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1 Matchings

Definition 1

1. Given a graph G = (V,E), a matching in G is a set of non-loop edges M ⊆ E such that no
two elements of M are adjacent. ie No two edges from M share the same endpoints.

2. The size of a matching is the number of edges in it.

3. A maximal matching is a matching to which no edges can be added without violating the
adjacency conditions.

4. A maximum matching is a matching is a matching of maximum size among all possible match-
ings in a graph.

Note that it is possible to have a maching wich is maximal, but not maximum (eg P3).

5. In a weighted graph G a maximum weight matching is a matching whose edges collectively
have maximum weight over all possible matchings in G.

6. Given a matching M on a graph G, the vertices of G which are incident on some edge of M
are said to be saturated by M , those which are not incident on any vertex of M are said to
be unsaturated by M . We also say M−saturated and M−unsaturated respectively. A vertex
which is unsaturated by M is also called free.

7. A perfect matching of a graph G is a matching in which every vertex of G is incident on some
edge of G. That is every vertex is saturated by M .

8. Given a matching M an M−alternating path is a path whose edges are alternately in and not
in M .

9. Given a matching M an M−augmenting path is an M−alternating path whose first and last
vertices are free (unsaturated).

Matchings arise naturally when we are trying to pair different things, possibly subject to some
constraints.

Theorem 2 Given a matching M and an M−augmenting path P , then there is a larger matching
M ′.

Proof: Define M ′ as follows:

• For each edge e of P ,
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– if e ∈M then e 6∈M ′,

– if e 6∈M then e ∈M ′.

• For each edge e not in P ,

– if e ∈M then e ∈M ′,

– if e 6∈M then e 6∈M ′.

So M ′ agrees with M off P and is the opposite on P .
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|M ′| = |M |+ 1

2 Covering and Independence

In this section we assume that G has no isolated vertices.

Definition 3 Given a graph G

1. A vertex cover (of the edge set) is a set of vertices S ⊆ V (G) such that S contains at least
one endpoint of every edge of G.

2. An edge cover (of the vertex set) is a set of edges F ⊆ E(G) such that every point of G is
incident to some edge of F .

3. An independent set is a set of vertices S ⊆ V (G) which contain no edge of G. That is

∀x, y ∈ S, x y 6∈ E(G).

We define maximum values for each of these. Note that a maximum set of independent (non
intersecting) edges is exactly a maximum matching.
Maximum size of an independent set α(G)
Maximum Matching α′(G)
Minimum size of a vertex Cover β(G)
Minimum size of an edge Cover β′(G)

Matchings, covers and independent sets are closely related to each other. We can now investigate
some relationships between these values.

Theorem 4 For any graph G, α′(G) ≤ β(G).

Proof: No vertex can cover two edges of a matching, so the size of any vertex cover is at least the
size of a maximum matching.

Theorem 5 For any graph G, α(G) ≤ β′(G).
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Proof: No edge can cover two vertices from an independent set.

Theorem 6 Given a graph G on n vertices, S is an independent set of G, if and only if S is a
vertex cover and hence α(G) + β(G) = n

Proof: (⇒) If S is an independent set of G, then every edge is incident on some vertex in S,
otherwise there would be an edge in S.
(⇐) Let S be a vertex cover, hence every edge has an endpoint in S, and no edge can be contained
in S. So S is an independent set.

Lemma 7 A minimal edge cover of a graph G is a disjoint union of k−stars (K1,k).

Proof: Let F be an edge cover.
If any edge e of F has both of its endpoints incident on edges of F then F − {e} is also a vertex
cover.
So F is not minimal and any minimal edge cover cannot contain such an edge.
Hence each component of a minimal edge cover has at most one vertex of degree > 1.

Theorem 8 (Gallai (1959)) Given a graph G on n vertices, α′(G) + β′(G) = n

Proof: (β′(G) ≤ n− α′(G)) Let M be a maximum matching.
We obtain a vertex cover F by adding an edge to M for each free vertex.
We have one edge in F for each M−unsaturated vertex, and one edge of F for every two vertices
incident on an edge of M .
Thus |F | = n− |M |.
So β′(G) ≤ n− α′(G).
(α′(G) ≤ n− β′(G)) Let F be a minimal edge cover and let ` be the number of components in F .
Each of which is a k−star for some k by the Lemma.
Now, since F has an edge for each non cenrtal vertex in the star |F | = n− `.
Obtain a matching M by taking an edge from each of the ` k−stars of F .
|M | = ` = n− |F |.
In the case where G is bipartite we have some stronger results.

Theorem 9 (König (1931)) If G is a bipartite graph then the maximum size of a matching is
the minimum size of a vertex cover. ie If G is bipartite α′(G) = β(G).

Note that the condition of bipartite is necessary, C5 has α′(C5) = 2, but β(C5) = 3.

Theorem 10 (König (1916)) If G is a bipartite graph then the maximum size of an edge cover
is the minimum size of an independent set. ie If G is bipartite α(G) = β′(G).

Proof: We have that n = α(G) + β(G) = α′(G) + β′(G), and since G is bipartite, α′(G) = β(G).
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