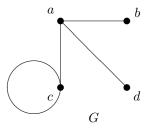
F06 MTH 607 Midterm Solutions

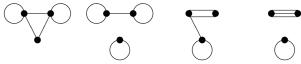


For the graph G given above give the following, or explain why the graph does not have the given property. (Quote any theorems you use.)

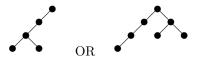
(a) The degree sequence. 1, 1, 3, 3 (b) The adjacency list. $\begin{array}{ccc} a:&b,c,d\\b:&a\\c:&a,c\\d:&a\end{array}$

(c) A bipartition. This graph cannot have a bipartition as it contains a loop.

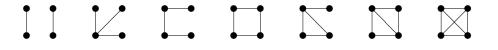
- (d) An articulation point. a
- 2. For each of the following either explain why the specified graph cannot exist (quote any theorems you use), or draw a graph with the given property.
 - (a) A graph with degree sequence 2, 3. Such a graph cannot exist as the total degree is odd. Alternately, it has an odd number of vertices of odd degree.
 - (b) A graph with degree sequence 2, 3, 3. One of the following:



- (c) A simple bipartite graph on 6 vertices containing an Eulerian circuit and a Hamiltonian circuit. C_6
- (d) A 3-regular graph on 4 points. K_4
- (e) A tree with 7 vertices and 7 edges. Every tree has on n points has n-1 edges, so no such tree.
- (f) A binary tree of height 3 with 3 leaves.



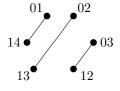
3. List all simple graphs with no isolated vertices on 4 points, up to isomorphism.



F06 - MTH 607

- 4. Let P(n,t) be the graph whose vertices are labeled by sets of size t from an n set. Two vertices are adjacent if and only if the two sets that label them do not intersect. (The Peterson graph is P(5,2).)
 - (a) Draw P(4, 2).

Take the 4-set $\{0, 1, 2, 3\}$, all the 2-sets from this 4-set are: $\{0, 1\}, \{0, 2\}, \{0, 3\}, \{1, 2\}, \{1, 3\}, \{2, 3\},$ which I will write as 01, 02, 03, 12, 13, 23 respectively.



(b) List the connected components of P(4, 2).

$$\{01, 14\}, \{02, 13\}, \{03, 12\}.$$

(c) Either provide a bipartition of P(4, 2) or explain why one does not exist.

 $\{01, 02, 03\}, \{12, 13, 14\}$ There are others.

5. Prove that a connected graph G is a tree if and only if every edge of G is a cut-edge. (i.e. G - e is disconnected for every $e \in E(G)$.)

 (\Rightarrow) Let G be a tree with $e \in E(G)$, e = xy.

Since G is a tree there is a unique xy-path (e), so G - e is not connected.

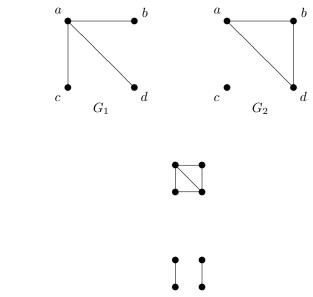
 (\Leftarrow) Let G be a connected graph such that every edge is a cut edge.

Consider two vertices $u, v \in V(G)$, since G is connected there must be at least one uv-path P.

If there was another uv-path Q no edge of P would be a cut edge.

Which contradicts the assumption that every edge is a cut edge.

6. For this question let G_1 and G_2 be as given below.



- (a) Draw $G_1 \cup G_2$.
- (b) Draw $G_1 \oplus G_2$.
- (c) Show that the complement of G_2 is isomorphic to G_1 .

The complement of G_2 is f. Take any bijective map from G_1 to the complement of G_2 which maps $a \ f$ and $\{b, c, d\}$ to $\{a, b, d\}$.