
Section 5.1 
 

5.1 

a) Pn has n − 2 cut vertices and n − 1 bridges. 

 

b) From theorem 5.1 we know that both end points of a bridge are cut vertices if they 

have degrees ≥ 2. Since we want a graph with more cut vertices than bridges, we may try 

to draw one using this property. Here is a very simple one with one bridge (the edge uv) 

and two cut vertices (u and v) In this case both u and v have degree 3. 

  
 

5.2 

a) A k-star 

 

b) G –u has two components while G – u – v has only one. 

  
 

5.6 

This is an if and only if statement so it has two directions: 

 

1. A 3-regular graph G has a cut vertex if it has a bridge. 

 

Proof:  This is easy. Both end points of a bridge of a 3 regular graph have degree 3 so 

they must be cut vertices from theorem 5.1 

 

2. A 3-regular graph G has a bridge if it has a cut vertex 

 

The solution consists of two steps.  In the first step we prove a more general observation 

which is also of independent interest. 

 

Claim: If G be a connected graph,  v is a cut vertex of G, then the vertices adjacent 

to v in G cannot all belong to the same component of G − v. 

 

Proof of claim:  Let a1, a2 …an be all the (distinct) vertices adjacent to the cut vertex v. 

 

Suppose the claim is not true (so a1, a2 …an … all belong to the same component of G − v)   

v u 

v u G 



 

Let x, y be two vertices of G − v.  Since G is connected, there is a path α in G joining x to 

y. If α passes through v,  it must enter v via one of  the edges incident with it, say  vai, and 

exit v through a different edge vaj  (i and j are different because α is a path so it cannot 

visit the same vertex twice) The vertices v, ai, aj appear in α in the order ai, v, aj. Since ai 

and aj lie in the same component of G − v, there is a path γ in G − v connecting them. We 

can replace the vertex sequence ai, v, aj in α with ai, γ, aj  to get a path α′ connecting x and 

y.  Note that γ does not pass through v. Since α is a path, it can only visit v once, there is 

no other occurrence of v in α.  It follows that α′ is a path connecting x and y without 

passing through v, hence α′ is a path in G − v.  

 

We showed that any two points x and y in G − v can be connected by a path in G − v. 

Therefore G − v is connected. This contradicts the assumption that v is a cut vertex.  

 

We conclude that a1, a2 …an cannot all lie in the same component of G − v, proving the 

claim. 

 

Now we prove that if a connected, 3-regular graph has a cut vertex it must have a 

bridge. 

 

Proof:  Let v be a cut vertex of G. Since G is 3 regular v has exactly 3 neighbours (i.e. 

vertices adjacent to v) a, b and c.  

 

From step 1, the vertices a, b and c must belong to more than one components of G − v. 
There are only two possibilities: 1) two vertices belong to same component and the remaining 

vertex belongs to a different component or 2) the three vertices belong to three different 

components. In either case there is a vertex which is “singled out” in that it does not belong in the 

same component of G − v with either of the remaining two vertices. Without loss of generality, 

let a be a “singled out” vertex, so there is no path in G − v connecting it to either b or c.  

 

We claim the edge e = va is a bridge for G.  We prove this by contradiction. If e was not a bridge, 

then G − e would be connected. It follows that there is a path γ in G − e connecting a and v.  

Since b and c are the only vertices adjacent to v in G − e, γ must reach v via either vb or vc. So 

the path γ ′ obtained from γ by removing its last edge (either vb or vc ) is a path in G − e  

connecting a to b or c. Since γ is a path it can visit v only once, it follows that γ ′ does not pass 

through v. In other words, γ ′ is a path in G − v. We showed that a can be connected to b or c via 

a path in G − e.  This is a contradiction because a is a “singled out” vertex. 

 

We conclude that e is a bridge. 

 

Finally, if G is not connected, we can restrict our attention to the connected component 

where the cut vertex belongs and apply the above result. 

 

Remarks: 
 

1. Since the only connected 2-regular graphs are Cn  (you can prove this by induction on the order 

of the graph) , they have neither cut vertices nor bridges, the assertion that a 2 regular graph has a 

cut vertex if and only if it has a bridge holds trivially. 

 



2. In the proof above, the assumption that G is 3 regular was only used to assert that the cut vertex 

has exactly three neighbours. So we have actually proved something more general: if a cut vertex 

of a connected graph has degree 2 or 3, then at least one of the edges that incident the cut vertex 

is a bridge (if it has degree 2, then both edges incident to it are bridges) 

 

3. To see why the proof fails if the cut vertex has degree > 3, try to carry out the same argument if 

v has four neighbours a, b, c, d. It won’t work because these four vertices can belong to two 

components of G − v in such a way that two vertices belong to each component so that no vertex 

is “singled out”.  For example the vertices a, d belong to one component and b, c belong to 

another. If we try to show that va is a bridge by arguing as above, we wouldn’t be able to assert 

that there is a path leading from a to b or c to obtain a contradiction because we may find a path 

connecting a to v via the edge vd. Since a and d belong to the same component of G − v, there is 

no contradiction that we can find a path in G − v connecting them. 

 

 

Section 5.3 
 

5.21 
b) No such graph because every k connected graph is j connected for j < k. 

d) No such graph because every k edge connected graph is j edge connected for j < k. 

 

 

 


