
Factors
P. Danziger

1 Factors and Factorizations

Definition 1

1. A factor is a spanning subgraph, H of a graph G.

Note that V (H) = V (G) and E(H) ⊆ V (G).

2. A k−factor is a spanning subgraph H of G in which every member of H has degree k.

3. A k−factorization of a graph G is a set of k−factors H1, . . . H` such that G = H1∪ . . . H` and
E(Hi) ∩ E(Hj) = ∅. So every edge of G is in exactly one of the k−factors H1, . . . , Hk.

Notes

1. A 1−factor almost the same as a perfect matching. The subtle difference is that a perfect
matching is a collection of edges, but a 1−factor is a graph.

2. A 1−factorization is a partition of the edge set of G into 1−factors (perfect matchings).

3. A 2−factor is a collection of cycles.

Note The sizes of the cycles may vary in each factor, and across factors.

A special case is when the size of the 2−factor is n - the number of vertices in G. In this case
a 2−factor is a Hamiltonian cycle.

Theorem 2 In order for a graph to have a `−factorization it must be k−regular where ` divides k.

Proof: Each vertex must appear in every `−factor. Each time it appears in a `−factor it uses j of
its incident edges.
Note that there are k−regular graphs which do not have a `−factorization. i.e. this condition is
necessary, but not sufficient. For example the Peterson graph does not have a 1-factorization.

Theorem 3 Every k−regular bipartite graph has a 1−factorization.

Theorem 4 A graph G has a 2−factorization if and only if G is k−regular for some even k.

Proof: (⇒) Necessity follows from Theorem 2.
(⇐) Let G be a 2k−regular graph, with V (G) = {v1, . . . vn}.
Since every vertex has even degree G has an Eulerian cycle C.
This cycle uses every edge, but may visit vertices more than once.
We now use C to construct a new bipartite graph H as follows:
The parts of H are X = {u1 . . . un} and Y = {v1 . . . vn}.
There is an edge between ui to wj if and only if vi and vj are adjacent in the Eulerian cycle C.

1

Factors P. Danziger

Now H is k−regular since each point appears k times in the cycle C.
Thus H is bipartite and k−regular and so has a 1−factorization by Theorem 3.
Let {F1, . . . , Fr} be the 1−factorization.
Consider F1, if uiwj ∈ F1 this means that vi vj are successive in C.
Further, since F is X−saturating every point of V (G) has a successive point.
Thus the 1−factor F1 of H corresponds to a 2−factor of G.

2 Decompositions

Definition 5 Given two graphs G and H, an H−decomposition of G is a collection of graphs,
{H1, . . . , Hk}, all isomorphic to H, on the vertex set of G with isolated points removed such that
every edge of G appears exactly once in the collection.

i.e. E(Hi) ∩ E(Hj) = ∅ (i 6= j) and
k⋃
i=1

E(Hi) = E(G).

Definition 6 (Kirkman 1847, Steiner 1853) A decomposition of Kn into triangles (C3) is called
a Steiner Triple System STS(n).

Theorem 7 (Kirkman 1847, Riess 1859) A Steiner Triple System STS(n) exists if and only if
n ≡ 1, 3 mod 6.

Definition 8 (Kirkman 1847) A Factorization of Kn into triples (C3) is called a Kirkman Triple
System, KTS(n).

Theorem 9 (Ray-Chaudhuri, Wilson 1972) A Kirkman Triple System KTS(n) exists if and
only if n ≡ 3 mod 6.

Theorem 10 (Alspach, Schellenberg 1991)) For a given k ≥ 3 a factorization of Kn into Ck
exists if and only if n is even.

Note that all the cycles in the decomposition must have the same size.
Öberwolfach problem Given a set of cycle sizes Cm1 , . . . , Cm` for a given n =

∑`
i=1 rimi for some

integers r1, . . . r` find a decomposition of Kn into r1 cycles of size m1, . . ., m` cycles of size r`.

3 Algorithms

3.1 Backtrack

We wish to find a decomposition of a graph G = (V,E) into triples. There are n vertices and m
edges.
Since each triple uses 3 edges There will be m/3 triples in total.
We denote the set of triples by B.
Assume that we have a total order ≤ on V

v1 ≤ v2 ≤ . . . ≤ vn

2

Factors P. Danziger

We may use this ordering to induce an ordering on the k-sets of V lexicographically.
Given k-sets A,B ⊆ V ,

A = {vi1 , vi2 , . . . , vin}, B = {vj1 , vj2 , . . . , vjn}.
Where the elements within the sets are ordered from least to greatest. A ≤ B if and only if ∃p ∈ N
such that ∀q < p, viq = vjq and vip ≤ vjp .

Example 11

1. {0, 1} ≤ {0, 2} ≤ {1, 1} ≤ {1, 2} etc.

2. {0, 1, 2} ≤ {0, 1, 3} ≤ {0, 2, 3} ≤ {0, 5, 6} ≤ {1, 2, 3} etc.

The Algorithm

Input: A graph G = (V,E)

Initialization: B = ∅

Recursion (B = triples so far, E = edges remaining)
Search(B, E)

If |B| = m/3 return (success B)
Find the ≤ first unused pair vi vj ∈ E (6∈ B ∈ B)
For each vk in ≤ order s.t. vi vk & vj vk ∈ E, (vi < vj < vk)

If Search(B ∪ {vi, vj, vk}, E − ({vi vj} ∪ {vi vk} ∪ {vj vk}))
Return (success B ∪ {vi, vj, vk})

If no such vk return Fail

If we only want existence Search exists on success, otherwise this algorithm will enumerate all
instances of a triple system.
Pros
• Will find every possible solution exactly once.

• Easily generalizable.

• If there is no solution will report this.

Cons
very . . .

very . . .

very . . .

very . . .

S L O W
The algorithm may range over all m/3-sets of 3-sets from V .
There are over 1010 STS(19), and those are only the ones that work.

3

Factors P. Danziger

Example 12

Searching for an STS(9):
012
034
056
078
135
146 147
17X 168

236 237 238
245 247 248 245 246 248 245 246
27X 258 257 267 258 25X 267 257

37X 37X 36X 368 36X 367
458

Solution: 012, 034, 056, 078, 135, 147, 168, 238, 246, 257, 367, 458

3.2 Hill Climb - Random Algorithms

3.2.1 Idea

Hill Climbs are good for solving optimization problems where the minimum cost is known.
Given a set Σ of feasible solutions and for each S ∈ Σ we have an associated cost function c : Σ→ R.
We would like to minimize the cost c over all instances of S ∈ Σ ie. Find S ∈ Σ such that
c(S) = minR∈Σ(c(R))
We are also given a set of transformations Ti : Σ→ Σ which are such that c(Ti(S)) ≤ C(S).

Definition 13 Given S ∈ Σ:

• The neighborhood of S N(S) = {R ∈ Σ | R = Ti(S) for some i}

• S is a local minimum if ∀R ∈ N(S), c(S) ≤ c(R)

• S is a global minimum if ∀R ∈ Σ, c(S) ≤ c(R)

The key to finding a good Hill climb is to find a good set of non-decreasing transformations Ti. Hill
climbs need the random element, if the set of choices is too constrained it will get stuck.

3.2.2 Algorithm

Hill()

Sideways = 0

Randomly generate S ∈ Σ
While S is not a global min. & Sideways < Max Sideways

Randomly choose R ∈ N(S)
If c(R) = c(S), Sideways++

Else Sideways = 0

S = R

4

Factors P. Danziger

If c(S) = min, return S
End while

Return Fail

Idea is we start with a random S ∈ Σ. We randomly move to a neighboring point. The new point
will always have a cost less than or equal to the cost of S. Thus cost always either decreases or
stays the same.
Problem is that we can get stuck in a local minimum. To avoid this we abandon the search if too
many sideways moves have been made.
Calling routine then tries a certain number of times before finally giving up.

Main()

While Count < Max Count

If Hill() Return Success!

Thus hill climbs are characterized by two parameters:
Max sideways The maximum number of sideways moves before abandoning this search
Max Count The maximum number of times Hill is called before giving up.

3.2.3 1-Factors

Input is an even order k−regular graph G = (V,E). We will build up partial factors F1, F2, . . . , Fk
edge by edge, initially the partial factors are empty Fi = (V, ∅). As we add edges to the partial
factors we ensure that no edges within a factor meet and that no edge of G is used more than once.
A factor Fi is called live if it contains unsaturated points (so is not yet a 1-factor), note that if Fi
is live it must contain at least 2 unsaturated points. An edge e ∈ E is live if it has not been placed
in any of the factors Fi. We say a vertex x ∈ V is used in a factor Fi if it appears in an edge of Fi.
Σ is the set of possible arrangements of the edges within the partial factors, subject to the conditions
that no edges within a factor meet and that no edge of G is used more than once.
c is the number of edges of G placed into partial factors.
We have the following algorithm for moving within Σ, without decreasing c (T).

A1:

Pick a live factor Fi
Pick x ∈ V st x not used in Fi
Pick y ∈ V st y not used in Fi
Add xy to Fi
If xy is already used in another factor, Fj

Delete xy from Fj
Return 1

Return 0

There is a slight variation one can make:

5

Factors P. Danziger

A2

Pick a factor Fi
Pick x ∈ V st x 6∈ Fi
Pick y ∈ V st xy is live (not used)

Add xy to Fi
If y ∈ Fi (so y appears ewith z say)

Delete yz ∈ Fi.
Return 1

Return 0

It turns out that the best performance is obtained when we randomly choose A1 or A2 at each
iteration:

Count = 0

While Count++ < Max Count

For i from 1 to k set Fi = ∅
Sideways = 0

While there is a live Fi and Sideways++ < Max Sideways

Randomly choose i = 1, 2
Do Ai
If no edge was deleted in Ai Sideways = 0

Note that this algorithm may fail even if G has a 1-factorization, but in practice this is extremely
rare.

3.2.4 Triple Systems

For triple systems Σ = { any partial design } = { any collection of triples such that each pair
appears at most once }.
c(S) = v(v − 1)/6− |B| = m/3− |B|
Hill climbing for triple systems is very effective, so we can effectively set Max Sideways = ∞ and
Max Tries = 0. However if we are searching for a more complex object we may require these
parameters.
E is the set edges to be covered.
By Choose we mean choose a point at random subject to the given conditions.

Hill()

B = ∅
While |B| < m/3

Choose x ∈ V with d(x) > 0
Choose y ∈ V with x y ∈ E
Choose z ∈ V with x z ∈ E
If x z 6∈ E (⇒ ∃ a ∈ V, {x, z, a} ∈ B)

B = B − {x, z, a}
B = B ∪ {x, y, z}

6

Factors P. Danziger

Pros
Very effective for existence.
Very fast. Can find an STS(303) in 1 second on a PC.
Cons
Random algorithm - may fail to find an answer even though there is one.
Cannot do enumeration.
Not easily generalizable - Good Ti are hard to find.
For example there is no known way to generalize this method to find KTS(v) (Factorizations into
triples).

7

