
Chapter 8: Logic Programming

November 24, 2008

Outline

1 8.1 Formulas as Programs

2 8.2 SLD-Resolution

3 8.3 Prolog

8.1 Formulas as Programs

Most axioms in deductive systems are in one of the following
two forms:

1 ∀x1∀x2 . . .∀xk (B1 ∧ B2 . . . ∧ Bn → B); or
2 ∀x1∀x2 . . .∀xk B

where Bi(i = 1, . . . , n), B are atomic formulas.

These formulas can be interpreted as:

1 To check that the goal B is satisfied, verify that the
conditions B1, . . . , Bn are met.

2 B is always true without any conditions (i.e. B is a fact)

General Problem

Given a set of assumptions (axioms) which are in one of the
following two forms:

1 ¬B1 ∨ . . .¬Bn ∨ B
2 B

where B1, . . . , Bn, B are atomic formulas, check if a formula G
(goal) logically follows from these axioms.

• We add ¬G and try to refute it using resolution.
• After each stop in resolution, we either get a resolvent of

the form
¬C1 ∨ . . . ∨ ¬Cm

in which all atomic formulas are negated, or the empty
clause.

Example
Consider the following logic program:

1. ∀x substr(x , x)
2. ∀x∀y∀z[(substr(x , y) ∧ suffix(y , z))→ substr(x , z)]
3. ∀x suffix(x , y · x)
4. ∀x∀y∀z[(substr(x , y) ∧ prefix(y , z))→ substr(x , z)]
5. ∀x prefix(x , x · y)

in the language of string concatenation and binary predicates
substr , prefix , and suffix .
Suppose we want to check if abc is a substring of aabcc, so our
goal clause is

substr(abc, aabcc)

We will try to refute its negation

¬substr(abc, aabcc)

Our program in clausal form takes the following form:

1. substr(x , x)
2. ¬substr(x , y) ∨ ¬suffix(y , z) ∨ substr(x , z)
3. suffix(x , yx)
4. ¬substr(x , y) ∨ ¬prefix(y , z) ∨ substr(x , z)
5. prefix(x , xy)

Then, the resolution refutation of ¬substr(abc, aabcc)
proceeds in the following way:

6. ¬substr(abc, aabcc) Goal
7. ¬substr(abc, y) ∨ ¬suffix(y , aabcc) 6,2
8. ¬substr(abc, abcc) 7,3
9. ¬substr(abc, y) ∨ ¬prefix(y , abcc) 8,4
10. ¬substr(abc, abc) 9,5
11. � 10,1

• From now on, we can write the axioms involving implication
as

∀x1∀x2 . . .∀xk (B ← B1 ∧ . . . ∧ Bn)

• We interpret such axioms as:

“In order to compute B, compute B1, . . . , Bn first.”

Example
In this interpretation, our previous logic program becomes:

1 x is a substring of x
2 To check if x is a substring of z, find a suffix y of z and

check if x is a substring of y .
3 x is a suffix of yx
4 To check if x is a substring of z, find a prefix y of z and

check if x is a substring of y .
5 x is a prefix of xy .

• The programs obtained in this way are highly
nondeterministic.

Two main issues:
1 If we have a goal clause B1 ∨ . . . ∨ Bn, which of the atoms

B1, B2, . . . , Bn can we use in resolution?
2 Once we decide on Bi to use in resolution, which other

clause containing ¬Bi should we use to resolve with it?

Definition
A computation ruleis a rule for choosing a literal in a goal
clause to use in resolution. A search rule is a rule for choosing
a clause in the program to resolve with the chosen literal in a
goal clause.

Main difference between logic programming and ordinary
(algorithmic) programming:

• In algorithmic programming, the programmer has effective
control over program execution, generally through
constructs such as IF..THEN, FOR..DO, WHILE..DO,
etc.

• In logic programming, the control over the execution of the
program is completely supplied by the resolution engine
(compiler) and is said to be uniform control, realized by
the declared relationships between the input and the
output.

8.2 SLD-Resolution

Definition
A Horn clause is a clause containing at most one positive literal.

• A Horn clause can have one of the following three forms:
1 ¬B1 ∨ ¬B2 ∨ . . . ∨ ¬Bn ∨ A
2 ¬B1 ∨ ¬B2 ∨ . . . ∨ ¬Bn
3 A

In the notation from Sec.8.1, we have following forms of Horn
clauses:

1

A← B1, B2, . . . , Bn

A is called the head and B1, . . . , Bn the tail of the Horn
clause.

2

← B1, B2, . . . , Bn

In this case, the head is empty and such clause is called a
goal clause

3

A←

In this type of clause, the tail is empty, and such clause is
said to be a fact.

Definition

• Procedure: a set of non-goal Horn clauses with the same
head.

• Logic program: a set of procedures.
• Database: a procedure composed of ground facts.

Example

1.q(x , y)← p(x , y).

2.q(x , y)← p(x , z), q(z, y).

3.p(b, a). 7.p(f , b).
4.p(c, a). 8.p(h, g).
5.p(d , b). 9.p(i , h).
6.p(e, b). 10.p(j , h).

The first two clauses form a procedure. The remaining clauses
(3)-(10) are ground facts that constitute the database of the
program.

Definition
Suppose P is a logic program and G the goal clause.
If θ is a substitution of variables in G, we say that θ is a correct
answer substitution, if

P |= ∀ (¬Gθ)

[Keep in mind that, if G is the goal clause for resolution, we are
trying to show that P together with G form an unsatisfiable set
of clauses; in other words, ¬G is a consequence of the program
clauses P.]

Example
Suppose P is the logical program which consists of the usual
axioms (rules) for arithmetic in Z, and let

G = ¬(x + 3 = y)

be the goal clause for P.

One correct answer substitution is

θ = {x ← 2, y ← 5}

since
P |= 2 + 3 = 5

Another correct answer substitution is, for example,

θ = {x ← y − 3}

since
P |= ∀y ((y − 3) + 3 = y)

�

General Problem

Given a logic program P and the formula

B = ∃ (B1 ∧ B2 ∧ . . . ∧ Bn),

where B1, . . . , Bn are atomic formulas, check if B is a logical
consequence of P:

P |= B

Then,
P |= B ⇐⇒ P |= (B1 ∧ . . . ∧ Bn)σ

for some ground substitution σ.

Let θ be a substitution, so that, for any ground substitution λ,
σ = θλ [Such a substitution θ always, exists; take e.g θ = σ.]

P |= (B1 ∧ . . . ∧ Bn)θλ, for all λ

Then,
P |= ∀((B1 ∧ . . . ∧ Bn)θ)

So, we are looking for a correct answer substitution θ for the
goal clause

G = ¬(B1 ∧ . . . ∧ Bn) = ¬B

Therefore,

P |= B ⇐⇒|= P → B
⇐⇒ ¬(P → B) is unsatisfiable
⇐⇒ P ∧ ¬B is unsatisfiable
⇐⇒ P ∧G is unsatisfiable

Example
For the logic program P from the beginning of this section,
suppose we want to check if

∃y∃z (q(y , b) ∧ q(b, z))

follows logically from P and, if so, find a correct answer
substitution for y , z

11. ← q(y , b), q(b, z). Goal clause
12. ← p(y , b), q(b, z). Res 1,11
13. ← q(b, z). Res 5,12 {y ← d}
14. ← p(b, z). Res 1,13
15. � Res 3,14 {z ← a}

In the process of refuting the goal clause, we used the
substitution θ = {y ← d , z ← a}, so

P |= q(d , b) ∧ q(b, a).

SLD-Resolution

Suppose P is a set of program clauses, R the computation rule,
and G a goal clause.
A derivation using SLD-resolution consists of a sequence of
steps between goal clauses and program clauses, in the
following way:

• G0 := G;
• Suppose Gi has been derived
• To find Gi+1, first select a literal Ai in Gi , using the

computation rule R. Then, choose a clause Ci in P such
that the head of Ci unifies with Ai using an m.g.u. θi and
resolve:

Gi = ← A1, . . . , Ai−1, Ai , Ai+1, . . . , An.

Ci = A← B1, . . . , Bk .

Aiθi = Aθi

Gi+1 = ← (A1, . . . , Ai−1, B1, . . . , Bk , Ai+1, . . . , An)θi

An SLD-refutation is a derivation of the empty clause � using
SLD-resolution.

Theorem
SLD-resolution is sound and complete.

Examples
(a) In the preceding example, suppose that, at step 2, we had
used the clause (6) p(e, b) for resolution. In that case, we
would have obtained

← q(b, z)

as the resolvent and, eventually, we would have computed a
different correct answer substitution

θ = {y ← e, z ← a}

So, given a program P and a goal clause G, there may be more
than one correct answer substitution.

(b) Suppose that, for the same example, we had always used
the last literal in the goal clause to resolve with and that we had
always used the second program clause.
The computation would have had the following form:

G0 : ← q(y , b), q(b, z).

G1 : ← q(y , b), p(b, u), q(u, z).

G2 : ← q(y , b), p(b, u), q(u, v), q(v , z).

G3 : ← q(y , b), p(b, u), q(u, v), q(v , w), q(w , z).
...

So, the refutation fails and, in fact, the computation never
terminates.

(c) Finally, suppose that we had always used the first literal in
the goal clause:

G0 : ← q(y , b), q(b, z).

G1 : ← p(y , u), q(u, b), q(b, z).

G2 : ← q(a, b), q(b, z).

G3 : ← p(a, b), q(b, z).

However, there is no way to proceed past this point, since
p(a, b) is not in the database. So, the refutation fails, as in (b),
but the computation terminates.

Definition
Let P be a set of program clauses, R a computation rule, and G
a goal clause. All possible SLD-derivations can be displayed
using an SLD-tree. The root of the tree is labeled by the goal
clause G. Given a node n labeled with a goal clause Gi , its
children will be all new goal clauses that are obtained by
resolving the literal in Gi , chosen by R with the head of a clause
in P.

Definition
In an SLD-tree, a branch leading to a refutation is called a
success branch. A terminating branch leading to a
non-refutation is called a failure branch, while a non-terminating
branch is called an infinite branch.

Theorem
Let P be a program and G a goal clause. Then, every SLD-tree
for P and G either have infinitely many success branches or
they all have a same finite number of success branches.

Definition
A search rule is a procedure for searching an SLD-tree for a
refutation. An SLD-refutation procedure is the SLD-resolution
algorithm together with the specification of a computation rule
and a search rule.
[E.g. two common search rules are breadth-first and
depth-first searches of the SLD-tree.]

8.3 Prolog

• Prolog was the first programming language that was based
on priciples of logic programming.

• It is an implementation of SLD-resolution on Horn clauses.

Basics

• Computation rule: choose the leftmost literal in the goal
clause.

• Search rule: program clauses are examined for resolution
top-to-bottom.

• Variables and constants: variables must start with
upper-case letters, while constants must start with
lower-case letters.

• the symbol : − is used in place of←.

Example
The first example from Section 8.2 can be interpreted as a
Prolog program in the following way:

ancestor(X,Y) : − parent(X,Y).

ancestor(X,Y) : − parent(X,Z), ancestor(Z,Y).

parent(bob,allen). parent(fred,bob).
parent(catherine,allen). parent(henry,george).
parent(dave,bob). parent(ida,henry).
parent(ellen,bob). parent(joe,henry).

When posed the goal clause

: − ancestor(Y,bob),ancestor(bob,Z).

the program generates the correct answer substitution

: − Y=dave, Z=allen

• Since the search rule is always top-to-bottom, the SLD-tree
is always traversed depth-first. This can result in
non-termination or failure, even if there exists a success
branch.

• For this reason, when writing program clauses, we must
pay attention to the ordering of atoms in the tail of a clause.

• Since we may encounter a failure before reaching a
success branch, we need to maintain a list of backtrack
points; these are pointers to the previous nodes from which
there are multiple branches.

Example
Consider the program

p(a). p(b). p(c). q(c).

with the goal clause

: − p(x), q(x).

The SLD-tree is:

: − p(x), q(x).

qqqqqqq

qqqqqqq
MMMMMMM

: − q(a).
×

: − q(b).
×

: − q(c).
�

• Often, we need to use recursive statements such as

q(X,Y) : − p(X,Z),q(Z,Y).

• Every program containing a recursive clause will possibly
have an infinite SLD-tree since, at each node where we
use this type of clause, one of the descendant nodes will
contain q.

• Search points for recursion are in Prolog effectively stored
using a stack.

Forcing Failure
In our previous example, the query

: − ancestor(Y,bob),ancestor(bob,Z).

would generate the first successful outcome in the SLD-tree

Y=dave, Z=allen.

and stop. What to do if we are looking for a different answer?
The modified query

: − ancestor(Y,bob),ancestor(bob,Z),fail.

will, after generating the first answer, encounter the default
failure clause fail, backtrack and try to resolve the query
using the next available branch, so it would generate the next
answer in the SLD-tree:

Y=ellen, Z=allen.

This is a way to simulate FOR..DO or UNTIL..DO
constructions in Prolog.

• The syntax of Prolog contains a number of non-logical
predicates

• Some non-logical predicates include I/O predicates get
(meaning: get a character from the keyboard), put
(meaning: put a character on the display).

• Prolog contains the usual arithmetic predicates

+,−, /, ∗, . . .

as well as the assignment predicate is.
• However, Prolog is not particularly suitable for more

complicated numerical computations, since resolution is
highly inefficient when it comes to arithmetical evaluations.

Cuts

• The cut predicate (!) is a controversial non-logical atom.
• The reason for this controversy is that cuts modify the

SLD-tree used in search and, therefore, interfere with the
basic principles of logic programming.

• In spite of that, cuts are very useful in Prolog since they
can simplify the procedures and make computations more
efficient.

Example
Consider the following procedure, factorial(N,F), which
computes the factorial F of a non-negative integer F.

factorial(0,1).
factorial(N,F) : − N1 is N-1,

factorial(N1,F1),
F is N*F1.

Also, suppose that another procedure good(N) has been
defined, which fails for N=1.
Then, consider the procedure test(N) :

test(N) : − factorial(N,F),good(F).

The query : − test(0) would result in the following SLD-tree

: − test(0)

: − factorial(0,F),good(F)

qqqqqqq
MMMMMMM

good(1)
×

: − factorial(-1,F),good(F)
... (never terminates)

• ! cuts off all branches to the right of the one being currently
examined and prevents unwanted backtracking and
possible non-terminating branches.

factorial(0,1) : − !.
factorial(N,F) : − N1 is N-1,

factorial(N1,F1),
F is N*F1.

• It is possible to prove that any use of a cut in Prolog can be
avoided by using logical predicates; for instance, our
example can be modified in the following way:

factorial(0,1).
factorial(N,F) : − N>0,

N1 is N-1,
factorial(N1,F1),
F is N*F1.

	8.1 Formulas as Programs
	8.2 SLD-Resolution
	8.3 Prolog

