Row Space, Column Space and Nullspace P. Danziger

1 Nullspace

Definition 1 Given an $m \times n$ matrix A The Nullspace of A 1s the set of solution to the equation $A\mathbf{x} = \mathbf{0}$.

Notes

- The Nullspace of $A = \ker(A)$.
- When we are asked to give a subspace (such as the nullspace of a matrix) the easiest way to describe the subspace is to give a basis for the space.

Example 2

1. Find the Nullspace of the matrix

$$A = \left(\begin{array}{rrrr} 1 & 0 & 1 & 2 \\ 1 & 1 & 0 & 1 \end{array}\right)$$

$$\begin{pmatrix} 1 & 0 & 1 & 2 & | & 0 \\ 1 & 1 & 0 & 1 & | & 0 \end{pmatrix} \qquad R_2 \to R_2 - R_1$$
$$\begin{pmatrix} 1 & 0 & 1 & 2 & | & 0 \\ 0 & 1 & -1 & -1 & | & 0 \end{pmatrix}$$

Let $s, t \in \mathbb{R}$, set

$$x_3 = s$$
, $x_4 = t$, so $x_2 = s + t$ and $x_1 = -s - 2t$.

We can express the solution as

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = s \begin{pmatrix} -1 \\ 1 \\ 1 \\ 0 \end{pmatrix} + t \begin{pmatrix} -2 \\ 1 \\ 0 \\ 1 \end{pmatrix}$$

So every solution to $A\mathbf{x} = \mathbf{0}$ is a linear combination of (-1, -1, 1, 0) and (-2, -1, 0, 1). Thus the Nullspace of A is span{(-1, 1, 1, 0), (-2, 1, 0, 1)}.

2. Solve the system of equations $A\mathbf{x} = \mathbf{b}$, where A is as above and $\mathbf{b} = (1, 1)$. Row reducing gives

$$\begin{pmatrix} 1 & 0 & 1 & 2 & | & 1 \\ 1 & 1 & 0 & 1 & | & 1 \end{pmatrix} \quad R_2 \to R_2 - R_1$$
$$\begin{pmatrix} 1 & 0 & 1 & 2 & | & 1 \\ 0 & 1 & -1 & -1 & | & 0 \end{pmatrix}$$

Let $s, t \in \mathbb{R}$, set $x_3 = s$, $x_4 = t$, so $x_2 = -s - t$ and $x_1 = 1 - s - 2t$. We can express the solution as

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + s \begin{pmatrix} -1 \\ 1 \\ 1 \\ 0 \end{pmatrix} + t \begin{pmatrix} -2 \\ 1 \\ 0 \\ 1 \end{pmatrix}$$

Note that $\mathbf{x}_0 = (1, 0, 0, 0)$ is a solution to $A\mathbf{x} = \mathbf{b}$ and all solutions have the form $\mathbf{x}_0 + \mathbf{h}$, where $\mathbf{h} \in \text{Nullspace}(A)$.

Theorem 3 If \mathbf{x}_0 is any solution to the linear system $A\mathbf{x} = \mathbf{b}$ and $\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$ is a basis for the nullspace of A, then \mathbf{x} is a solution of $A\mathbf{x} = \mathbf{b}$ if and only if

$$\mathbf{x} = \mathbf{x}_0 + c_1 \mathbf{v}_1 + \ldots + c_k \mathbf{v}_k$$

Definition 4 The dimension of the Nullspace of a matrix A is called the nullity of A.

Example 5

Find nullity(A), where

$$A = \left(\begin{array}{rrrr} 1 & 0 & 1 & 2 \\ 1 & 1 & 0 & 1 \end{array}\right)$$

Since $\{(-1, 1, 1, 0), (-2, 1, 0, 1)\}$ is a basis for the nullspace of A, nullity(A) = 2. Note that row operations do not change the solution set of a system of equations.

Theorem 6 If A and B are row equivalent matrices, Nullspace(A) = Nullspace(B).

2 Row Space and Column Space

Given an $m \times n$ matrix

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

We may consider the m rows of A as vectors in their own right.

$$\mathbf{r}_{1} = (a_{11}, a_{12}, \dots, a_{1n}) \\ \mathbf{r}_{2} = (a_{21}, a_{22}, \dots, a_{2n}) \\ \vdots \\ \mathbf{r}_{m} = (a_{m1}, a_{m2}, \dots, a_{mn})$$

Similarly, we may consider the n columns of A as vectors in their own right.

$$\mathbf{c}_1 = \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{pmatrix} \quad \mathbf{c}_2 = \begin{pmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{pmatrix} \quad \cdots \quad \mathbf{c}_n = \begin{pmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{pmatrix}$$

 $\mathbf{r}_1, \ldots, \mathbf{r}_m$ are called the row vectors of A. $\mathbf{c}_1, \ldots, \mathbf{c}_n$ are called the column vectors of A.

Definition 7 Given an $m \times n$ matrix A

- 1. The Row Space of A is the space spanned by the row vectors of A. $span\{\mathbf{r}_1,\ldots,\mathbf{r}_m\}$.
- 2. The Column Space of A is the space spanned by the column vectors of A. $span\{\mathbf{c}_1,\ldots,\mathbf{c}_n\}$.

Notes

- 1. The row space is a subspace of \mathbb{R}^n and the column space is a subspace of \mathbb{R}^m . So dim(RowSpace(A)) $\leq n$ and dim(ColSpace(A)) $\leq m$.
- 2. When we are asked to give a subspace (such as the row space column space of a matrix) the easiest way to describe the subspace is to give a basis for the space.

We consider the effect of row operations on the row and column space.