Homogeneous Equations P. Danziger

Theorem 1 Given a system of m equations in n unknowns, let B be the $m \times (n+1)$ augmented matrix. Recall r is the number of leading ones in the REF of B, also the number of parameters in a solution is $n - r$.

- If $r = n$, there is a unique solution (no parameters in the solution).
- If $r > n$ (so $r = n + 1$) the system is inconsistent (no solution).
- If $r < n$, either the system is inconsistent (no solution) or an $n r$ -parameter solution.

– In this case, the difference is determined only by the values of the constants (the b_i).

1 Homogeneous Systems

Given a system of m equations in n unknowns

$$
a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = b_1 a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n = b_2 \vdots \qquad \vdots \qquad \vdots a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n = b_m
$$

If all of the constant terms are zero, i.e. $b_i = 0$ for $i = 1, \ldots, m$ the corresponding system of equations is called a homogeneous system system of equations.

Example 2

 x_1 + $2x_2$ – $3x_3$ + x_4 = 0 $x_2 + x_3 - 3x_4 = 0$ $x_1 + x_2 + x_3 + x_4 = 0$

A homogeneous system of equations always has the solution

$$
x_1=x_2=\ldots=x_n=0
$$

This is called the Trivial Solution.

Since a homogeneous system always has a solution (the trivial solution), it can never be inconsistent. Thus a homogeneous system of equations always either has a unique solution or an infinite number of solutions.

Theorem 3 If $n > m$ then a homogeneous system of equations has infinitely many solutions.

Example 4

$$
x_1 + x_2 + x_3 = 0
$$

\n
$$
x_1 + 2x_2 + x_3 = 0
$$

\n
$$
x_1 + x_2 + 2x_3 = 0
$$

\n
$$
\begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 2 & 1 & 0 \\ 1 & 1 & 2 & 0 \end{pmatrix}
$$

\n
$$
R_2 \rightarrow R_2 - R_1
$$

\n
$$
\begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}
$$

\n
$$
x_1 + x_2 + x_3 = 0
$$

\n
$$
x_2 + x_3 = 0
$$

\n
$$
x_3 = 0
$$

Write back:

So the trivial solution $(x_1, x_2, x_3) = (0, 0, 0)$ is the only solution.

2.

$$
x_1 + x_2 + x_3 = 0
$$

\n
$$
x_1 + 2x_2 + x_3 = 0
$$

\n
$$
2x_1 + 3x_2 + 2x_3 = 0
$$

\n
$$
\begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 2 & 1 & 0 \\ 2 & 3 & 2 & 0 \end{pmatrix} \xrightarrow{R_2 \rightarrow R_2 - R_1}
$$

\n
$$
\begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{pmatrix} \xrightarrow{R_3 \rightarrow R_3 - R_2}
$$

\n
$$
\begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{R_3 \rightarrow R_3 - R_2}
$$

\n
$$
x_1 + x_2 + x_3 = 0
$$

Write back:

$$
\begin{array}{rcl}\nx_1 & + & x_2 & + & x_3 & = & 0 \\
x_2 & + & x_3 & = & 0 \\
0 & = & 0\n\end{array}
$$

Which has the 1-parameter solution: Let $t \in \mathbb{R}$, $x_3 = t$, $x_2 = -t$, $x_1 = 0$. Or $(x_1, x_2, x_3) = (0, -t, t).$