Special Matrices

P. Danziger

1 Triangular Matrices

Definition 1 Given an $n \times n$ matrix A

- A is called upper triangular if all entries below the main diagonal are 0.
- A is called lower triangular if all entries above the main diagonal are 0.
- A is called diagonal if only the diagonal entries are non-zero.

If D is a diagonal matrix with diagonal entries $d_1, d_2, \dots d_n$, we may write it as diag (d_1, d_2, \dots, d_n)

Example 2

1. Upper Triangular

a)
$$\begin{pmatrix} 1 & 3 & 5 & 7 \\ 0 & 9 & 6 & 4 \\ 0 & 0 & 7 & 8 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
 b)
$$\begin{pmatrix} 1 & 3 & 7 & 9 \\ 0 & 0 & 2 & 5 \\ 0 & 0 & 9 & 6 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

2. Lower Triangular

a)
$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 2 & 3 & 0 & 0 \\ 5 & 9 & 2 & 0 \\ 7 & 6 & 4 & 8 \end{pmatrix}$$
 b)
$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 7 & 0 & 0 & 0 \\ 5 & 0 & 0 & 0 \\ 7 & 6 & 4 & 8 \end{pmatrix}$$

3. Diagonal

4. $I_n = diag(1, 1, \dots, 1)$, where there are n 1's.

Notes:

- 1. A matrix in REF is upper triangular.
- 2. The transpose of an upper triangular matrix is lower triangular and visa versa.

- 3. The product of two Upper triangular matricies is upper triangular.
- 4. The product of two Lower triangular matricies is Lower triangular.
- 5. The product of two Diagonal matricies is Diagonal.
- 6. The transpose of a Diagonal matrix is Diagonal.

Theorem 3 A diagonal, upper or lower triangular matrix is invertable if and only if its diagonal entries are all non-zero.

2 Diagonal Matrices

Theorem 4 Given two diagonal matricies $D = diag(d_1, \ldots, d_n)$ and $E = diag(e_1, \ldots, e_n)$:

- 1. $DE = diag(d_1e_1, d_2e_2..., d_ne_n)$
- 2. For any positive integer k,

$$D^k = diag\left(d_1^k, d_2^k \dots, d_n^k\right).$$

3. D is invertable if and only if all the diagonal entries are non-zero and

$$D^{-1} = diag\left(\frac{1}{d_1}, \dots, \frac{1}{d_n}\right).$$

- 4. $D + E = diag(d_1 + e_1, d_2 + e_2 \dots, d_n + e_n)$
- 5. Diagonal matrices are both upper and lower triangular. Further, any matrix which is both upper and lower triangular is diagonal.

3 Symmetric Matrices

Definition 5 An $n \times n$ matrix A is called <u>symmetric</u> if it is equal to its transpose, i. e. $A = A^T$. It is called <u>antisymmetric</u> if it is equal to the <u>negative</u> of its transpose, i. e. $A = -A^T$.

Note that any diagonal matrix is symmetric.

Example 6

1.

$$\left(\begin{array}{ccc}
1 & 2 & 4 \\
2 & 2 & 5 \\
4 & 5 & 3
\end{array}\right)$$

2. A mileage chart shows the distance between cities. Such a chaart is symmetric since the distance between city A and city B is the same as the distance from city B to City A.

Southern Ontario Distances Chart (in KM) 1 KM = 0.6 Miles	Brantford	Collingwood	Ellora	Fort Erie	Goderich	Grand Bend	Hamilton	Kitchener-Waterloo	London	Niagara Falls	Niagara-on-the-Lake	Oakville	Orangeville	Owen Sound	Point Pelee	Port Dover	Port Stanley	Samia	Port Elgin	St. Catharines	St. Thomas	Tobermony	Toronto	Windsor
Brantford	0	234	70	149	155	144	39	39	91	112	130	70	116	186	262	53	119	161	200	108	112	302	95	277
Collingwood	234	0	110	282	175	220	200	140	310	256	262	169	75	58	477	273	336	409	107	240	325	170	145	486
Elora	70	110	0	208	128	149	76	30	136	177	153	94	42	121	303	114	164	239	125	131	151	224	114	317
Fort Erie	149	282	208	0	282	316	95	166	237	32	55	118	193	305	402	117	264	336	300	43	252	408	153	413
Goderich	155	175	128	282	0	49	172	115	91	235	258	201	140	123	279	207	130	116	89	239	126	239	214	301
Grand Bend	144	220	149	316	49	0	186	105	60		296	-		196	-		7.5	67	138	274	96	267	203	218
Hamilton	39	200	76	95	172	186	0	64	126	63	75	36	98	179	298	60	165	198	200	53	146	294	63	319
Kitchener-Waterloo	39	140	30	166	115	105	64	0	91	123	145	88	77	144	263	84	130	161	153	122	125	263	98	284
London	91	310	136	237	91	60	128	91	0	193	216	157	168	214	182	109	39	91	188	145	29	330	175	193
Niagara Falls	112	256	177	32	235	371	63	123	193	0	28	92	161	242	377	109	224	259	274	17	224	357	133	382
Niagara-on-the-Lake	130	262	153	55	258	296	75	145	216	28	0	97	172	284	382	128	243	316	280	23	231	387	132	393
Oakville	70	169	94	118	201	236	36	88	157	92	97	0	79	191	323	109	183	255	208	76	171	284	40	333
Orangeville	116	75	42	193	140	182	98	77	168	161	172	79	0	101	341	161	207	256	151	150	189	295	74	361
Owen Sound	186	58	121	305	123	196	179	144	214	242	284	191	101	0	361	240	274	239	53	263	272	116	203	434
Point Peles	262	477	303	402	279	248	298	263	182	377	382	323	341	361	Ō	301	172	187	342	360	177	535	361	74
Port Dover	53	273	114	117	207	169	60	84	109	109	128	109	161	240	301	0	98	234	242	106	93	341	153	311
Port Stanley	119	336	164	264	130	99	165	130	39	224	243	183	207	274	172	98	0	127	244	222	15	387	220	182
Samia	161	409	239	336	116	67	196	161	91	259	316	255	256	239	187	234	127	D	214	294	115	338	293	108
Port Elgin	200	107	125	300	89	136	200	153	186	274	280	208	151	53	342	242	244	214	0	258	232	122	239	318
St. Catharines	108	240	131	43	239	274	53	122	145	17	23	76	150	263	360	106	222	294	258	0	210	366	111	371
St. Thomas	112	325	151	252	126	96	146	125	100					272		V			232	210	0	376	208	187
Tobermory	302	170	224	408	239	267	294	263	330	357	387	294	295	116	535	341	387	336	122	366	376	0	295	439
Toronto	95	145	114	153	214	203	63	98	175	133	132	40	74	203	361	153	220	293	239	111	208	295	0	371
Windsor	277	486	317	413	301	218	319	284	193	382	393	333	361	434	74	311	182	108	318	371	187	439	371	0

Theorem 7 Given symmetric $n \times n$ matrices A and B then:

- 1. A^T is symmetric.
- 2. A + B and A B are symmetric.
- 3. For any scalar k kA is symmetric.

 A^{T} is symmetric since $(A^{T})^{T} = A$, for any matrix A.

Example 8

1.

$$\begin{pmatrix} 1 & 2 & 4 \\ 2 & 2 & 5 \\ 4 & 5 & 3 \end{pmatrix} + \begin{pmatrix} 0 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3 \end{pmatrix} = \begin{pmatrix} 1+0 & 2+1 & 4+1 \\ 2+1 & 2+1 & 5+1 \\ 4+1 & 5+2 & 3+3 \end{pmatrix} = \begin{pmatrix} 1 & 3 & 5 \\ 3 & 4 & 7 \\ 5 & 7 & 6 \end{pmatrix}$$

2.

$$2\begin{pmatrix} 0 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3 \end{pmatrix} = \begin{pmatrix} 2 \cdot 0 & 2 \cdot 1 & 2 \cdot 1 \\ 2 \cdot 1 & 2 \cdot 2 & 2 \cdot 2 \\ 2 \cdot 1 & 2 \cdot 2 & 2 \cdot 3 \end{pmatrix} = \begin{pmatrix} 0 & 2 & 2 \\ 2 & 4 & 4 \\ 2 & 4 & 6 \end{pmatrix}$$

Theorem 9 If A is an invertable symmetric matrix then:

- 1. A^{-1} is symmetric;
- 2. AA^T and A^TA are also invertable.

Note that if A is symmetric then $AA^T = A^2$, so $(AA^T)^{-1} = A^{-2} = (A^{-1})^2$

Example 10

Let
$$A = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 5 & 3 \\ 1 & 3 & 3 \end{pmatrix}$$

1.

$$A^{-1} = \begin{pmatrix} 6 & -3 & 1 \\ -3 & 2 & -1 \\ 1 & -1 & 1 \end{pmatrix}$$
(Exercise)

Which is also symmetric.

2.

$$AA^{T} = A^{2} = \begin{pmatrix} 6 & 15 & 10 \\ 15 & 38 & 26 \\ 10 & 26 & 19 \end{pmatrix}$$
$$(AA^{T})^{-1} = (A^{-1})^{2} = \begin{pmatrix} 6 & -3 & 1 \\ -3 & 2 & -1 \\ 1 & -1 & 1 \end{pmatrix}^{2} = \begin{pmatrix} 46 & -25 & 10 \\ -25 & 14 & -6 \\ 10 & -6 & 3 \end{pmatrix}$$
$$\begin{pmatrix} 6 & 15 & 10 \\ 15 & 38 & 26 \\ 10 & 26 & 19 \end{pmatrix} \begin{pmatrix} 46 & -25 & 10 \\ -25 & 14 & -6 \\ 10 & -6 & 3 \end{pmatrix} = I$$

Note: Not all symmetric matrices are invertible. For example $\begin{pmatrix} 1 & 2 & 1 \\ 2 & 5 & 3 \\ 1 & 3 & 2 \end{pmatrix}$ is not invertible.

$$\begin{pmatrix} 1 & 2 & 1 \\ 2 & 5 & 3 \\ 1 & 3 & 2 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \begin{array}{c} R_2 \to R_2 - 2R_1 \\ R_3 \to R_3 - R_1 \end{array}$$