation

u∗i ≡ u∗i (B′∗), i = 0, 1,

and so, of course, A∗i = A∗i (u∗i (B′∗)).
The next proposition offers a useful necessary condition satisfied by A∗0, A

∗
1, B′∗ and u∗i

(which, of course, obey the constraint u∗i = P(A∗i)). Equation (34) plays a key role in the re-
sults described in Appendix B, in turn, those results are crucial in our proof of convergence
presented in Section 5.

Proposition 5. The following identity is satisfied by A∗0, A
∗
1, B′∗, u∗0 and u∗1

B′∗ =

1
u∗1

∫

A∗1

X dP − 1
u∗0

∫

A∗0

X dP

√√√ d∑

k=1

 1
u∗1

∫

A∗1

X[k] dP − 1
u∗0

∫

A∗0

X[k] dP


2
. (34)

Proof. Consider the following function of B′ ∈ S d

β(B′) ≡ γ(B′, u∗0, u
∗
1, A

∗
0, A

∗
1) =

√
u∗0 u∗1

u∗0 + u∗1
× (35)

 1
u∗1

∫

A∗1

〈X(w), B′〉dP(w) − 1
u∗0

∫

A∗0

〈X(w), B′〉 dP(w)
 ,

where we have used (65). Moreover, A∗0 ≡ {w ∈ A : 〈X, B′∗〉 < yu∗0 } or
A∗0 ≡ {w ∈ A : 〈X, B′∗〉 ≤ yu∗0 } and A∗1 ≡ {〈X, B′∗〉 > zu∗1 } or A∗1 ≡ {w ∈ A : 〈X, B′∗〉 ≥ zu∗1 }
accordingly to Proposition 3. The function β is a linear function under the constraint B′ ∈ S d,
therefore, it can be optimized by Lagrange multipliers. Performing this optimization shows that
it has a single maximum B̂′ which satisfies the following identity

B̂′ =

1
u∗1

∫

A∗1

X dP − 1
u∗0

∫

A∗0

X dP

√√√ d∑

k=1

 1
u∗1

∫

A∗1

X[k] dP − 1
u∗0

∫

A∗0

X[k] ϕ0dP


2
. (36)

Therefore β(B̂′) ≥ γ(B′∗, u∗0, u
∗
1, A

∗
0, A

∗
1) = [X,Ψ0

A]. It follows then that, without loss of generality,
we may take B̂′ = B′∗, hence B′∗ satisfies (36) as we wanted to prove.

13

5. Formal Description of the Vector Greedy Splitting (VGS) Algorithm

Given a set A ∈ A let Ψ0
A and Ψ1

A be the functions introduced in (30) and (79) respectively.
The partition of A into A∗0, A∗1 (as introduced in Proposition 3) and A∗2 ≡ A \

(
A∗0 ∪ A∗1

)
will be

called the best split of A and the sets A∗i , i = 0, 1, 2 are called the best children of A. Notice that
A∗2 = ∅ is possible, in particular this will be the case when we restrict the optimizations to D0

A
(i.e. the Haar case).

The VGS algorithm will be described for both classes of functions, Dk
A, simultaneously by

introducing the indexes J0
A ≡ 1 for the caseD0

A and, for the caseD1
A, we set J1

A ≡ 1 if P(A∗2) = 0
and J1

A ≡ 2 otherwise. Analogously to how we have done elsewhere in this paper, we will use JA

to denote any of the numbers Jk
A.

Given X ∈ L2(Ω,Rd) (this hypothesis will be required in the remaining of the paper but not
made explicit again), the VGS algorithm builds a sequence of partitions Qn of Ω indexed by
n = 1, 2, ...; this index will be referred as the n-th iteration of the VGS algorithm. The partitions
are defined recursively:

• Let Q0 = {Ω}
• Assuming that Qn has been created, then Qn+1 is generated as follows:

Consider Â ∈ Qn with P(Â) > 0, such that it satisfies

|[X,Ψ0
Â
]| ≥ |[X,Ψ0

A]| for all A ∈ Qn. (37)

Now, if
[X,Ψ0

Â
] = 0 or P(A) = 0 for all A ∈ Qn,

the algorithm terminates and Qp ≡ Qn for all p ≥ n. Otherwise, i.e. P(Â) > 0 and
[X,ΨÂ] , 0, we set

Qn+1 = Qn\{Â}
JÂ⋃

i=0

{Â∗i } (38)

where, as indicated previously, the sets Â∗i are the best children of Â.

The VGS algorithms builds a tree T where its nodes are atoms from the partitions Qn. Define
first the n-iteration tree by

Tn =

n⋃

i=0

Qi and T =

∞⋃

n=0

Qn.

The parent-children relationship is given by the best split relationship mentioned previously.
We will define an increasing sequence of orthonormal systemsHn, for n ≥ 0, corresponding

to the n-th. iteration of the VGS algorithm as follows: H0 ≡ {U0 ≡ Ψ0
∅} where

Ψ0
∅ ≡ C 1Ω and C[i] =

∫
Ω

X[i] dP

||X|| . (39)

Assume, recursively, thatHn = {U0, . . . ,Ukn } has been constructed, we then let,

Hn+1 ≡ Hn

JÂ−1⋃

i=0

{Ψi
Â
}

14

where Â is the set in (37), also set Ukn+i+1 ≡ Ψi
Â

for i = 0, . . . , JÂ − 1, so Ψ1
A ∈ Hn+1 only when

JÂ = 2. We also define
H ≡

⋃

n≥0

Hn. (40)

Clearly,H is a vector valued orthonormal system.
We will associate the obvious approximation to the tree Tn, this approximation will only involve
internal nodes i.e. it will exclude leafs (final nodes). We will use the following notation,

L(Tn) ≡ { set of leafs of Tn}, T ◦n ≡ Tn \ L(Tn). Also set T ◦0 ≡ {∅}.

Given Tn, the associated VGS approximation is defined by the following equation

XTn ≡
∑

A∈T ◦n

JA−1∑

i=0

[X,Ψi
A] Ψi

A. (41)

Clearly, the outer summation in (41) can be rewritten recursively as follows, starting with the
first iteration (taking J∅ ≡ 1),

XT0 = [X,Ψ0
∅] Ψ0

∅. (42)

In general

XTn+1 = XTn +

JÂ∗−1∑

i=0

[X,Ψi
Â
] Ψi

Â
.

It is a simple observation that the terms [X,Ψi
Â
] Ψi

Â
, i = 0, 1, are martingale differences with

respect to the sigma algebra generated by VGS, so (41) is a martingale sequence. The following
theorem establishes more than this as it shows that we actually have a conditional expectation
martingale. The result, as well as Theorem 3, relies on connecting the vector valued approxima-
tion to a generalized H-system. The technical details are provide in Appendix B, the following
Theorem makes use of G = {uk} introduced in (81).

Theorem 2. The sequence {XTn }, n ≥ 0, ofRd-valued random variables is a martingale sequence
with respect to the filtration Fn ≡ σ(Qn). Moreover,

XTn [i] = XAkn
[i] = x[i]Akn

≡ E(x[i]|u0, u1, . . . , ukn) =

kn∑

k=0

[x[i], uk]s uk =

kn∑

k=0

[X,Uk] Uk[i],

andAk ≡ σ(u0, . . . , uk) = σ(U0, . . . ,Uk).

Proof. The result follows immediately from Theorem 6 from Appendix B after noticing that
σ(Qn) = Bn ≡ Akn ≡ σ(u0, . . . , ukn) where Gn ≡ {u0, . . . , ukn } is the generalized H-system used
in Theorem 6.

We now embark in the proof of convergence of the VGS algorithm (Theorem 3), for com-
pleteness we state the following simple lemma.

Lemma 2. Given A ∈ Qn0 and if X restricted to A is not constant, then there exists n1 > n0 such
that VGS splits A before or at iteration n1.

15

Proof. From ∑

k≥0

|[X,Uk]|2 ≤ ||X||2,

it follows
lim
k→∞

[X,Uk] = 0. (43)

By hypothesis |[X, ψ0
A]| > 0, then using (43) find n1 such that [X,Uk]| < |[X, ψA]| for all k > n1;

by the definition of VGS we then know that VGS will best split A before or at iteration n1.

For simplicity we will assume X is a discrete Rd-valued random variable. We will make
this assumption explicitly whenever we will make use of it; the hypothesis is general enough for
the scope of the paper but most likely the results hold with more generality. The hypothesis of
discreteness means X takes values {Ck}, Ck ∈ Rd, with some abuse of notation we will use the
same notation for the pre-images, namely, Ck = {w ∈ Ω : X(w) = Ck}, these sets will be called
cells. We also allow P(C j) = 0 for some values of j. the next Lemma shows that VGS does not
split cells.

Lemma 3. Assume X is a discrete Rd-valued random variable, given Ck ⊆ A ∈ A with P(A) > 0
and A∗i , i = 0, 1, 2, the best children of A (with A∗2 possibly empty), then Ck ⊆ A∗j for some
j ∈ {0, 1, 2}.
Proof. The proof follows from (21) and (22) and the definition of the VGS algorithm.

The above lemma allows to define in an obvious way, for a given cell Ck, a sequence of atoms
{An(Ck)} generated by VGS (i.e. An(Ck) ∈ Qm for some m ≥ n) such that An+1(Ck) ⊆ An(Ck) and
Ck ⊆ An(Ck) for all n ≥ 0. Define then

Q(Ck) ≡ ∩nAn(Ck).

The next Lemma is crucial in order to establish Theorem 3.

Lemma 4. Assume X is discrete as indicated above. For any Ck with P(Ck) > 0

X(w) = Ck for almost every w ∈ Q(Ck),

and so
Q(Ck) = Ck up to sets of P-measure 0.

Proof. Notice that Ck ⊆ Q(Ck) so P(Q(Ck)) > 0. If X is constant a.e. on Q(Ck) the results follow.
Assume then, that X is not constant on Q(Ck). The proof then follows as in Lemma 7 from [4],
we reproduce it here for completeness.

We set
K = sup{|[X,Ψ]| : Ψ ∈ DQ(Ck)}.

We observe that K > 0. We claim there exists n0 ∈ N such that for all n ≥ n0,

sup{|[X,Ψ]| : Ψ ∈ DAn(Ck)} > K
2
.

16

Notice that because D0
A ⊆ D1

A, we can concentrate on D0 without loss of generality. In fact, we
have that there exist Ψ ≡ B01A0 + B11A1 ∈ D0

Q(Ck) such that |[X,Ψ]| > K
2 . Let Cn ≡ An(Ck) \Q(Ck)

and define Ψn ≡ Bn
01A0∪Cn + Bn

11A1 ∈ D0
An(Ck) where

An
0 =

√
P(A0) + P(Cn)

P(A1)(P(A0) + P(A1) + P(Cn))

and

An
1 = −

√
P(A1)

(P(A0) + P(Cn)(P(A0) + P(A1) + P(Cn))
.

The monotone convergence theorem implies that limn→∞ P(Cn) = 0, hence limn→∞Ψn = Ψ a.e.;
it follows that limn→∞ |[X,Ψn]| = |[X,Ψ]|. This shows that there exist n0 such that for n > n0,
sup{|[X,Ψ]| : Ψ ∈ D0

An(Ck)} ≥ |[X,Ψn]| > K
2 . But |[X,Un]| = sup{|[X,Ψ]| : Ψ ∈ DAn(Ck)}, then we

have that |[X,Un]| > K
2 for all n > n0, which is impossible.

Theorem 3. Assuming X is a discrete Rd-valued random variable (as described above), then:

lim
n→∞

XTn (w) = X(w) for almost all w ∈ Ω.

Proof. Using Theorem 6 from Appendix B (or, equivalently, Theorem 2) we can see that in order
to prove the theorem it is enough to prove

lim
n→∞

1
P(An(Ck))

∫

An(Ck))
X dP = Ck for all k such that P(Ck) > 0.

This last equation follows easily using limn→∞ P(An(Ck)) = P(Q(Ck)) and Lemma 4.

Proposition 6. If X is a simple function that takes q distinct values, then VGS terminates in a
finite number of steps N which satisfies N ≤ q ≤ |Ω|.
Proof. Let RΩ(X) = {C1, . . . ,Cq} be the finite set of the range values of X on Ω. As we did
before, we also use the same notation for the cells defined by Ci ≡ {w ∈ Ω : X(w) = Ci}, we will
assume without loss of generality that P(Ci) > 0 for all i = 1, . . . , q. It is easy to see that any
A ∈ Qn, where n ≥ 0 is arbitrary, can be written as a finite union of some the cells. It then follows
that each best split of a given A ∈ Qn will produce best children which can be written as union
of a strictly smaller number of generating sets. From Lemma 2 this process will continue until
the remaining atoms are made up of a single generating set or X is constant on all these atoms.
In any of these cases X will be constant for all the given atoms and hence VGS terminates. If we
let N denote the smallest integer such that Qn = QN for all n ≥ N, a simple counting argument
proves that N ≤ q.

The following Theorem summarizes some formal properties of the scalar orthonormal sys-
tems constructed in this paper. One could use this Theorem to derive Theorem 3 but we preferred
the direct proof of that theorem instead.

Theorem 4. If X is a discrete random variable we have

A∞ =
∨

Qn = σ(X). (44)

The generalized H-system G = {uk} introduced in (81) is an unconditional basis for the spaces
Lp(Ω, σ(X), P),R), 1 < p < ∞.

17

Proof. A∞ =
∨

Qn is trivial by construction,
∨

Qn = σ(X) is the key equality and it follows
from Lemma 4. The rest of the statements follow from general results in martingale theory (as
described in [12]).

Despite the fact that the VGS algorithm deals with arbitrary geometrical regions it is a compu-
tational efficient algorithm. The reason for this is that the atoms processed by the algorithm are
level sets of the input data and they can be efficiently manipulated with a computational cost
proportional to the size of the range of values of the data. In fact, for a given B′ ∈ S d, the two
innermost suprema in (10) are reduced (by means of the Bathtub theorem) to an optimization
over the range of values of a scalar random variable over the given atom A. The exhaustive op-
timization is on the outermost supremum for B′ ∈ S d. This optimization can be implemented
efficiently, by combining the local characterization provided by Proposition 5, which can be used
as an iterative procedure to find local maxima very quickly, with a global search. Full details on
computational costs and implementation are provided in [2]. The implementation we used, based
on C++, runs in real time for images of size 128 × 128 pixels. Computations can be organized
in a convenient multi-resolution analysis algorithm as described in [4].

In order to illustrate the algorithm we consider four (so d = 4) simple geometrical images
taking a reduced number of gray levels. Figure 1 shows the original 256 gray-levels images of
128× 128 pixels. In this illustration we will not perform compression (which is the main content
of later sections) and the approximations are steps of the algorithm constructing the full tree.

Figure 1: Simple Geometrical set, d = 4

Figure 2 shows the VGS approximation using the scalar (see Section 6.4) Haar case (i.e. when
D = D0) approximation at different stages of convergence. The first approximation (top left)
shows the approximation with only one component and clearly the algorithm splits the domain
in two atoms in each image. The second approximation (top right) shows the approximation
with two components, it is possible to see that the top images are approximated using a partition
associated with the bottom images. The third approximation (bottom left) shows that the bottom
left image is completely approximated and the top images have almost converged. The last
approximation (bottom right) is the approximation using seven components and it is almost a
perfect reconstruction but the algorithm needs one more iteration to complete the bottom right
image.

Figure 3 shows the VGS scalar approximation when D = D1 at different stages of conver-
gence. The first approximation (top left) shows the approximation with only one component,

18

Figure 2: D = D0 (Haar) Scalar Approximations. Top left: one component, Top right: two components, Bottom left:
three components, Bottom right: seven components

the difference between this method and the previous one, is that the approximating functions ψ
in this case can take three values in each node. It is clear that in this case the bottom images
were selected to approximate the whole image, and in the second and third approximations it is
possible to appreciate how the algorithm tries to approximate the top images based on the bot-
tom images. The last approximation shows almost a complete reconstruction with only seven
components, each taking three different values at each node.

Figure 3: D = D1 Scalar Approximations. Top left: one component, Top right: two components, Bottom left: three
components, Bottom right: seven components

6. Encoding Of Approximations

Our constructions provide the vector valued orthonormal system H = {Uk}, defined in (40),
and the H-system G = {uk} defined in Appendix B (81).

Equation (70) and (80) show that for any finite index set I ⊆ N we have the fundamental
identity ∑

k∈I

[X,Uk] Uk[i] =
∑

k∈I

[x[i], uk]s uk for all i = 1, . . . , d. (45)

19

This is a basic result and shows, along with the convergence result from Theorem 3, that
one could use the vector valued orthonormal system H to approximate X or one could use the
scalar valued orthonormal system G to approximate each x[i], i = 1, . . . , d. For practical com-
pression matters, the two systemsH and G are not equivalent when one considers the optimized
expansions as we explain next.

Let h : N→ N be a re-ordering function forH in such a way that

|[X,Uh(0)]| ≥ |[X,Uh(1)]| ≥ (46)

We then have the n-term VGS optimized vector approximation

Xn =

n−1∑

k=0

[X,Uh(k)] Uh(k). (47)

In practice, the integer n is chosen to satisfy some error criteria, say an vector error level εv is
given so we can find n = n(εv) so that ||X − Xn|| ≤ εv. The corresponding n-nodes Ak, which
satisfy ΨAk = Uh(k), will be called active nodes (for the given εv.)

One can define the same notions for the orthonormal system G, let gi : N → N be one such
re-ordering function for each i = 1, . . . , d, so that

|[x[i], ugi(0)]s| ≥ |[x[i], ugi(1)]s| ≥ (48)

We then define the n-term VGS optimized scalar approximation(s) by

x[i]n =

n−1∑

k=0

[x[i], ug(k)]s ug(k). (49)

(A caution to the reader: the i-th. component of the n-term vector approximation is denoted by
Xn[i] while the n-term approximation of the scalar i-th. component is denoted by x[i]n).

Given an scalar error level εs we will find integers ni such that

||x[i] − x[i]ni || ≡
√

[x[i] − x[i]ni , x[i] − x[i]ni]1 ≤ εs for all i = 1, . . . , d. (50)

The corresponding n-nodes Ak, which satisfy ψAk ,s = ug(k), are called active nodes (for the given
εs). For each type of approximation, we will prune the tree by keeping only the corresponding
active nodes for further processing. Retaining only the active nodes from the full VGS tree results
into a data structure which is not a tree.

In the vector case one needs to store the following information at the active nodes: numbers
of the form [X,Ψ0

A] and/or [X,Ψ1
A] and a corresponding vector B′A. In the scalar case one needs

to store some (or all) of the following numbers: [X[i], ψ0
A,s]1 and/or [X[i], ψ1

A,s], i = 1, . . . , d.
Besides the scalar and vector approximations, there exists another approach described in Section
6.7, this approach uses the information on the leaves after the tree has been pruned, it will be
called Leaves average approximation.

At this point it may be useful to outline some general structures related to the information
needed by the decoder to reconstruct the approximation to a given set of images.

The Partition Map (PM) encodes the partition which results after the tree has been pruned.
Of course, the partition constructed by VGS is input-dependent and needs to be encoded entirely,
details are described in Section 6.1. The Significance Map (SM) encodes what remains of the tree

20

structure after pruning has taken place, it contains the information on the number of children and
pointers from active nodes to the partition sets (from PM). Additional indexing information is
also required to account for particulars inherent to the vector case or scalar case. We will analyze
this map in Section 6.2. The Quantization Map (QM) is used to quantify the quantized informa-
tion required for reconstruction at active nodes, it is described in Section 6.3. This information
could be inner products, B′ or actual averages. In most of our numerical illustrations the bit costs
of SM and QM are added together and reported as a single cost, the quantized inner products are
naturally stored in the SM data structure and, in most cases, they represent the largest part of the
bit costs (beyond the PM costs).

The Greek letter λ will be used throughout this section and the next one to denote inner
products. Depending on the context, these inner products will be of the form [X,Ψ0

A]or [X,Ψ1
A]

or [x[i], ψ0
A,s]s or [x[i], ψ1

A,s]s. Variations on this type of notation, mainly used in the diagrams,
should be self explanatory. Some of the images used for illustration refer to input data used for
experimentation, this data is formally presented in Section 7.

Sections 6.1, 6.2 and 6.3 describe practical issues related to the encoding of the data structures
used in our implementation.

6.1. Partition Map (MΠ)
Definition: Consider n ≡ |Π(Ω)|, where Π(Ω) is a finite partition of Ω , a function MΠ :

Ω→ N is called a Partition Map if for each Ak ∈ Π(Ω), k = 1, . . . , n it satisfies:

MΠ(w) = vk ∀ w ∈ Ak, if k , j ⇒ vk , v j.

Figure 4: Full tree with active nodes

We describe how the Partition Map is created by means of an example. Figure 4 displays a
full tree obtained after three iterations, the partition associated to the full tree is shown in Figure
5 a). Assuming that nodes {1, 3, 6} are the only active nodes, the resulting partition is shown in
Figure 5 b). Notice that node 2 is not active and hence the atom associated to node 1 is not further
split in this case (unless a descendant of node 2 were actually active.)

Remark 3. The partition map shares the same domain as the input images, and the maximum
number of atoms is equal to the number of pixels. In general, an upper bound number of bits to
store the partition map is log2 |Ω|.

21

Re-ordering Partition Values: The partition map could be interpreted as an image even though
the values assigned to the atoms are not related. Technically, whenever we restrict to gray scale
images, the partition map is not an image because the values in the range of the partition map
could be greater than 256. Although it seems to be difficult to reduce the number of values
without losing crucial information, there exists the possibility to re-order the values of the atoms
in the partition map in such a way that if the distance between two different atoms is small then
its corresponding values should be near too; then we need to find a way to measure a distance
between atoms. There are different methods to carry out this task. The following is one such
method:

Figure 5: a) Partition using the full tree, b) Partition using the compressed tree

For a given atom Ak ∈ Π(Ω) we compute the average of the input set in this atom

Vk =
1

d |Ak |
d∑

i=0

∑

w∈Ak

x[i](w),

now using Vk is possible to re-order the values associated to each Ak. Defining the sorted set

{Vh1 ,Vh2 , . . . ,Vhn } such that Vh1 ≤ Vh2 ≤ · · · ≤ Vhn

where n the number of elements in Π(Ω), then

MΠ(w) = k ∀ w ∈ Ahk , k = 1, . . . , n.

Entropy Encoding:
The word symbol will be used to refer to the value assigned to each atom in Π(Ω). The average
number of bits needed to encode each symbol is given by

HMΠ
= −

n∑

i=0

pi log2 pi where pi =
|Ai|
|Ω| ,

and Ns = |Ω| is the number of pixels in Ω and so pi becomes the relative frequency of each
symbol. The (theoretical) cost associated to the partition is given by

CMΠ
= HMΠ

× Ns.
22

Consider an example of two images each of 128× 128 pixels (actually, the standard Barbara and
Lena images). If we run VGS to an approximation of PSNR = 38.38 db and then we apply the
re-order of the partition, the relative frequency of the symbols gives HMΠ

= 7.83 bpp (bits per
pixel) and CMΠ

= 16384× 7.83 = 128439.67 bits, approximately 97.99% of the maximum when
HMΠ

= log2 256 = 8. So, there is almost no compression at all, and it becomes obvious when we
check that the relative frequency of the symbols is quasi uniform.
Spatial Correlation: There are several approaches to take advantage of any spatial correlation;
we have found, in our setup, that one of the best techniques is the following. We suppose that
there is a spatial correlation between pixels by assuming that one column is similar to the next,
if w = (x, y) then

MΠ(x + 1, y) −MΠ(x, y) ∼ 0, (51)

the relation between lines is also true. Then, it is advantageous to store the difference of the
columns instead of the original values. Consider the previous example of the two images but
now using the differences in (51). The relative frequency of the symbols is shown in Figure 6,
where it is possible to appreciate that most of the symbols are equal to zero.

Figure 6: Relative frequency using spatial correlation

The results now are better than before, HMΠ
= 6.8 bpp and CMΠ

= 16384×6.8 = 111, 423.84
bits, approximately 85.03% of the maximum when HMΠ

= log2 256 = 8, it means a 15% of com-
pression. Although it seems to be not a good compression rate, we have to take in consideration
that it is lossless compression, and also if JPEG2K is used to compress the partition image, with
a PSNR = 45 db, the size will be approximately equal to the 60% of the image. Therefore the
lossless compression using differences seems to work well. There exists also the possibility to
apply a lossy compression algorithm to the partition, but the results showed that the algorithm is
very sensitive to a change in the partition values. Therefore because the distortion has to be very
small, the compression rate for a lossy method is practically the same as the lossless method.

6.2. Significance Map (MS)
For a given tree, as in Figure 7, we assume in general that we have a function called compressTree

that selects a number of nodes based on some criteria, a typical output is shown in Figure 8.
23

Figure 7: Full tree

Figure 8: Compressed tree

The significance map stores what remains of the tree information after pruning has taken place.
Each node contains the information associated to the approximation on each atom, e.g. inner
products and B′. Notice that the significance map also needs to include links from nodes to the
partition sets encoded by the partition map. This is the main difference with other methods that
use trees to encode inner products. Our case is more difficult due to the fact that the encoder
should encode the inner products and the links to the atoms at the same time.

As we can see in Figure 8, if a node is selected we do not require the ancestors to be included.
Most approaches at this point [1], [13], assume that, under suitable conditions, a significant node
does not have any significant children nodes. The zero-trees proposed in [15] make use of this
property. In our vector case the extension of that proposition is not clear and also the problem to
include a node and not its ancestors can be solved without including much more extra information
or introducing any extra computational cost. Due to the complexity of the algorithm, we will
describe it by means of an example.

Three different type of symbols are employed to encode the tree, the symbols are used to
create a string of symbols called the significant string and denoted with S. The symbols are: • Q
(Active node), • V (Link to the partition) and • D (Dummy node). Tree nodes are visited using
a pre-order traversal method. The algorithm continues until the following string is constructed.

Figure 9: Encoded string

Figure 9 shows the encoded string and Figure 10 shows the decoded tree that is equivalent for
reconstruction to the original tree. As indicated, the number of symbols proposed is three, but
if we adjoin the number of children to the symbol we can check that the sequence of symbols

24

Figure 10: Equivalent decoded tree

“{Q2, V, V}” has a high probability. We can then introduce a new symbol called Q2VV, this is
analogous to the zero tree symbol introduced in [15].

Entropy Encoding:

Definition 4. The algorithm described in the example above can be used to define a function
MS : S → Z called the Significance Map.

The above definition considers S as a set constructed as the disjoint union of the symbols
used by the algorithm to construct the significance string. Therefore, symbols are included in the
set S as many times as they appear in the significance string.
Set Sk = {s ∈ S :MS (s) = k and k ∈ Z} and define the symbol set JS = {Sk ⊂ S : Sk , ∅}.
Using entropy encoding as before, the theoretical cost associated to the significance map is given
by

CMS = HMS × |S|. (52)

For the example above using the encoded string in Figure 9,

S = {Q2,V2,Q2,V,Q2,V,Q2VV,Q2VV,D2,Q2VV,Q2,Q2VV,Q2VV}.

The average number of bits HMS = 2.038 bits per symbol and the theoretical total cost is equal
to CMS = 26.49 bits, using the standard coding without taking in consideration the entropy, is
equal to 30.18 bits it means that we have saved 12.3%. In a real application the number of nodes
in a compressed tree are near to 1000 then the number of bits needed to store such a tree is close
to 2000.
We remark that the cost associated to the significance map is, relatively speaking, the lowest cost
when compared with cost to encode the partition map or the quantization map. In some instances
the cost of the significance map may increase [15].

6.3. Quantization Map (MQ)

The quantization map stores the information (quantized) needed for the reconstruction in
each node; entropy encoding is used afterwards. We have found, through experimentation, that
the uniform quantization works the best. Given that the actual details of the quantization schemes
depend on the different cases, details on quantization will be provided in the appropriate sections.
We will also use those sections to summarize the total bit costs for each case.

25

6.4. D0 (Haar) Case: Scalar Approximation.

This case is referred to as SHVGS (Scalar Haar VGS) in later sections. The information
needed in this specific case at each node consists of the scalar inner products [x[i], ψs]s and the
partition that is encoded by the partition map. Therefore, the information to be quantized consists
of d real numbers, where d is the number of input images. We will quantize these numbers
and then use entropy to encode them. The two techniques can be combined and performed
simultaneously as in the case of the arithmetic coding, see [15], [14].

Let us call λk = [X[i], ψ0
A,s]s to the largest inner products kept after pruning a full tree by

means of the scalar approximation. In a real application (from the hand video set, see Figure 18),
using the full tree, λk ∈ (0.0001, 200), Figure 11 shows the values of λk sorted by |λk |. Figure 12
shows the information on each node, our compressTree algorithm selects a node if at least one
scalar product λi is needed at the node.

We will define next the quantization mapMQ : Q→ Z, where Q = {λi}.
Quantization: We have verified, through experimentation, that the best quantization technique
for our algorithm is the uniform quantization defined by the following quantization map

MQ(λk) =

⌊⌊
λk

c

⌋
× c

⌋
and c > 0. (53)

The value of c is found empirically through experimentation.

Figure 11: Ordered scalar inner products

Entropy Encoding: Let Qk = {q ∈ Q : MQ(q) = k and k ∈ Z} and so the symbol set is
JQ = {Qk ⊂ Q : Qk , ∅}. Using entropy encoding, as we have done previously, the theoretical
total cost associated with the quantization map is denoted by

CMQ = HMQ × |Q|. (54)

Indices Information: The indexing information can be encoded using different approaches. We
describe a single such a method here (two other methods are described in [2]). The approach

26

Figure 12: Haar case tree for the scalar approximation

uses d bits to encode whether an inner product is included or not. Then, for a given node n the
associated indexing cost for this approach is given by

CIn = d + k HMQ , (55)

where d is, as usual, the number of inputs, HMQ is the average bits per scalar inner product, and
k is the number of inner products being used at node n. Then the total indexing cost is

CI =
∑

n

CIn .

The indexing cost is generally low but one could construct examples where it can become sig-
nificant. The total cost CT for this case (namely the SHVGS case) is given by

CT = CMΠ
+ CMS + CI .

Where CMΠ
is the cost associated with the partition, CMS is the cost associated with the tree,

and CI is the indexing cost given above. The cost associated with the quantized coefficients CMQ

(as given by (54)), is clearly included in CI .

6.5. D0 (Haar) Case: Vector Approximation.
For the purpose of reconstructing the vector approximation, we need to store, at a given

active node A, B′∗, as given in (34) and [X,Ψ0
A]. The partition information is also required.

From (34), we see that B′∗[i] is given by the normalized difference of two expected values
EA1 (X[i])−EA0 (X[i]). Therefore, we only need to store the result of such differences because the
normalization can be done a posteriori. Now let us define

∆i = EA1 (Xi) − EA0 (Xi),

then
B′∗[i] =

∆i√√
d∑

k=1

[∆k]2

.

27

Quantization Map for the Vector Haar Approximation: The quantization map used for this
special case is just the integer part of the difference of the expected values defined above,

MQ(∆i) = b∆i + 0.5c . (56)

Figure 13 shows an example of the relative frequency of the quantized differences ∆i. The Faces
set (introduced in [4]) was used with a PSNR = 40. As we have done previously, defining the

Figure 13: Relative frequency of the quantized difference of the expected values

corresponding symbol set JQ, we obtain the entropy cost associated with the above quantization
map

CMQ = HMQ × |Q|. (57)

The total cost CT for this case is calculated as

CT = CMΠ
+ CMS + CMQ .

CMΠ
and CMS are the partition and significance bit costs respectively. Both have been completely

described in previous sections. Without providing any further details we just indicate that CMQ

is given by (57) plus the cost associated with the (quantized) coefficients [X,Ψ0] (only one per
node).

6.6. D1 Case: Scalar Approximation.
This more general case is referred to as SMDVGS (Scalar Martingale Differences VGS) in

later sections. It is the case when optimization is carried over D1. It is similar to the Haar
scalar approximation, but in this case there could exist two types of inner products at each node,
corresponding to ψ0 and ψ1. Figure 14 shows the tree structure for this case, the two classes of
inner products are denoted by {λ0

1, λ
0
2, λ

0
3, λ

0
4, . . . } and {λ1

1, λ
1
2, λ

1
3, λ

1
4, . . . }, the encoding scheme

is similar to the one we have described for the Haar scalar case but in the present case we need
extra information to decide whether an inner product belongs to the first set or to the second set.

For or a given node n the indexing cost is

CIn = 2 d + (k0 + k1) HMQ ,
28

Figure 14: Tree for the scalar approximation for the caseD1

where d is the number of inputs, k0 and k1 the number of inner products of each set included in
the representation, HMQ is the average numbers of bits needed to store the inner products. The
total cost CT for this case is calculated as

CT = CMΠ
+ CMS + CI ,

with CI =
∑

n CIn . Analogous remarks as in Section 6.4 apply.

6.7. Leaves Average Approximation.

This case is referred to as AVGS (Averages VGS) or Haar-AVGS in later sections. For this
specific approximation, we assume that the VGS algorithm was applied to an input set and, after
pruning, a partition is obtained. Given such a partition Π(Ω) we compute the integer part of the
average of each input image over each atom,

λi j =


1
|A j|

∑

w∈A j

X[i](w)

 and A j ∈ Π(Ω),

where λi j ∈ Z. Now, defining

Λ = {λi j for all i = 1, . . . , d and j = 1, . . . , n}

where n = |Π(Ω)| and d is the number of input images, then |Λ| = n × d.
The approximation XΠ is given by

XΠ(w) = (λ1 j, λ2 j, . . . , λd j) ∀ w ∈ A j.

Entropy Encoding: Let us define Λk as the set of all values λi j equal to k

Λk = {λi j ∈ Λ : λi j = k},
29

and also define the symbol set JΛ = {Λk ⊂ Λ : Λk , ∅}. The theoretical cost associated to the
set of averages is given by

CΛ = HΛ × n × d. (58)

The total cost associated to this approximation is the cost associated to the partition, plus the
cost CΛ associated to encode the average values Λ,

CTotal = CMΠ
+ CΛ.

In practice CΛ will actually represent the cost of encoding the quantized difference of the average
values as explained at the end of the present section.

Using a set of four standard images formed by {Barbara, Lena, Boats, Peppers}, of size
128 × 128 pixels, the VGS algorithm for the Haar case was run until the PSNR = 40, and the
partition obtained contained 6983 atoms. It is possible to appreciate that there exists a slight
common structure, that is shown in Figure 15. Notice that the range of the images is given by
[0, 255] therefore the worst case can be encoded with ĤΛ = log2 256 = 8 bpp and the maximum
cost ĈΛ = 8 × 6983 × 4 = 223456 bits.

Figure 15: Relative frequency, for all input images, of averages for the Leaves Average Approximation

The values obtained for this particular case are HΛ = 7.499 bpp and CΛ = 209479.22 bits,
approximately a compression of about 6.25%. Again from Figure 15 it is possible to observe that
the values in the mid-range should be encoded with less bits than the values in the extrema.
Quantization: A quantization over the values taken by this approximation entails a quantization
over the range of values taken by the image, i.e. a reduction of the gray levels of the image.
Although the algorithm seem to be not so sensible to this quantization, in terms of the image
degradation, the effects, specially on the smooth parts are not desirable. The goal is to find a
quantization functionMQ : Z → Z that once applied to the λi j’s the distortion remains small
enough. A quantization can be done using many different approaches, but the best results were
obtained using a uniform quantization algorithm described below:

30

Uniform Quantization: The uniform quantization function affects all values alike.

MQ(λi j) =

⌊⌊
λi j

c

⌋
× c

⌋
and A j ∈ Π(Ω)

and c > 0.
There exists other types of quantization but the results of our experiments were not as good

as the uniform quantization model.
Frame Correlation: It is very common in video applications to use the fact that consecutive
frames are similar. Some algorithms take the difference between those frames, the computations
reach a cumulative error and at that time the algorithm re-starts the encoding again. We use this
property too, but with a different meaning. If two frames are similar then, the average value in a
given atom should be similar too, so λi j ∼ λi+1 j then we define the difference average values as

αi+1 j = λi j − λi+1 j and α0 j = λ0 j.

Then the αi j’s are now the new input symbols for the entropy encoding block.
The results over the image set, without using quantization, are not good; the reason of this is
because those images have nothing in common, considering the set as a video sequence. But
using the first 9 images of the hand video set, see Figure 18, the results are quite impressive.
Again we are using a good approximation of the video sequence with a PSNR= 40, the partition
has 673 atoms. Using equation (58), we find that the maximum cost associated to store the
average information is equal to in this case HΛ = 8, n = 673 and d = 9 then ĈΛ = 8 × 673 × 9 =

48456.
In order to show the contrast we present first the results without using frame correlation. The
theoretical average number of bits to store each average value is 7.76. Figure 16 shows the
relative frequencies histogram. The cost associated to this is equal to CΛ = 7.76×673×9 = 47002
approximately a 3% compression rate.

Now using the image correlation information the average number of bits is 4.93. Figure (17)
shows the histogram and it becomes obviously that most of the values are zeros. The cost for this
case is equal to CΛ = 4.93 × 673 × 9 = 29861, what is close to a 39% compression rate.

6.8. Bits Tradeoffs

In this Section, when reporting bit values of the significance map we will be actually reporting
the bit cost of encoding quantized values for [X, ψ0

A] and [X, ψ1
A]. Bit values of the partition

map will represent the cost of encoding a lossless compressed version of the corresponding data
structure (we have found that the partition map is very sensitive to quantization). Therefore, in
effect, in the present section the bit cost ofMS includes the bit cost ofMQ.

The notation CMS [i](d) indicates that we have run VGS for d inputs and the component i has
a significance cost of CMS [i](d) bits. Whenever d = 1 we will write CMS 1 as CMS (1). In
short, CMS (1) represents the (quantized) significance map cost of encoding the output of VGS
(excluding the partition cost) and VGS was executed on a single image. We use similar notation
for the partition map cost but we will assume the partition cost is independent of i. Therefore
the notation CMΠ

(d) denotes the number of bits needed to store the partition map when VGS was
executed on d images. This is reasonable as it was indicated in the previous Section that CMΠ

(d)
has a uniform upper bound (i.e. the upper bound is independent of d) which depends solely on
the size of Ω.

31

Figure 16: Histogram the average coefficients for the video sequence

Figure 17: Histogram of the difference of the average coefficients for the video sequence

32

We expect CMS [i](d) to deteriorate as d increases (for any i), and we also expect CMS (1) to
be of best quality, i.e. CMS (1) << CMS [i](d) for all i and d.

Lets use CFixedBasis to denote the cost of encoding a given image by a certain method with
fixed basis (in particular it could be JPEG, JPEG2000, Haar basis, etc.). If there are d images
we will consider that CFixedBasis[i] denotes the cost, of the method, for image i. We expect that
CMS (1) << CFixedBasis[1].

We introduce next a useful quantity to quantify the quality of VGS’s approximation

γ(d) ≡ CMΠ
(d)

d
+

∑d
i=1 CMS [i](d)

d
. (59)

Clearly, the optimal d? is the one that minimizes γ(d). It is clear that there is a tension between

how large d has to be so
CMΠ

(d)
d is small enough and at the same time we want

∑d
i=1 CMS [i](d)

d to
remain small but we know that CMS [i](d) deteriorates as d growths.

Notice that VGS will outperform the cost of the fixed basis method, namely CFixedBasis if

γ(d) <
∑d

i=1 CFixedBasis[i]
d

.

Using the average cost per image, instead of using the total cost, not only allow us to determine
the optimal number of images for which VGS will deliver best compression performance but
also provides a reasonable bit- scale to compare with other methods (Section 8).
Considering that a (slow changing) video sequence could be an optimal situation for our algo-
rithm, we propose the following test set shown in Figure 18. This test set was down-sampled
from 640 × 480 pixels to 128 × 128 using bi-cubic interpolation. We have run VGS on increas-

Figure 18: Hand Video Set: length 1 second, frame size: 128 × 128, color depth: 8bpp, 25 fps (frames per second)

33

ingly larger subsets of the video sequence by adding one image at a time to the previous subset.
The results are plotted in Figure 19, the term

CMΠ
(d)

d in (59) (average cost of Partition Map) is
denoted PM (Partition Map) in the Figure, and the term in (59) (average total cost of the Quanti-

zation Map and Significance Map)
∑d

i=1 CMS [i](d)
d is denoted by QM + S M. The total cost is equal

to CMQ + CMS + CMΠ
. The display corresponds to the case of 45db and shows that the minimum

occurs at d = 9 for this case.

Figure 19: Average CMΠ
and average CMQ + CMS plotted against d

7. Numerical Illustrations of the VGS Algorithm

We present a collection of test cases to illustrate, test and compare the VGS algorithm with
other techniques. The results also indicate advantages and some shortcomings of the VGS al-
gorithm (at least in its present form). The reader will note that only scalar approximations are
discussed, i.e. no results on vector approximations are presented. This is done by reasons of
space, moreover, in a limited number of experiments we have found the results to be compara-
ble. When reporting distortion values for a sequence of images or a video sequence (we will
refer to any of these two instances generically by vector input set), we make use of the PSNR as
defined by (60) and (61).

Definition 5. For the purposes of this section, an image is defined as a function I : Ω→ N such
that I(x, y) = v and v ∈ N where

Ω = U × V, where U = {0, . . . ,N − 1} and V = {0, . . . , M − 1} N,M ∈ N.
Practically the VGS algorithm has no restriction on the size of the images, but for simplicity

we will consider N = M most of the times. Also, we will use V = 256-gray scale images with
8 bpp (bits per pixel). We will only consider the case when P is the uniform measure on Ω and
we set A = P(Ω) (where P is the power set operation). Therefore, the L2 error measure and the
PSNR assume the following expressions in the present discrete setting:

MSE[i] =
1
Ns

∑

w∈Ω
(x[i](w) − x̂[i](w))2, PSNR[i] = 10 log10

(
V2

MSE[i]

)
, (60)

34

where Ns = |Ω| and X̂ denotes one of our approximations. Then, the total MSE is given by
MSET ≡ ∑d

i=1 MSE[i]. Given that we deal with a vector of input images and the VGS algorithm
operates on all images simultaneously, it is practical, in order to report the performance of the
algorithm, to use the PSNR per image (or average distortion per image or average PSNR) defined
by

PSNRA =
1
d

d∑

i=1

MSE[i]. (61)

As mentioned before, in our software implementation the case when the optimization is car-
ried over D = D0 is referred as the Haar case. The case when D = D1 is referred as the
martingale difference (MD) case. In the following sub-sections we introduce a variety of inputs
used as examples, they illustrate important characteristics of the algorithm.

7.1. Geometrical Set

Figure 20 displays twelve simple geometrical images used to further analyze some of the
characteristics of the algorithm. Figure 21 shows the inner product curve for the geometrical

Figure 20: Geometrical Set, each of size 128 × 128, color depth: 8bpp

set using the Scalar Haar (i.e. D = D0) VGS algorithm (denoted SHVGS, see Section 6.4), the
inner products are sorted and plotted vs. the number of component (i.e., as we add more inner
products to our list, and, hence components to our approximation), the comparison is done using
different values of d = 4, 9 and 12 and the full tree was calculated. The dependency of the speed
of decay of the inner products as a function of d can be observed.

Figure 22 shows a comparison between SHVGS and the Scalar Martingale Differences (so
D = D1) Vector Greedy Splitting algorithm (denoted SMDVGS, see Section 6.6), it is possible
to observe that for larger number of components both algorithm have the same behavior for this
case.

35

Figure 21: Inner products curve for Geometrical Set, SHVGS, d = 4, 9 and 12

Figure 22: Inner products curve, Geometrical Set, SHVGS and SMDVGS comparison, d=9

36

Figure 23: Inner products curve, Maximum, minimum and average per component, Geometrical Set, SHVGS, d=9

7.2. Translations Set
Figure 24 displays three input vectors, we refer to each of these input vectors as Translations

Sets 1, 2, 3. Each vector is represented by the corresponding square of d = 9 images (the three
blocks, of nine images each, are pasted together just for easy of display). Images in each of the
input vectors are constructed by translating a (smooth) single object. In each of the translation
sets, the object used is larger and so the common sigma algebra to represent the nine images
becomes more complex.

Figure 24: All Translation sets, d=9

Figure 25 shows the average distortion vs the total rate graph for the three translations sets,
the degradation in the compression power of the VGS algorithm becomes evident. Figure 26
compares how the inner products decrease for each of the three translations sets.

7.3. Akiyo Video Set
The following images display results for the set Akiyo, Image 27 only shows nine representative
frames from the video sequence used. Figures 28 to 30 show the average cost CMΠ

and average
37

Figure 25: Average distortion vs total rate; translation sets 1,2 and 3, d=9, SHVGS

Figure 26: Sorted Inner products for translation sets 1,2 and 3, d=9, SHVGS

38

Figure 27: Test Set Akiyo - QCIF : 176x144 - 8bpp

CMQ + CMS plotted vs d for different average distortion values. Figure 31 shows the average

Figure 28: Average CMΠ
and average CMQ + CMS vs. d, SHVGS

distortion vs the total cost for d = 9. More results on the Akiyo test set appear in the Section 8.

39

Figure 29: Average CMΠ
and average CMQ + CMS vs. d, SHVGS

Figure 30: Average CMΠ
and average CMQ + CMS vs. d, SHVGS

40

Figure 31: Average distortion vs total CMΠ
and total CMQ + CMS , d=9, SHVGS

8. Comparisons

8.1. JPEG2000 Static Comparison

In this section we will compare the JPEG2000 (JPEG2K) and the VGS algorithm in a static
environment. When we say static we mean that JPEG2K does not make use of any temporal
correlation among frames (this temporal correlation will be accounted for when we compare
with MPEG). When running JPEG2K over a set of images, we collect them into a single larger
image as JPEG2K’s performance is enhanced in this way. Figure 19 reveals that VGS performs
best by taking d = 9; also we will use the VGS-AVG algorithm (Leaves Average Approximation
Algorithm, see Section 6.7) that performs well for video images. There are two versions of our
algorithm and both outperform the JPEG2K results. The first version is the standard VGS-AVG
approximation and the second one is the VGS-AVG approximation using the Lempel-Ziv algo-
rithm to encode the partition and the quantization map (lossless compression). Figure 32 shows
the bit cost vs distortion (average per image), comparing the JPEG2K with our algorithms. It is
clear from the figure that the VGS-AVG using the Lempel-Ziv encoding algorithm outperforms
the others for this special video sequence. Table 8.1 shows numerically the same information
as in Figure 32. The bit cost for a given distortion and the last column contains the difference
between the JPEG2K and the VGS-Haar-AVG LZ, it is possible to see that the VGS-Haar-AVG
LZ is within 20% − 35% better than JPEG2K for this case.

Figure 33, for the Akiyo set, shows the average rate-distortion (i.e. bit rate and PSNR per
image) for different values of d but all in the same graph. Figure 34 shows the average rate-
distortion for d = 16, for different methods, SHVGS, SMDVGS and AVGS-LZIV (average
leaves using Lempel-Ziv algorithm to compress the partition and quantization maps). Figure 35
shows the average rate-distortion, for the Faces set (introduced in [4]) for d = 9, comparing
different methods.

8.2. MPEG4-3 Comparisons

The video sequences have been sampled at a slow rate of 15fps (frames per second) and this is
not the standard sampling rate which is at least 30fps. This means that our video sequences have

41

Figure 32: Bit cost vs. distortion per image for JPEG2K, VGS-HAAR and VGS-HAAR-LZ

PSNR(db) JPEG2K Haar-AVG Haar-AVG LZ DIFF
28.3 4096 6888 3209 22%
29.9 5461 7650 3779 31%
32.6 8192 9103 5135 37%
35.0 10922 10758 7088 35%
38.8 16384 14260 11143 32%
41.7 21837 18325 15719 28%
46.3 32768 27277 24981 24%
50.3 43686 37131 33740 23%

Table 1: Numerical bit cost vs. distortion comparison

Figure 33: Average rate-distortion, d=4 to 25, SHVGS

42

Figure 34: Comparison average rate-distortion, d=16 for different methods

Figure 35: Average rate-distortion, d=9

43

more variation among the frames. Clearly this represents a disadvantageous comparison situation
for the VGS algorithm. Given the availability of color only implementations of MPEG4-3, we
also implemented VGS for color components for this comparison.

8.2.1. Hand Video Sequence
This sequence, which we do not display for lack of space, is the color version of the sequence

displayed in Figure 18, the uncompressed video size is 450, 796 bytes. Different values of PSNR
and compressed sizes are shown in Table 8.2.2 for the VGS approximation and for the MPEG4
algorithm. Notice that in the present case (hand video sequence) the VGS compares favorably
in terms of the PSNR. We remark, that the image quality (once sufficiently amplified) seems
to be better in the MPEG4-3 approximation. Figure 36 shows a detail comparison between the
MPEG4 and the VGS approximation.

Figure 36: Video Hand approximation detail, a) Input, b) MPEG4-3 approximation PSNR=36.417, c) HAAR-AVG LZ
approximation PSNR=36.79

8.2.2. More Examples of Video Sequences
Next we provide numerical results for several more examples of different video sequences. The
information displayed is the same than the one displayed for the previous hand video sequence
and, hence, should be self-explanatory. Displays of the video sequences can be seen in [2].
Notice that the video sequences: Doll and Doll 2 are slow varying videos and VGS outperforms
MPEG. The remaining example, Princess, is a faster paced video and, therefore, there is more
variation among the frames. The performance of the VGS algorithm degrades accordingly for
this example. Many more examples of the performance of the VGS algorithm on video sequences
are described in [3].

9. Conclusions

We have described a simple greedy algorithm that does a fast optimization over a very large
dictionary. The general nature of the dictionary makes it expensive to encode the approximating
functions. The extra imposed structure, namely, the vector setting and the tree structure are used
to offset the high cost of storing the approximating functions as this cost gets ameliorated (in
relative terms) as d increases.

The VGS algorithm is designed to optimize the inner products appearing in the approximating
expansions, given the type of approximating functions used, this results in efficient representation
of basic geometrical images containing some common structure and slow changing video frames.
From our experimentation, images with smooth variation make the VGS to under-perform. This

44

Video HAAR-AVG LZ MPEG4-3 Diff % YCbCr PSNR
PSNR CMΠ

CMQ Total PSNR Total Y Cr Cb
Hand 36.79 13721 4003 17724 36.41 19422 8.74% 39 45 45

37.36 14390 4654 19044 36.41 19422 1.95% 40 45 45
36.48 14581 4746 19327 36.41 19422 0.49% 41 42 42
37.9 15474 5476 20950 36.41 19422 -7.87% 41 45 45

Doll 37.46 15492 3363 18855 35.29 19245 2.03% 42 45 45
Doll2 38.97 12714 3538 16252 34.93 20302 19.95% 42 42 42

40.79 14510 5058 19568 34.93 20302 3.62% 45 45 45
Princess 33.88 19189 23145 42334 36.67 34460 -22.85% 37 45 45

Table 2: Video compression comparison, Haar-AVG LZ vs. MPEG4-3, the costs are measured in bytes and the distortion
(PSNR) in decibels (db)

is reasonable, we work on a general probability space and our approximating functions do not
have any sense of smoothness (they, essentially, only obey the zero mean value constraint). In-
terestingly, a form of smoothness, which in our general setup appears as constraints in the higher
moments of the approximating functions, emerges as a solution of a more thorough optimization
(as sketched at the end of Appendix A).

We believe our work offers an explicit setup where important tradeoffs, namely the one be-
tween the expense to code the selected elements of a large dictionary and the efficiency of the
transform expansion, can easily be seen and studied. Interesting questions, for further work,
resulting from our study are: Can one characterize a given finite collection of functions so that
the VGS approximation is optimal in terms of total bit cost? What is the role of the measure P?
Notice that we have taken the uniform measure for P, presumably it could also be adapted to the
input vector.

A. Bathtub Optimization and Alternative Dictionaries

In the main text we make use of the following Bathtub Principle which we borrow from [9].

Theorem 5. For a given number u0 > 0 and x(w), a real valued measurable function, defined on
Ω, set:

Eu0 = {ϕ : 0 ≤ ϕ(w) ≤ 1 for all w and
∫

Ω

ϕ(w) dP(w) = u0}.

Then the minimization problem I = infϕ∈Eu0

∫
Ω

x(w) ϕ(w) dP(w), is solved by

ϕ0(w) = 1{x<yu0 }(w) + cu0 1{x=yu0 }(w), and (62)

I =

∫

x<yu0

x(w) dP(w) + cu0 yu0 P(x = s).

Where
yu0 = sup{t : P(x < t) ≤ u0}, and cu0 P(x = yu0) = u0 − P(x < yu0).

45

We also make use of the dual version of Theorem 5, we present this result in the following
corollary.

Corollary 2. Assume the same hypothesis as Theorem 5, then for a fixed number u1 > 0

I = sup
ϕ∈Eu1

∫

Ω

x(w) ϕ(w) dP(w),

is solved by
ϕ1(w) = 1{x>zu1 }(w) + du1 1{x=zu1 }(w), (63)

and
I =

∫

x>zu1

x(w) dP(w) + du1 P(x = zu1).

Where
zu1 = inf{t : P(x > t) ≤ u1},

and
du1 P(x = zu1) = u1 − P(x > zu1).

The general setup of the Bathtub result suggests an extension of our approach. Namely
instead of optimizing over admissible functions of the form Ψ = B01A0 + B11A1 as in (3), we
could work with the following class of functions,

Ψ = B0 ϕ0 + B1 ϕ1, with 0 ≤ ϕi ≤ 1, i = 0, 1, ϕi(w) = 0 for w < A, (64)

we will use the following notation

ui = E(ϕi), i = 0, 1, u2 = E(ϕ2
0), u3 = E(ϕ2

2), u4 = E(ϕ1ϕ2),

and assume u4 = 0.
As usual we require

∫

Ω

Ψ(w) dP(w) = 0, and
∫

Ω

||Ψ||2(w) dP(w) = 1.

Therefore,

[X,Ψ] = ||B1|| u1

(
1
u1

∫

A
〈X(w), B′0〉 ϕ1(w) dP(w) − 1

u0

∫

A
〈X(w), B′0〉 ϕ0(w) dP(w)

)
, (65)

where
||B1|| = u0√

u2
1u2 + u3u2

0

, B′ =
B1

||B1|| ∈ S d. (66)

A close study of the construction in our paper shows that in order to extend our work to the
class given in (64) we need to solve the following optimization problems.

I = optϕ∈Eu,v

∫

Ω

x(w) ϕ(w) dP(w), where (67)

Eu,v = {ϕ : 0 ≤ ϕ ≤ 1, E(ϕ) = u, E(ϕ2) = v} ,
46

where opt covers the two cases of sup and inf.
Notice that, assuming P(Ω) = 1, we have the following constraints

0 < u2 ≤ v ≤ u ≤ 1,

where we used Jensen’s inequality. Transforming the inequalities into equalities, namely u2 =

v = u gives, a posteriori, the setup of the present paper. Once (67) is tackled (it is a linear
optimization with linear and quadratic constraints), one needs to perform optimizations over
ui, i = 0, . . . , 3 under the above constraints. In general, the resulting functions ϕi will not be
characteristic functions anymore but will take more than one single value and the constraints on
E(ϕ2

i) will result on smoother functions (as measured by their variation).

B. Scalar and Vector Valued Basis Functions

In order to establish the convergence of our algorithm we need to relate each Ψ0
A function (as

defined in (33)) to an associated scalar function. We will assume A ∈ A is given and, in order
to simplify the notation, we will dispense with the subset subscript. In particular, we will write
Ψ0 in place of Ψ0

A whenever possible. Moreover, at some points in this appendix, for the sake
of generality, the sets Ai, that partition the given set A, will be left quite arbitrary and hence we
will work with a general function Ψ0 which becomes the optimized function constructed in (33))
when specializing the sets Ai to the sets A∗i . Each of these instances will be indicated explicitly.

As we have done previously, we use the notation Ψ0 = B0 1A0 +B1 1A1 +B21A2 with A0, A1 ⊆ A,
A0 ∩ A1 = ∅, A2 ≡ A \ (A0 ∪ A1) and B2 = 0. We call to the attention of the reader the notational
difference between a given vector valued random variable Ψ and the associated scalar basis vector
ψs. We will use the following notation for the associated scalar function (set b2 = 0)

ψs = b01A0 + b11A1 + b21A2 = b01A0 + b11A1

we also require, ∫

Ω

ψs(w) dP(w) = 0, and
∫

Ω

ψ2
s(w) dP(w) = 1. (68)

Recall the notation B1 = ||B1|| B′ where B′ ∈ S d, also, an expression for ||B1|| is provided in (66).
Some of the results in this Appendix require that the quantities Ai, i = 0, 1 and B′ satisfy the
following equation:

B′[i] =

1
u1

∫

A1

X[i] dP − 1
u0

∫

A0

X[i] dP

√√√ d∑

k=1

(
1
u1

∫

A1

X[k] dP − 1
u0

∫

A0

X[k] ϕ0dP
)2
, (69)

where, as usual, ui = P(Ai).

Proposition 7. Fix an atom A and assume that (69) holds. Then

[X,Ψ0] Ψ0[i](w) = [X[i], ψ0
s]s ψ0

s(w) a.e. in Ω. (70)

It also follows from (70) that

[X,Ψ0]2 =

d∑

i=1

[X[i], ψ0
s]2

s .

47

Proof. The proof follows, essentially, by plugging the expression (69) into the left hand side of
(70) and comparing with the right hand side of (70). Computing we obtain,

[X,Ψ0] = ||B1|| u1

(
1
u1

∫

A1

〈X, B′〉 dP − 1
u0

∫

A0

〈X, B′〉 dP
)

=

||B1|| u1


d∑

i=1

B′[i]
(

1
u1

∫

A1

X[i] dP − 1
u0

∫

A0

X[i] dP
) ,

then using (69) in this last expression we obtain

[X,Ψ0] = ||B1|| u1

√√√ d∑

k=1

(
1
u1

∫

A1

X[k] dP − 1
u0

∫

A0

X[k] dP
)2

. (71)

In order to re-write [X,Ψ0] Ψ0[i] we perform the following manipulations

Ψ20 = B01A0 + B11A1 =

(−B1 u1 1A0

u0
+ B11A1

)
= ||B1|| u1 B′

(
1A1

u1
− 1A0

u0

)
. (72)

Therefore

Ψ0[i] = ||B1|| u1 B′[i]
(

1A1

u1
− 1A0

u0

)
. (73)

Using (71) and (73) we obtain

[X,Ψ0] Ψ0[i] = ||B1||2 u2
1

(
1A1

u1
− 1A0

u0

) (
1
u1

∫

A1

X[i] dP − 1
u0

∫

A0

X[i] dP
)
. (74)

We concentrate now on the right hand side of (70). Let b′ = b1
|b1 | , so b′ ∈ {−1, 1} and write the

scalar basis function as follows

ψ0
s = b0 1A0 + b1 1A1 = b1 u1

(
1A1

u1
− 1A0

u0

)
=

|b1| u1 b′
(

1A1

u1
− 1A0

u0

)
.

Notice that
|b1| = ||B1||. (75)

Therefore

ψ0
s = ||B1|| u1 b′

(
1A1

u1
− 1A0

u0

)
.

Moreover

[X[i], ψ0
s]s = b1 u1

(
1
u1

∫

A1

X[i] dP − 1
u0

∫

A0

X[i] dP
)

=

[X[i], ψ0
s]s = ||B1|| u1 b′

(
1
u1

∫

A1

X[i] dP − 1
u0

∫

A0

X[i] dP
)
.

48

Therefore (notice that b′2 = 1),

[X[i], ψ0
s]s Ψ0

s = (||B1|| u1 b′)2
(

1A1

u1
− 1A0

u0

) (
1
u1

∫

A1

X[i] dP − 1
u0

∫

A0

X[i] dP
)

= (76)

||B1||2 u2
1

(
1A1

u1
− 1A1

u0

) (
1
u1

∫

A1

X[i] dP − 1
u0

∫

A0

Xi dP
)
.

We just checked that (76) is equal to (74).

Notice that
[X,Ψ0

∅] ψ
0
∅[i] =

∫

Ω

X[i] dP, (77)

with Ψ0
∅ as defined in (39). We remark that for the Haar case, namely by restricting computa-

tions to the class D0, we can use (77), Proposition 7 and Proposition 5 to prove the following
proposition.

Proposition 8. Given A ∈ A with P(A) > 0, and taking Ψ0
A as given by (33) we have

∑

A∈T ◦n
[X,Ψ0

A] Ψ0
A[i](w) =

∑

A∈T ◦n
[X[i], ψ0

s,A]s ψ
0
s,A(w).

Proof. The proof follows by a simple induction along the iterations of the VGS algorithm. A
key remark is that Proposition 7 is applicable, this is so as Proposition 5 shows that (69) holds
for Ψ0

∅ (as defined in (39)).

We will prove a similar result for the case when we add more than one function to the node,
namely, Ψ1

A. It is enough to consider only those nodes for which J1
A = 2; as the nodes with J1

A = 1
are covered by (70).

Consider now

ψ1
s =

2∑

k=0

ek1Ak (78)

to be the unique function satisfying the following three conditions

||(ψ1
s)2|| = 1,

∫
ψ1

sdP(w) = 0, [ψ1
s , ψ

0
s]s = 0.

In the present scalar case it is easy to find the solution to the above system of equations. Here is
the explicit solution:

e2 =
− e0 P(A0) (b1 − b0)

P(A2) (b1 − b2)
,

e1 =
− e0 P(A0) (b2 − b0)

P(A1) (b2 − b1)
,

and

e2
0 =

P(A1) P(A2) (a2 − a1)2

P(A0)
[
P(A1)P(A2)(a2 − a1)2 + P(A0)P(A2)(a2 − a0)2 + P(A0)P(A1)(a1 − a0)2] .

49

In the above expressions b2 = 0. Therefore taking e0 = ±
√

e2
0 and using the above equations

provides the desired solution (the ± sign does not affect the scalar components, i.e. the inner
product times the basis element).

Define now Ψ1 as follows

Ψ1[i](w) ≡ [X[i], ψ1
s]s ψ

1
s(w)√∑d

j=1[X[j], ψ1
s]2

s

. (79)

Notice that once Ψ0 is given, Ψ1 is uniquely defined.

Proposition 9. For a given set A ∈ A with P(A) > 0, the above constructed vector valued
function Ψ1

A is 0 outside A and it takes three distinct values on A, the pre-images of these constant
values are exactly the sets Ak k = 0, 1, 2. Moreover,

[Ψ0,Ψ1] = 0, ||Ψ1|| = 1,
∫

Ω

Ψ1 dP = 0,

and
[X,Ψ(1)] Ψ1[i](w) = [X[i], ψ1

s]s ψ
1
s(w). (80)

Proof. The fact that the best children of A are given as pre-images of the constant values of Ψ1

follows directly from (78) and (79). From the definition (79) it follows that in order to prove (80)
it is enough to prove the following equality

[X,Ψ1]2 =

d∑

i=1

[X[i], ψ1
s]2

1.

This last equation as well as the other properties follow from simple computations.

Using (79), Proposition 7 can be extended to the general dictionary D by means of the fol-
lowing result.

Proposition 10. Given A ∈ A with PA) > 0, taking Ψ0
A as given by (33) and Ψ1

A given by (79).
Then the approximation defined in (41) satisfies

XTn [k](w) =
∑

A∈T ◦n

JA−1∑

i=0

[X,Ψi
A] Ψi

A[k](w) =
∑

A∈T ◦n

JA−1∑

i=0

[X[k], ψi
s,A]s ψ

i
s,A(w).

Next, we will define an increasing sequence of orthonormal systems Gn, for n ≥ 0 corresponding
to the n-th. iteration of the VGS algorithm, as follows: H0 ≡ {u0 ≡ 1Ω} also, assume, recursively
that Gn = {u0, . . . , ukn } has been constructed. We then let,

Gn+1 ≡ Gn ∪i=0,...,JÂ−1
{ψi

s,Â
}, (81)

where Â is the set in (37), also set ukn+i+1 ≡ ψi
s,Â

for i = 0, . . . , JÂ − 1. Set also G ≡ ∪nGn.
The next theorem simply puts together what has been achieved by construction, namely, that

Gn is a generalized H-system and draws the conclusions from that fact.

50

Theorem 6. Gn is a generalized H-system (as in Definition 1) with kn+1 = kn + JÂ, then Propo-
sition 10 and (3) give:

XTn [k](w) =

kn∑

i=0

[X[k], ui]s ui = E(X[k]|u0, . . . , ukn),

and so
XTn (w) =

1
P(A)

∫

A
X dP, where w ∈ A ∈ L(Tn).

Proof. Define
Vn ≡ span {u ∈ σ(u0, . . . , ukn)}.

We will first check that
dim(span Gn) = dim(Vn), (82)

where dim(V) denotes the vector space dimension of a given vector space V . Notice that for n = 0
we are taking k0 = 0 and u0 = 1Ω therefore dim(span G0) = 1, clearly we also have dim(V0) = 1.
We will proceed by induction, so assume (82) holds for n. Given the definition of the VGS
algorithm, we may assume without loss of generality that for Â ∈ Qn with P(A) > 0 (Â as in
(37)) and that X is not constant a.e. on Â, it is then easy to prove that dim(Vn+1) = dim(Vn) + JÂ.
Now, from the orthogonality relations [Ψk

A,Ψ
k′
A′] = 0 whenever A, A′ ∈ Tn, with P(A) > 0 and

P(A′) > 0, and A , A′, or k , k′ for k, k′ ∈ {0, 1}, it follows that G is an orthonormal system and
hence dim(spanGn+1) = dim(spanGn) + JÂ.

For a given random variable z we have

PGn z =

kn∑

i=0

[z, ui]s ui,

and from the definition of conditional expectations we have

E(z|u0, . . . , ukn) = PVn z,

where PVn x denotes the projection of x onto the closed subspace Vn. Notice that Gn ⊆ Vn,
therefore (82) implies that Gn is an orthonormal basis for Vn, therefore

E(z|u0, . . . , ukn) =

kn∑

i=0

[z, ui]s ui.

The construction of the above Ψ1 was guided by the goal to implement a conditional expec-
tation martingale as in (6). If one intends to explore a vector valued martingale sequence that is
not given as a conditional expectation one can perform a more aggressive optimization to obtain
a different Ψ1. The cost of storing such a Ψ1 will increase correspondingly though. Next we
outline here how this optimization can be done.

We look for a vector valued function of the form,

Ψ1 = E01A0 + E11A1 + E21A2 , (83)
51

where the Ei ∈ Rd. We will impose the following constraints :

1 = ||Ψ1||2 = [Ψ1,Ψ1] = 〈E0, E0〉P(A0) + 〈E1, E1〉P(A1) + 〈E2, E2〉P(A2), (84)

0 =

∫

A
Ψ1 dP(w) = E0 P(A0) + E1 P(A1) + E2 P(A2), (85)

and (using the fact that B2 = 0)

0 = [Ψ0,Ψ1] = 〈 E0, B0〉 P(A0) + 〈 E1, B1〉 P(A1). (86)

Notice that we now have 3 × d unknowns, namely the values Ek[i], k = 0, 1, 2 and i = 1, . . . , d
and only d + 2 equations. Also notice that the scalar case described in (79) is a special solution
of the equations satisfying (84), (85) and (86). Clearly, the optimal Ψ1 should maximize [X,Ψ1].
Actually, this maximization can be done explicitly by using Lagrange multipliers. We will not
present here this lengthy derivation.
Acknowledgements: We would like to acknowledge the use we have made of the software and
output images created by the student Ariel Bernal during his MSc thesis ([2]) and as a research
assistant, both works were performed under our supervision.

References

[1] D. Alani, A. Averbuch and S. Dekel, “Image coding with geometric wavelets”, IEEE Transactions on Image Pro-
cessing, Vol.16, No.1, (2007) 69-77.

[2] A. J. Bernal, Simultaneous Approximation of Images. Applications to Image and Video Compression”. MSc Thesis,
Ryerson University, January 2008, 153 pages.

[3] A.J. Bernal and S.E. Ferrando, Adaptive orthonormal bases for video compression. The 2008 International Work-
shop on Local and Non-Local Approximation in Image Processing, LNLA2008. Lausanne, Switzerland, August
2008. Available at: http://ticsp.cs.tut.fi/reports/report-44.pdf.

[4] P. J. Catuogno, S.E. Ferrando and A.L. Gonzalez, “Adaptive Martingale Approximations”. Journal of Fourier
Analyisis and Applications. Volume 14, Issue 5, (2008) 712-745.

[5] A. Cohen, W. Dahmen, I. Daoubechies and R. De Vore, “Tree approximation and optimal encoding”, Applied and
Computational Harmonical Analysis, Vol. 11, (2001) 192-226.

[6] A. Cohen, R.A. DeVore and R. Hochmuth “Restricted nonlinear approximation”, Constructicve Approx., 16,
(2000) 85-13.

[7] S.E.Ferrando, E.J. Doolittle, A.J.Bernal, L.J.Bernal, “Probabilistic matching pursuit with gabor dictionaries”,
Signal Processing, Vol. 80, Issue 10, (2000) 2099-2120.

[8] Richard F. Gundy , “Martingale theory and pointwise convergence of certain orthogonal systems”. Trans. Amer.
Math. Soc., 124, (1966) 228–248.

[9] Elliott H. Lieb and Michael Loss. Analysis. Second Edition. Graduate Studies in Mathematics, Volumen 14, Amer-
ican mathematical Society, 2001.

[10] S. Mallat and Z. Zhang, “Matching pursuits with time-frequency dictionaries”. IEEE Transactions of Signal Pro-
cessing, Vol. 41, (1993) 3397-3415.

[11] S. Mallat. “A Wavelet Tour of Signal Processing”. Academic Press, second edition 1999.
[12] J. Neveu. “Discrete-Parameter Martingales”. North Holland 1975.
[13] H. Radha, M. Vetterli and R. Leonardi “Image compression using binary space partitioning trees”, IEEE Transac-

tions on Image Processing, Vol. 5, No. 12, (1996) 1610-1624.
[14] A. Said and W. Pearlman, “An image multiresolution representation for lossless and lossy compression”, IEEE

Transaction on Image Processing, Vol. 5, No.9, (1996) 1303-1310.
[15] J.M. Shapiro,“Embedded image coding using zerotrees of wavelet coefficients”, IEEE Transactions on Signal Pro-

cessing, Vol.41 - No.12, (1993) 3445-3462.

52

