Trig Review P. Danziger

1 Trigonometric Review

1.1 Radians

In this course we use radians to measure angles. The circumference of a circle radius r is $2\pi r$. So in traversing a unit circle we travel a distance 2π . If we traverse half way we travel a distance π .

Radians measure the distance around the unit circle we would travel.

1.1.1 Principal Angles

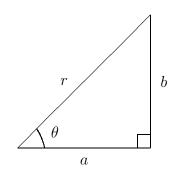
Quadrant I			Quadrant II			
Radians	Degrees		Radians	Degrees		
0	0		$\frac{\pi}{2}$	90		
$\frac{\pi}{6}$	30		$\frac{2\pi}{3}$	120		
$\frac{\pi}{4}$	45		$\frac{3\pi}{4}$	135		
$\frac{\pi}{3}$	60		$\frac{5\pi}{6}$	150		

Quadrant III			Quadrant IV			
Radians	Degrees		Radians	Degrees		
π	180		$\frac{3\pi}{2}$	270		
$\frac{7\pi}{6}$	210		$\frac{5\pi}{3}$	300		
$\frac{5\pi}{4}$	225		$\frac{5\pi}{4}$	315		
$\frac{4\pi}{3}$	240		$\frac{11\pi}{6}$	330		

 $2\pi \sim 360^{o}$

2 Trigonometric Functions

Given a right angle triangle



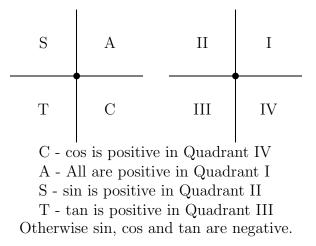
 $\sin \theta = \frac{b}{r} = \text{Opposite over Hypotenuse}$ $\cos \theta = \frac{a}{r} = \text{Adjacent over Hypotenuse}$ $\tan \theta = \frac{b}{a} = \text{Opposite over Hypotenuse}$

Note that $\tan \theta = \frac{\sin \theta}{\cos \theta}$. OHAHOA - Oh Heck Another Hour Of Algebra (sin, cos, tan).

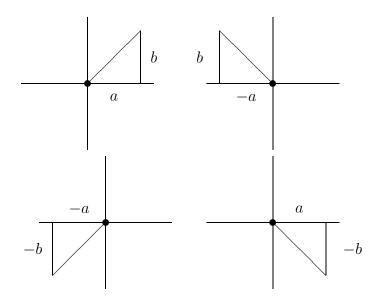
Theorem 1 (Pythagoras' Theorem) For any angle θ

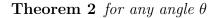
 $\cos^2\theta + \sin^2\theta = 1$

The sign of sin, cos and tan in other quadrants is determined by the CAST rule:



P. Danziger





$$sin(-\theta) = -sin(\theta)$$

$$tan(-\theta) = -tan(\theta)$$

$$cos(-\theta) = cos(\theta)$$

Note that adding 2π to an angle yields effectively the same angle (once more round the circle), so this does not affect the values of trigonometric functions. So for any value of θ :

$$\sin(2\pi + \theta) = \sin(\theta)
 \tan(2\pi + \theta) = \tan(\theta)
 \cos(2\pi + \theta) = \cos(\theta)$$

2.1 Principal Values

You are expected to know the following values for trig functions.

θ	$\sin \theta$	$\cos heta$	an heta	θ	$\sin \theta$	$\cos \theta$	an heta
0	0	1	0	$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{3}}$
$\frac{\pi}{2}$	1	0	—	π	$\sqrt{3}$	1	$\sqrt{3}$
π	0	-1	0	3	2	2	γJ
$\frac{3\pi}{2}$	1	0	—	$\frac{\pi}{4}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	1

As well as the corresponding angles in the other three quadrants.

Trig Review

2.2 Calculating Angle with the Axis

-

Given the coordinate values (a, b) we wish to find the angle made with the x-axis, θ . If $a \neq 0$

