
6.1 - 6.4

Properties of Transformations
P. Danziger

1 Transformations from R
n −→ R

m

1.1 General Transformations

A general transformation maps vectors in Rn to vectors in Rm. We write T : Rn −→ R
m to indicate

this.

Example 1

1. Given T : R2 −→ R
2, T (x, y) = (x+ 1, y), find T (0, 1).

T (0, 1) = (1, 1).

2. Given T : R2 −→ R
2, T (x, y) = (|x|, |y|), find T (−1, 2)

T (−1, 2) = (1, 2).

3. Given T : R2 −→ R
3, T (x, y) = (x, y, x+ y), find T (−1, 2).

T (−1, 2) = (−1, 2, 1).

4. Given T : R3 −→ R
2, T (x, y, z) = (x+ z, y + z), find T (1, 2,−1).

T (1, 2,−1) = (0, 1).

Definition 2 Given a transformation T : Rn −→ R
m

1. The domain is all those values x ∈ Rn where T (x) is defined.

dom(T ) = {x ∈ Rn | T (x) is defined }.

2. The range of T is the set of values in y ∈ Rm for which there is an x ∈ Rn such that y = T (x).

i.e. y ∈ Rn for which there exists x ∈ Rm such that y = T (x).

ran(T ) = {y ∈ Rn | there exists x ∈ Rm such that y = T (x)}.

3. The kernal of a transformation T is the set of x ∈ Rn such that T (x) = 0 and is denoted
ker(T ).
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6.1 - 6.4 Properties of Transformations P. Danziger

1.2 Matrix Transformations

We can interpret a matrix as a map. Given an m× n matrix A, for each x ∈ Rn define y ∈ Rm by

y = Ax.

Thus each m× n matrix A is associated with a transformation TA where TA(x) = Ax.
A transformation which comes from an associated matrix is called a matrix transformation
Given a matrix transformation TA, we write

A = [TA] .

Notes:

• If T is a matrix transformation associated with an m× n matrix A then dom(T ) = Rn.

• If T is a matrix transformation then finding the kernal is equivalent to solving the homogeneous
system Ax = 0.

Example 3
1.

Let A =

 1 1 0
0 1 1
1 1 1


(a) Find the image of the vector (1, 2, 1). 1 1 0

0 1 1
1 1 1

 1
2
1

 =

 3
3
4


(b) Find TA(1, 1, 0).  1 1 0

0 1 1
1 1 1

 1
1
0

 =

 2
1
2


So TA(1, 1, 0) = (2, 1, 2)

(c) Find dom(TA).

TA is a matrix transformation, so dom(TA) = R3.

(d) Find ker(TA).

Find x ∈ R3 such that T (x) = 0, i.e. Solve Ax = 0. 1 1 0 0
0 1 1 0
1 1 1 0

 R3 −→ R3 −R1 1 1 0 0
0 1 1 0
0 0 1 0


Only solution is the trivial solution x1 = x2 = x3 = 0. So ker(TA) = {0}.
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(e) Find ran(TA).

We must find all y ∈ R3 so that y = Ax for some x ∈ R3. i.e. Solve Ax = y. 1 1 0 y1

0 1 1 y2

1 1 1 y3

 R3 −→ R3 −R1 1 1 0 y1

0 1 1 y2

0 0 1 y3 − y1


Which has a unique solution for every y ∈ R3. So ran(TA) = R3.

2.

Let A =

 1 1 0
0 1 1
1 2 1


(a) Find ker(TA).  1 1 0 0

0 1 1 0
1 2 1 0

 R3 −→ R3 −R1 1 1 0 0
0 1 1 0
0 1 1 0

 R3 −→ R3 −R2 1 1 0 0
0 1 1 0
0 0 0 0


Solution: Let t ∈ R, x3 = t, y = −t, x = t, or x = t(1,−1, 1), which is a line parallel to
(1,−1, 1) through the origin.

ker(TA) = {x ∈ R3|x = t(1,−1, 1), t ∈ R3}

(b) Find ran(TA).  1 1 0 y1

0 1 1 y2

1 2 1 y3

 R3 −→ R3 −R1 1 1 0 y1

0 1 1 y2

0 1 1 y3 − y1

 R3 −→ R3 −R2 1 1 0 y1

0 1 1 y2

0 0 0 y3 − y1 − y2


Which will have solution only when y1 + y2 − y3 = 0.

ran(TA) = {(x, y, z) ∈ R3 | x+ y − z = 0}

So the range of TA is the plane x+ y − z = 0 and TA maps R3 to this plane.
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(c) Is (1, 1, 0) in the range of TA?

From the above equation the vector (x, y, z) is in the range of TA if and only if x+y−z = 0.
In this case, (x, y, z) = (1, 1, 0), we have 1 + 1 + 0 = 2 6= 0. So (1, 1, 0) 6∈ ran(TA).

If we did not have the work above we would be asking to solve Ax =

 1
1
0

.

 1 1 0 1
0 1 1 1
1 2 1 0

 R3 −→ R3 −R1 1 1 0 1
0 1 1 1
0 1 1 −1

 R3 −→ R3 −R2 1 1 0 1
0 1 1 1
0 0 0 2


Which has no solution, so the original vector (1, 1, 0) is not in the range.

(d) Is (1, 1, 2) in the range of TA?

Once again given the answer to part 2b we can see that 1 + 1 − 2 = 0, so (1, 1, 2) ∈
ran(TA).

If we did not have the answer to part 2b we would proceed as follows. 1 1 0 1
0 1 1 1
1 2 1 2

 R3 −→ R3 −R1 1 1 0 1
0 1 1 1
0 1 1 1

 R3 −→ R3 −R2 1 1 0 1
0 1 1 1
0 0 0 0


Which has solution set (t, 1− t, t), t ∈ R. So (1, 1, 2) ∈ ran(TA).

(e) Describe the transformation TA.

This transformation maps R3 to the plane x+y−z = 0 along lines parallel to t(1,−1, 1).

Theorem 4 Given an m× n matrix A, the range of TA is a subspace of Rm and the kernel of TA
is a subspace of Rn.
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1.3 Linear Transformations

Definition 5 Given a transformation T : Rn −→ R
m, T is called a Linear Transformation if for

every u,v ∈ Rn and every scalar c the following two properties hold:

1. T (u + v) = T (u) + T (v).

2. T (cu) = cT (u).

Theorem 6 A Transformation T is a linear transformation if and only if for every u,v ∈ Rn and
every pair of scalars c and d

T (cu + dv) = cT (u) + dT (v).

Proof:(⇒) If T is a linear transformation then the result follows from properties 1 and 2.

T (cu + dv) = T (cu) + T (cv) = cT (u) + dT (v).

(⇐) Suppose that T satisfies T (cu + dv) = cT (u) + dT (v). for every u,v ∈ Rn and every pair of
scalars c and d In particular when c = d = 1 we get T (u + v) = T (u) + T (v). Which is property 1.
When v = 0 we get property 2, T (cu) = cT (u).

Theorem 7 A transformation is linear if and only if it is a matrix transformation

Proof:(⇐) Suppose T = TA for some matrix A, we will show that T is linear. Let u,v ∈ Rn and c
be a scalar.

Consider TA(cu + dv) = A(cu + dv)
= Acu + Adv
= cTA(u) + dTA(v)

(⇒) We will show this in due course.

Theorem 8 If a transformation is linear then T (0) = 0.

Proof:We must have T (u) = T (u + 0) = T (0) + T (u). Which implies T (0) = 0. �
Notes

• This Theorem can only be used to show that a transformation is not Linear, by showing that
T (0) 6= 0.

• It is possible to have a transformation for which T (0) = 0, but which is not linear. Thus, it
is not possible to use this theorem to show that a transformation is linear, only that it is not
linear.

• To show that a transformation is linear we must show that the rules 1 and 2 hold, or that
T (cu + dv) = cT (u) + dT (v).

Example 9

1. Show that T : R2 −→ R
2, T (x, y) = (x+ 1, y) is not linear.

T (0, 0) = (1, 0) 6= (0, 0). So this transformation is not linear.
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2. Show that T : R2 −→ R
2, T (x, y) = (|x|, |y|) is not linear.

T (0, 0) = (0, 0) so Theorem 8 does not apply.
Now consider T (1, 1) + T (−1, 1) = (1, 1) + (1, 1) = (2, 2).
But T ((1, 1) + (−1, 1)) = T (0, 2) = (0, 2).
So rule 1 does not apply to this transformation.

3. Show that the transformation T : R4 −→ R
2, given by T (x1, x2, x3, x4) = (x1 + x2, x3 + x4) is

linear.

Let u = (u1, u2, u3, u4) and v = (v1, v2, v3, v4) be vectors in R4 and c and d be scalars.
Consider

T (cu + dv)
= T (cu1 + dv1, cu2 + dv2, cu3 + dv3, cu4 + dv4)
= ((cu1 + dv1) + (cu2 + dv2), (cu3 + dv3) + (cu4 + dv4))
= (c(u1 + u2) + d(v1 + v2), c(u3 + u4) + d(v3 + v4))
= c(u1 + u2, u3 + u4) + d(v1 + v2, v3 + v4)
= cT (u1, u2, u3, u4) + dT (v1, v2, v3, v4)
= cT (u) + dT (v)

Theorem 10 Translations are not linear.

Translations are maps of the form T (x) = x + a, for some fixed non zero vector a ∈ Rn.
Consider T (0) = 0 + a = a 6= 0. �

Theorem 11 Linear transformations map subspaces to subspaces.

1.4 Finding the Matrix Associated with a Linear Transformation

Given any linear transformation T : Rn −→ R
m The matrix A such that T = TA is the matrix

whose columns are the vectors

w1 = T (e1), w2 = T (e2), . . . , wn = T (en),

T acting on each of the elementary vectors.

So A =

(
w1 w2 . . . wn

)
=

(
T (e1) T (e2) . . . T (en)

)
.

Given a vector u = (u1, u2, . . . , un) ∈ Rn, we can write

u = u1e1 + u2e2 + . . .+ unen

Now

Au =

w1 w2 . . . wn




u1

u2
...
un

 = u1w1 + u2w2 + . . .+ unwn
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To see that T (u) = Au consider

T (u) = T (u1e1 + u2e2 + . . .+ unen)
= T (u1e1) + T (u2e2) + . . .+ T (unen)
= u1T (e1) + u2T (e2) + . . .+ unT (en)
= u1w1 + u2w2 + . . .+ unwn

= Au

Example 12

Find a matrix for the transformation T : R4 −→ R
2, given by

T (x1, x2, x3, x4) = (x1 + x2, x3 + x4).

T (e1) = T (1, 0, 0, 0) = T (e2) = T (0, 1, 0, 0) =

(
1
0

)
.

T (e3) = T (0, 0, 1, 0) = T (e4) = T (0, 0, 0, 1) =

(
0
1

)
.

So A =

(
1 1 0 0
0 0 1 1

)
For example

T (1, 2, 3, 4) =

(
1 1 0 0
0 0 1 1

)
1
2
3
4

 =

(
3
7

)

1.4.1 Differentiation as a linear Operator

In calculus we have the following Theorem:

Theorem 13 Given any two differentiable functions f and g and a constant c ∈ R,

d(f + g)
dx

=
df
dx

+
dg
dx

d(cf)
dx

= c
(
df
dx

)
Which says that differentiation is a linear operator. For somplicity we restrict ourselves to poly-
nomials, but note that by Taylors Theorem, any differentiable function can be approximated by a
polynomial of sufficiently high degree.
Let

Pn = {Polynomials of degree at most n}
= {a0 + a1x+ a2x

2 + . . .+ anx
n | a0, a1, . . . , an ∈ R}

Now, any polynomial a0+a1x+a2x
2+. . .+anx

n is uniquely represented by the vector (a0, a1, . . . , an) ∈
R
n+1, so there is a correspondence between the set of polynomials of degree at most n, Pn and Rn+1,

by
a0 + a1x+ a2x

2 + . . .+ anx
n ∈ Pn ←→ (a0, a1, . . . , an) ∈ Rn+1.
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Given a polynomial p(x) = a0 + a1x + a2x
2 + . . . + anx

n,
dp
dx

= a1 + 2a2x + . . . + nanx
n−1 ∈ Pn−1.

We can consider the corresponding map D : Rn+1 −→ R
n given by

D(a0, a1, a2 . . . , an) = (a1, 2a2, . . . , nan).

Now to find the matrix associated with this map D we consider the effect of D on the standard
basis vectors ei.

D(e1) = 0
D(ei) = iei−1 i > 1

So the matrix associated with the differentiation operator D, is the (n− 1)× n matrix

[D] =


0 1 0 . . . 0
0 0 2 . . . 0

...
. . .

...
0 0 0 . . . n


2 A Library of Transformations

We want to build up a library of simple transformations, just as we have a library of simple functions.
There are two special transformations:

• The Identity Transformation

TI : Rn −→ R
n, TI(x) = x for every x ∈ Rn.

• The Zero Transformation

T0 : Rn −→ R
n, T0(x) = 0 for every x ∈ Rn.

Any linear (matrix) transformation can be made up by taking compositions of the following basic
types of transformation:

1. Dilations

2. Rotations

3. Reflections

4. Projections

5. Shears

We have already seen that composition of matrix maps is equivalent to matrix multiplication. that
is

TA ◦ TB = TAB or equivalently TA(TB(x)) = TAB(x).
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2.1 Dilations

A dilation makes every vector bigger or smaller by a constant factor k. Thus a dilation of a vector
x ∈ Rn looks like Dk(x) = kx = kIx. Thus the associated matrix [Dk] = kI.

Example 14

1. Find a matrix for the transformation in R2 which shrinks every vector to half its original size.

1

2
I2 =

(
1
2

0
0 1

2

)
2. Find a dilation by a factor of 2 in R3

2I3 =

 2 0 0
0 2 0
0 0 2


2.2 Standard Transformations in R2

We now consider some basic standard transformations in R2.

1. Rotations in R2 Consider a counter-clockwise rotation about the origin in R2.

Rθ(i)

i

θ
sin θ

cos θ
--�

�
�
�
��� Rθ(j)

j

θ cos θ

− sin θ
66

@
@

@
@
@@I

So Rθ(i) = (cos θ, sin θ) and Rθ(j) = (− sin θ, cos θ), and so

[Rθ] =

(
cos θ − sin θ
sin θ cos θ

)
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2. Reflections in R2

(x, y)

(x,−y)

�
�
�
�
��

@
@
@
@
@R

(x, y)(−x, y)

�
�
�
�
��

@
@
@
@

@I

@
@
@
@
@

(x, y)

(−x,−y)

y = x
�
�
�
�
�
�
�
�
�
��

��
��
��
�
��
�*

�
�
�
�
�
�
�
�
�
�
��

Fx(x, y) = (x,−y) Fy(x, y) = (−x, y) F(1,1)(x, y) = (−x,−y)
Reflection about x−axis Reflection about y−axis Reflection about the line y = x

• Reflection about the x−axis.
Fx(x, y) = (x,−y)

Fx(1, 0) = (1, 0) and Fx(0, 1) = (0,−1), so

[Fx(x, y)] =

(
1 0
0 −1

)
• Reflection about the y−axis.

Fy(x, y) = (−x, y)

Fy(1, 0) = (−1, 0) and Fy(0, 1) = (0, 1), so

[Fy(x, y)] =

(
−1 0
0 1

)
• Reflection about the line y = x.

F(1,1)(x, y) = (y, x)

F(1,1)(1, 0) = (0, 1) and F(1,1)(0, 1) = (1, 0), so

[
F(1,1)(x, y)

]
=

(
0 1
1 0

)
Suppose that we wish to find the matrix for the reflection about an arbitrary line parallel to
a vector u, which makes an angle of θ with the x−axis.

Now R−θ(u) maps u parallel to the x−axis and so in this transformed coordinate system
reflection about u is reflection about the x−axis.

Finally we transform back using Rθ.
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Thus Fu = Rθ ◦ Fx ◦R−θ, or R(x, y) = Rθ(Fx(R−θ(x, y)))

But composition of maps is matrix multiplication, so

[Ru] = [Rθ][Fx][R−θ]

=

(
cos θ − sin θ
sin θ cos θ

)(
1 0
0 −1

)(
cos(−θ) − sin(−θ)
sin(−θ) cos(−θ)

)
=

(
cos θ − sin θ
sin θ cos θ

)(
1 0
0 −1

)(
cos θ sin θ
− sin θ cos θ

)
=

(
cos θ − sin θ
sin θ cos θ

)(
cos θ sin θ
sin θ − cos θ

)
=

(
cos2 θ − sin2 θ 2 cos θ sin θ

2 cos θ sin θ −(cos2 θ − sin2 θ)

)
=

(
cos(2θ) sin(2θ)
sin(2θ) − cos(2θ)

)
Where we have used the double angle formulas:

cos (2θ) = cos2 θ − sin2 θ,
sin (2θ) = 2 cos θ sin θ

Example 15 Find the matrix for a reflection about the line tv, where v = (
√

3,−1).

v makes an angle of θ = arctan
(
−1√

3

)
with the x−axis. Further, since the second coordinate

is negative, v lies in the fourth quadrant. So θ = 11π
6

= −π
6
.

Fv =

(
cos(2θ) sin(2θ)
sin(2θ) − cos(2θ)

)
=

(
cos
(
−2π

6

)
sin
(
−2π

6

)
sin
(
−2π

6

)
− cos

(
−2π

6

) )
=

(
cos
(
π
3

)
− sin

(
π
3

)
− sin

(
π
3

)
− cos

(
π
3

) ) = 1
2

(
1 −

√
3

−
√

3 −1

)
3. Projections in R2

(x, y)

(x, 0)

�
�
�
�
�
�
�
�
��

--

(x, y)
(0, y)

�
�
�
�
�
�
�
�
��66

Px(x, y) = (x, 0) Py(x, y) = (0, y)
Projection onto the x−axis Projection onto the y−axis
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• Projection onto the x−axis
Px(x, y) = (x, 0)

Px(1, 0) = (1, 0) and Px(0, 1) = (0, 0), so

[Px(x, y)] =

(
1 0
0 0

)
• Projection onto the y−axis

Py(x, y) = (0, y)

Px(1, 0) = (0, 0) and Px(0, 1) = (0, 1), so

[Px(x, y)] =

(
0 0
0 1

)
Suppose that we wish to find the matrix for the projection onto an arbitrary line parallel to
a vector u, which makes an angle of θ with the x−axis.

As above R−θ(u) maps u parallel to the x−axis and so in this transformed coordinate system
reflection about u is projection onto the x−axis.

Finally we transform back using Rθ.

Thus Pu = Rθ ◦ Px ◦R−θ, or R(x, y) = Rθ(Px(R−θ(x, y)))

But composition of maps is matrix multiplication, so

[Pu] = [Rθ][Px][R−θ]

=

(
cos θ − sin θ
sin θ cos θ

)(
1 0
0 0

)(
cos(−θ) − sin(−θ)
sin(−θ) cos(−θ)

)
=

(
cos θ − sin θ
sin θ cos θ

)(
1 0
0 0

)(
cos θ sin θ
− sin θ cos θ

)
=

(
cos θ − sin θ
sin θ cos θ

)(
cos θ sin θ

0 0

)
=

(
cos2 θ cos θ sin θ

cos θ sin θ sin2 θ

)
Example 16 Find the matrix for a projection onto the line tv, where v = (

√
3,−1).

As above v makes an angle of θ = arctan
(
−1√

3

)
with the x−axis. Further, since the second

coordinate is negative, v lies in the fourth quadrant. So θ = 11π
6

= −π
6
.

Pv =

(
cos2 θ cos θ sin θ

cos θ sin θ sin2 θ

)
=

(
cos2

(
−π

6

)
cos
(
−π

6

)
sin
(
−π

6

)
cos
(
−π

6

)
sin
(
−π

6

)
sin2

(
−π

6

) )

=

 (√
3

2

)2 (√
3

2

) (
−1

2

)(√
3

2

) (
−1

2

) (
−1

2

)2

 = 1
4

(
3 −

√
3

−
√

3 1

)
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4. Shears in R2

A shear has exactly one off diagonal entry non-zero, the diagonal entries are all ones. Thus
shears in R2 have one of two forms, we consider the action on the unit square:

�
�
�
�
�
�
�
�
�

(1, 0)

(k, 1)

�
�
�
�
�
�
�
�
�

--

66

(k, 1)

(0, 1)

��
��
�
��
�
�

��
��
��

�
��

--

66

(k > 0) (k > 0)(
1 k
0 1

) (
1 0
k 1

)
T (1, 0) = (1, 0), T (0, 1) = (k, 1) T (1, 0) = (1, k), T (0, 1) = (0, 1)

Shear in x−direction with factor k Shear in y−direction with factor k

2.3 Standard Transformations in R3

We now consider some basic standard transformations in R3. A general description of transforma-
tions in R3 is complicated, we consider only some standard ones.

1. Rotations in R3

For the sense of a rotation in R3 we use the right hand rule:
If the rotation is in the direction of the fingers of your right hand, then the axis is along your
thumb.

Similarly, if the axis is along the thumb of your right hand, then the rotation will be in the
direction of the fingers on your right hand.

• Rotation about the x−axis in R3

In this case the yz−plane is rotated by theta, and the x−coordinate is unchanged. We
can thus use the rotation in R2 for the yz part.

[Rx,θ] =

 1 0 0
0 cos θ − sin θ
0 sin θ cos θ


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• Rotation about the y−axis in R3

In this case the sense of the rotation is reversed, so it corresponds to a rotation in the
xz−plane of −θ.

[Ry,θ] =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ


• Rotation about the z−axis

This case is equivalent to a rotation in the xy−plane by θ.

[Rz,θ] =

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1


For completeness we give the matrix for a generalized rotation about an axis given by a vector
u = (a, b, c) by an angle θ:

[Rz,θ] =

 a2(1− cos θ) + cos θ ab(1− cos θ)− c sin θ ac(1− cos θ) + b sin θ
ab(1− cos θ) + c sin θ b2(1− cos θ) + cos θ bc(1− cos θ)− a sin θ
ac(1− cos θ)− b sin θ bc(1− cos θ) + a sin θ c2(1− cos θ) + cos θ


Theorem 17 If T1, T2, . . . , Tk is a succession of rotations about axes through the origin in
R

3, then the resulting mapping can be obtained by a single rotation about some suitable axis
through the origin.

2. Reflections in R3

• Reflection about xy−plane

Fxy(x, y, z) = (x, y,−z)

Fxy(1, 0, 0) = (1, 0, 0), Fxy(0, 1, 0) = (0, 1, 0), Fxy(0, 0, 1) = (0, 0,−1).

[Fxy] =

 1 0 0
0 1 0
0 0 −1


• Reflection about xz−plane

Fxz(x, y, z) = (x,−y, z)

Fxz(1, 0, 0) = (1, 0, 0), Fxz(0,−1, 0) = (0, 1, 0), Fxz(0, 0, 1) = (0, 0, 1).

[Fxz] =

 1 0 0
0 −1 0
0 0 1



14
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• Reflection about yz−plane

Fyz(x, y, z) = (−x, y, z)

Fyz(1, 0, 0) = (−1, 0, 0), Fyz(0, 1, 0) = (0, 1, 0), Fyz(0, 0, 1) = (0, 0, 1).

[Fyz] =

 −1 0 0
0 1 0
0 0 1


3. Projections in R3

• Projection onto the xy−plane

Pxy(x, y, z) = (x, y, 0)

Pxy(1, 0, 0) = (1, 0, 0), Pxy(0, 1, 0) = (0, 1, 0), Pxy(0, 0, 1) = (0, 0, 0).

[Pxy] =

 1 0 0
0 1 0
0 0 0


• Projection onto the xz−plane

Pxz(x, y, z) = (x, 0, z)

Pxz(1, 0, 0) = (1, 0, 0), Pxz(0, 1, 0) = (0, 0, 0), Pxz(0, 0, 1) = (0, 0, 1).

[Pxz] =

 1 0 0
0 0 0
0 0 1


• Projection onto the yz−plane

Pyz(x, y, z) = (0, y, z)

Pyz(0, 0, 0) = (1, 0, 0), Pyz(0, 1, 0) = (0, 1, 0), Pyz(0, 0, 1) = (0, 0, 1).

[Pyz] =

 0 0 0
0 1 0
0 0 1


3 1-1 and Onto Transformations

Definition 18 Given a transformation T : Rn → R
m

1. T is called one to one (1-1) or injective if For every u,v ∈ Rn, T (u) = T (v) ⇒ u = v. i.e.
T maps distinct vectors to distinct vectors.

2. T is called onto or surjective if for all y ∈ Rm, there exists x ∈ Rn such that y = T (x).

3. If T is both one to one and onto (injective and surjective) it is called a a bijection.

15
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Notes Given a matrix transformation, TA : Rn −→ R
m:

• TA is one to one if and only if for every b ∈ Rm there is a unique x ∈ Rn such that Ax = b.

A is 1-1 if and only if Ax = b has unique solution for every b ∈ Rm.

• TA is one to one if and only if ker(TA) = {0}.
A is 1-1 if and only if Ax = 0 has only the trivial solution x = 0.

• TA is onto if and only if ran(TA) = Rm.

A is onto if and only if Ax = b is consistent for every b in Rm.

Recall that the rank of a matrix A, r(A), is the number of leading ones in the REF of A.

Theorem 19 Given an m×n matrix A, the corresponding matrix transformation TA : Rn −→ R
m

• TA is 1-1 if and only if
r(A) = number of columns of A.

• TA is onto if and only if
r(A) = number of rows of A.

Where r(A) is the rank of A

Example 20

1. Is TA 1-1 or onto, where A =

 1 2 2
2 0 −1
3 2 1

?

 1 2 2
2 0 −1
3 2 1

 R2 −→ R2 − 2R1

R3 −→ R3 − 3R1 1 2 2
0 −4 −5
0 −4 −5

 R3 −→ R3 −R2 1 2 2
0 −4 −5
0 0 0


Infinite solutions, so TA is not 1-1. ran(TA) 6= R3, so no onto.

Alternately r(A) = 2 < 3. Thus A is neither 1-1 nor onto.

2. Is TA 1-1 or onto, where A =

(
1 2 1
3 4 3

)
?(

1 2 1
3 4 3

)
R2 −→ R2 − 3R1(

1 2 2
0 −4 0

)
So r(A) = 2. Thus TA is not 1-1. TA, is onto.
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3. Is TA 1-1 or onto, where A =

 1 2
0 1
1 1

?

 1 2
0 1
1 1

 R3 −→ R3 −R1 1 2
0 1
0 1

 R3 −→ R3 −R2 1 2
0 1
0 0


So r(A) = 2. Thus TA is 1-1, but not onto.

4 Inverse Transformations

Given a transformation T : Rn −→ R
m, the inverse transformation, denoted T−1, is the transfor-

mation which undoes the action of T . So for any x ∈ dom(T ), T−1(T (x)) = x.
Note that not every transformation has an inverase. If the inverse exists, the transformation is
called invertable.
If T is a matrix transformation, TA, then TA is invertable if and only if A is a square matrix and A
is invertible.
Notes

• If TA is invertible then it is both 1-1 and onto.

• If A is a square matrix and TA is 1-1 then A is both onto and invertible.

• If TA is invertible then (TA)−1 = TA−1 .

Example 21 Find the inverse transformation for dilation by a factor k in R
3. T (x, y, z) =

(kx, ky, kz), for some fixed k ∈ R.

This corresponds to the matrix transformation TA, where

[TA] = A =

 k 0 0
0 k 0
0 0 k

 .

A−1 =

 1
k

0 0
0 1

k
0

0 0 1
k

 .

Which gives the inverse transformation

17
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5 Orthogonal Operators

Recall that a set of vectors {vi | 1 ≤ i ≤ n} is orthogonal if vi · vj = 0 whenever i 6= j and

orthonormal if vi · vj = δij, where δij =

{
0 i 6= j
1 i = j

is the Kronecker delta. Note that [δij] = I. So

an orthonormal set is an orthogonal set of unit vectors.

Definition 22 A linear transformation T : Rn −→ R
m is orthogonal if ||T (x)|| = ||x|| for every

x ∈ Rn.

So orthogonal transformations preserve distances.

Theorem 23 A linear transformation T : Rn −→ R
m is orthogonal (i.e. ||T (x)|| = ||x|| for every

x ∈ Rn) if and only if
T (x) · T (y) = x · y for all x,y ∈ Rn.

Now, since the angle θ between two vectors u and v is given by θ = arccos

(
u · v
||u|| ||v||

)
. If T is an

orthogonal transformation, the angle between the images of u and v, T (u) and T (v) is given by

arccos

(
T (u) · T (v)

||T (u)|| ||T (v)||

)
= arccos

(
u · v
||u|| ||v||

)
= θ

So orthogonal transformations preserve angles.

Definition 24 A square matrix A is called orthogonal if and only if A−1 = AT

We want to be sure that these two definitions are compatible.

Theorem 25 Given a square matrix A the following are equivalent:

1. AAT = I. (A is an orthogonal matrix.)

2. ||Ax|| = ||x|| for all x ∈ Rn. (TA is an orthogonal transformation.)

3. Ax · Ay = x · y.

4. The column vectors of are orthonormal. (The column vectors of A form an orthonormal basis
of Rn.)

Proof:

1⇒ 2 Suppose A is orthogonal, so AAT = I, and consider

||Ax||2 = Ax · Ax = x · ATAx = x · Ix = x · x = ||x||2

2⇒ 3 This is Theorem 23.
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3⇒ 4 Suppose TA is a map with Ax ·Ay = x ·y for all x ∈ Rn. By Theorem 23 this means that TA
preserves distances and angles. In particular an orthonormal set is mapped to an orthonormal
set. Now, the columns of A are given by

A =

(
T (e1) T (e2) . . . T (en)

)
.

{ei | 1 ≤ i ≤ n} are an orthonormal set of vectors, ans thus so are the columns of A.

4⇒ 1 Suppose that A is a matrix whose column vectors, c1, c2, . . . cn, are orthonormal, so ci · cj =

δij, where δij =

{
0 i 6= j
1 i = j

. Now, the rows of AT are the columns of A, so

ATA = [ci · cj] = [δij] = I �

In particular we have the following

Theorem 26 A transformation T : Rn −→ R
n is orthogonal if and only if its corresponding matrix

[T ] is orthogonal, i.e. [T ]−1 = [T ]T

The transformations which preserve distances and angles are rotations and reflections, so orthogonal
transformation are exactly these. In fact in higher dimensions we define rotations to be those
transformations T for which det([T ]) = 1.

Definition 27 A square matrix A represents a rotation if and only if det(A) = 1.

Theorem 28 If A and B are orthogonal matrices, then

1. AB is orthogonal.

2. A−1 is orthogonal.

3. AT is orthogonal.

Proof: Let A and B be orthogonal matrices, so AT = A−1 and AAT = BBT = I.

1 (AB)(AB)T = ABBTAT = AIAT = AAT = I.

2
(
A−1

)−1
=
(
AT
)−1

=
(
A−1

)T
3

(
AT
)−1

=
(
A−1

)−1
= A =

(
AT
)T

Example 29 Show that the matrix A given below is orthogonal.
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A =
1

4

 2 −3
√

3

2
√

3
√

3 −1

0 2 2
√

3



AAT = 1
16

 2 −3
√

3

2
√

3
√

3 −1

0 2 2
√

3

 2 2
√

3 0

−3
√

3 2√
3 −1 2

√
3


= 1

16

 22 + (−3)2 +
(√

3
)2

4
√

3− 3
√

3−
√

3 −6 + 2
(√

3
)2

4
√

3− 3
√

3−
√

3 4
(√

3
)2

+
(√

3
)2

+ 1 2
√

3− 2
√

3

−6 + +2
(√

3
)2

2
√

3− 2
√

3 4 + 4
(√

3
)2


= 1

16

 16 0 0
0 16 0
0 0 16


= I

The column vectors of A are

c1 = (2, 2
√

3, 0) c2 = (−3,
√

3, 2) c3 = (
√

3,−1, 2
√

3)

Note that ci · cj = δij.
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