
Ring Sums, Bridges and Fundamental Sets
P. Danziger

1 Ring Sums

Definition 1 Given two graphs G1 = (V1, E1) and G2 = (V2, E2) we define the ring sum

G1 ⊕G2 = (V1 ∪ V2, (E1 ∪ E2)− (E1 ∩ E2))

with isolated points dropped.

So an edge is in G1 ⊕G2 if and only if it is an edge of G!, or an edge of G2, but not both.

Theorem 2

• ⊕ is commutative. i.e. For any graphs G1, G2,

G1 ⊕G2 = G2 ⊕G1.

• ⊕ is associative. i.e. For any graphs G1, G2, G3

G1 ⊕ (G2 ⊕G3) = (G1 ⊕G2)⊕G3.

• For any fixed integer n, Kn is the identity of ⊕. i.e. For any graph G of order n,

Kn ⊕G = G.

• ⊕ is idempotent, i.e. For any graph G, G is self inverse: under ⊕, so

G⊕G = Kn.

Theorem 3 For any graphs G and H, G⊕H is empty if and only if E(G) = E(H).

Proof: (⇒) Suppose that G⊕H is empty, this means that every edge of E(G) is also in E(H) and
visa versa, so the two edge sets are equal.
(⇐) Suppose that E(G) = E(H), then very edge of G is also an edge of H and so there are no
edges in G⊕H. �

1



Ring Sums, Bridges and Fundamental Sets P. Danziger

2 Trees and Bridges

Definition 4 An edge is a bridge if it is a cut-edge, i.e. G− e is disconnected.

Theorem 5 (Unique Tree Path Theorem) For any tree T there is exactly one path between
any pair of points of T .

Proof: Let T be a tree. Since T is a tree, it is connected and so there is at least one path between
any pair of vertices. It remains to show that there is not more than one.
Suppose not, so suppose that there are two vertices u and v in T such that there are two distinct
paths between them. but then the two paths form a circuit and so T is not a tree. �

Theorem 6 (Bridge Theorem) An edge of a graph G is a bridge if and only if it lies on no cycle
of G.

Proof: We prove the contrapositive. Namely, e is on a cycle if and only if it is not a bridge.
(⇒) Suppose e = u v lies on a cycle, then there is a uv−path P given by the rest of the cycle. So
any xy−path requiring e can be replaced by an xy−path with P in place of e.
(⇐) Let e = u v be an edge in G which is not a bridge. Let G1 be the component of G containing
e, G1 − e is connected (otherwise e would be a bridge), so there is a uv−path P in G1 − e. Adding
e to P gives a cycle in G containing e. �

Corollary 7 (Tree Bridge Theorem) Every edge of a tree is a bridge.

Proof: Since T contains no cycles, every edge e of T is not on a cycle of T , and so by the Bridge
Theorem (Theorem 6), e is a bridge of T . �

Corollary 8 All trees are 1-edge connected.

Theorem 9 (Tree Cycle Theorem) Given a tree T the addition of any non-edge of T creates a
cycle.

Proof: Let T be a tree and e 6∈ E(T ), suppose e = u v. By the Unique Tree Path Theorem
(Theorem 5) there is a unique uv−path P in T . Now, adding e to P gives a cycle. �

Corollary 10 Any bridge of a graph G is in every spanning tree of G.

Proof: (Contradiction) Suppose that e was a bridge in a graph G, and T a spanning tree which
does not contain e. The addition of e to T creates a cycle containing e, by the Tree Cycle Theorem
(Theorem 9). But this contradicts the Bridge Theorem (Theorem 6). �
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3 Fundamental Circuits

Definition 11 Given a graph G = (V,E), with a specified spanning tree T = (V, F ) (so F ⊆ E):

1. The co-tree of G with respect to T is the set of edges in E which are not in F . i.e. co−T =
(V,E − F ).

The edges in co−T are called chords.

2. By the Tree Cycle Theorem (Theorem 9) the addition of any chord to T creates a cycle, called
the Fundamental Circuits of G with respect to T , one for each chord e ∈ E(co−T ).

Note that for each edge e ∈ E(co−T ) we have an associated cycle C(e). Further, e is an edge of
C(e) and all other edges of C(e) are edges of the tree T .

Lemma 12 (Circuit Closure) The ring sum of a two edge disjoint collections of circuits is a
collection of circuits.

Proof: Note that a collection of circuits may be characterized by every vertex being of even degree.
Let C1 and C2 be two circuits and C = C1 ⊕ C2. Let v ∈ V (C), d1(v) = the degree of v in C1,
d2(v) = the degree of v in C2 and d(v) = the degree of v in C.
Since C1 and C2 are circuits we have that d1(v) and d2(v) are even, we wish to show that d(v) is
even.
If v ∈ V (C1), but v 6∈ V (C2), then every edge incident on v exists only in C1 and so d(v) = d1(v),
which is even. A similar argument holds if v 6∈ V (C1), but v ∈ V (C2).
Now suppose v ∈ V (C1)∩V (C2) and consider the edges, ei, incident on v which are in both circuits,
so ei ∈ E(C1) ∩ E(C2), thus e 6∈ E(C).
Suppose that there are k such edges, each counts once towards d1(v) and once towards d2(v) once,
but is not counted in d(v), thus d(v) = d1(v)−k+d2(v)−k = d1(v) +d2(v)− 2k, which is even. �

Theorem 13 (Fundamental Circuit Theorem) Given a graph G = (V,E), with a specified
spanning tree T = (V, F ), any cycle in G can be expressed as the ring some of the fundamental
circuits of G with respect to T . Further, no fundamental circuit is the ring sum of any of the
others.

Proof: Let G = (V,E), with a specified spanning tree T = (V, F ), and let C be a cycle in G.
We can completely describe C be the set of edges in C. Order the edges C = {e1, . . . , ek, ek+1, . . . , e`},
so that e1, . . . ek ∈ E(co−T ) and ek+1, . . . e` ∈ E(T ).
For each ei, 1 ≤ i ≤ k, let C(ei), 1 ≤ i ≤ k be the fundamental circuit associated with ei.
Consider C ′ = C(e1)⊕ C(e2)⊕ . . .⊕ C(ek), we claim that C = C ′.
Since for 1 ≤ i, j ≤ k, ei ∈ C(ej) if and only if i = j e1, . . . , ek are edges of C ′ and these are the
only edges of C ′ not in T .
Consider C ⊕ C ′, since the only chords in both are e1, . . . ek, C ⊕ C ′ ⊆ T .
But C ′ is the ring sum of the fundamental circuits C(ei) and so is a collection of circuits by Circuit
Closure (Lemma 12). C is a circuit by assumption and so C ⊕ C ′ is a collection of circuits, again
by Circuit Closure (Lemma 12).
But T is a tree and hence contains no circuits, thus C ⊕ C ′ = ∅. �
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This says that the fundamental circuits form a basis for the set of circuits of a graph. Taking
different spanning trees gives different bases.

4 Fundamental Edge-Cuts

For this section we consider that all initial graphs G are connected. If the initial graph G is not
connected we consider the connected components individually.

Definition 14

1. An edge-cut C is a set of edges which disconnect a graph. So G− C is disconnected.

2. A proper edge-cut is an edge-cut which contains no edge-cut within it.

3. Given an edge-cut C we identify it with the partition of the vertices it induces, (V1, V2, . . . Vk),
each being a connected component of G− C.

If G is connected a proper edge-cut set will split G into exactly two pieces (U,U) for some U ⊆ V (G),
here U = V (G) − U . In particular, given a proper edge-cut C, producing partition (U,U) every
edge e = u v of C has that u ∈ U and v ∈ U , otherwise any edge contained in the same connected
component of G− C could be removed from C.

Theorem 15 If two proper edge-cut sets produce the same partition of the points then they are
equal.

Proof: (Contradiction) Let C1 and C2 be proper edge-cuts which both produce the connected
components (V1, V2, . . . , Vk) and let e = u v be an edge of C1, but e 6∈ C2.
Since C1 is proper we must have that u ∈ Vi and v ∈ Vj for some 1 ≤ i, j ≤ k with i 6= j
But now e is a uv−path which connects Vi and Vj in G− C2.
So C2 cannot provide the same partition. �
This Theorem means that edge-cuts may be uniquely defined by the partition of the vertex set they
induce.

Theorem 16 Given a graph G = (V,E), with a specified spanning tree T = (V, F ), any cut-set
must contain at least one edge of T .

Proof: T is connected, and so provides a path between any pair of vertices. �

Lemma 17 (Edge-Cut Closure) The ring sum of two distinct proper edge-cut sets is an edge-cut
set.

Proof: Let C1 and C2 be distinct edge-cut sets of a graph G = (V,E) producing the partitions
(U1, U1) and (U2, U2) respectively, where U1, U2 ⊆ V .
Every edge of C1 has one endpoint in U1 and the other in U1, and every edge of C2 has one endpoint
in U2 and the other in U2.
Thus edges which are in both C1 and C2 must have one endpoints in either U1∩U2, U1∩U2, U1∩U2
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or U1 ∩ U2.
This means that the edges in both C1 and C2 must connect vertices in U1∩U2 to vertices in U1∩U2

or vertices in U1 ∩ U2 to vertices in U1 ∩ U2.
Thus if the edges of C1∩C2 are removed, the remaining edges provide the partition (U1∩U2)∪U1∩U2

and (U1 ∩ U2) ∪ (U1 ∩ U2).
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Given a connected graph G = (V,E), with a specified spanning tree T = (V, F ) (so F ⊆ E) each
edge e of E(T ) is a bridge of T . Thus each edge e ∈ E(T ) defines a partition of the vertex set V ,
(Ue, U e), Ue ⊆ V . The Fundamental Edge-Cuts of G with respect to T , one for each edge e of T , is
the proper edge-cut (containing e) which produces the partition (Ue, Ue) of G.

Theorem 18 (Fundamental Edge-Cut Set Theorem) Given a graph G = (V,E), with a spec-
ified spanning tree T = (V, F ), any proper edge-cut set of G can be expressed as the ring some of
the fundamental edge-cut sets of G with respect to T . Further, no fundamental edge-cut set is the
ring sum of any of the others.

Proof: Let G = (V,E), with a specified spanning tree T = (V, F ), and let C be an edge-cut set in
G.
Order the edges C = {e1, . . . , ek, ek+1, . . . , e`}, so that e1, . . . ek ∈ E(T ) and ek+1, . . . e` ∈ E(co−T ).
For each ei, 1 ≤ i ≤ k, let C(ei), 1 ≤ i ≤ k be the fundamental edge-cut of G associated with ei.
Consider C ′ = C(e1)⊕ C(e2)⊕ . . .⊕ C(ek), we claim that C = C ′.
Since for 1 ≤ i, j ≤ k, ei ∈ C(ej) if and only if i = j e1, . . . , ek are edges of C ′ and these are the
only edges of C ′ not in co−T .
Consider C ⊕ C ′, since the only elements of T in both are e1, . . . ek, C ⊕ C ′ ⊆co−T .
But C ′ is the ring sum of the fundamental edge-cuts C(ei) and so is an edge-cut by Edge-Cut Clo-
sure (Lemma 17). C is an edge-cut by assumption and so C⊕C ′ is an edge-cut, again by Edge-Cut
Closure (Lemma 17).
But by Theorem 16 any edge-cut set must contain at least one edge of T , thus C ⊕ C ′ = ∅. �

This says that the fundamental circuits form a basis for the set of circuits of a graph. Taking
different spanning trees gives different bases.
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