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Gaussian Elimination
P. Danziger

1 m Equations in n Unknowns

Given n variables x1, x2, . . . , xn and n+ 1 constants a1, a2, . . . , an, b the equation

a1x1 + a2x2 + . . .+ anxn = b

represents an n− 1 dimensional object in n-space, called a hyperplane.
We want to consider the situation where we have m such equations

a11x1 + a12x2 + . . .+ a1nxn = b1

a21x1 + a22x2 + . . .+ a2nxn = b2
...

...
am1x1 + am2x2 + . . .+ amnxn = bm

This is called a system of m (linear) equations in n unknowns (or variables).
We want to find solutions of this system of equations.

Theorem 1 Given a system of m equations in n unknowns:

• If m < n then the number of parameters in the solution will be at least n−m.

(Thus if there is a unique solution we must have m ≥ n.)

• If m > n the system is called overprescribed.

Overprescribed systems either have no solution or they contain reduncancy. redundancy means
that we can find (m− n) equations which can be dropped without affecting the solution.

If a system of equations has no solution it is called inconsistent
If a system of equations has at least one solution it is called consistent

1.1 Coefficient Matrices and Augmented Matrices

The xi actually carry no information, the system is completely described by the aij and bi, i =
1, . . .m, j = 1, . . . , n.
We thus use the matrix of coefficients, wich is an m × n array containing the coefficients of the
equations. 

a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn


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We also have the Augmented Matrix, which includes the bi on the right:
a11 a12 . . . a1n b1

a21 a22 . . . a2n b2
...

...
. . .

...
...

am1 am2 . . . amn bm


The augmented matrix contains all the information necessary to solve the system.

1. Find the matrix of coefficients and the augmented matrix for the following system.

x + 2y − 3z = 1
+ y + z = 1

x + y + z = 0

This system of equations has coefficient matrix: 1 2 −3
0 1 1
1 1 1


and Augmented matrix:  1 2 −3 1

0 1 1 1
1 1 1 0


2. Find the augmented matrix for the following system.

x + − 2z = 1
+ y − z = 0

This system of equations has Augmented matrix:(
1 0 −2 1
0 1 −1 0

)
3. Given the following augmented matrix find the original system of equations. 1 2 −3

0 1 1
1 1 0


The system is

x + 2y = −3
y = 1

x + y = 0
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This is a system of 3 equations in 2 unknowns.
It is inconsistent (no solution), since by the second equation y = 1, the third equation then tells us
that x = −1, but then the first equation states (substituting in x = −1 and y = 1): −1 + 2 = 3,
which is not true.
Note that each ow of the augmented matrix corresponds to one of the original equations.
Each column contains the all the coefficients of a given variable in the system. We say that this
column corresponds to this variable.

Example 2

x + 2y = −3
y = 1

x + y = 0

 1 2 −3
0 1 1
1 1 0


The first row corresponds to x, the second corresponds to y and the third corresponds to the
constants.

2 Elementary Row Operations

There are three basic operations we can preform on equations, these correspond to Row Operations
on the corresponding matrices.

1. We can multiply an equation by a constant ≡ Multiply a row by a constant.

2. Add a multiple of one equation to another ≡ replace a row by itself plus a multiple of another
row.

3. Interchange the order of equations ≡ Interchange two rows.

Notation We generally denote the ith row of the matrix by Ri. Let c be a constant, and 1 ≤ i, j ≤ m
then
Ri → Ri + cRj means replace Row i by row i plus c times row j.
Ri → cRi means replace row i with c times row i.
Ri ↔ Rj means interchange row i with row j.

Note that preforming any of these operations does not change the solution to the original system
of equations.
When using row operations always indicate the operation you have used!

Example 3

1.  1 1 3 3
2 2 3 3
1 1 1 1

 R2 → R2 − 2R1

R3 → R3 −R1
−→

 1 1 3 3
0 0 −3 −3
0 0 −2 −2


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2.  1 1 3 3
2 2 3 3
1 1 1 1

 R1 ↔ R2 −→

 2 2 3 3
1 1 3 3
1 1 1 1


3.  1 1 3 3

2 2 3 3
1 1 1 1

 R2 → 2R2 −→

 2 2 3 3
4 4 6 6
1 1 1 1


Never operate on the same row twice in one step.

3 Row Echelon Form

Definition 4 1. A matrix is in Row Echelon Form (REF) if all of the following hold:

(a) Any rows consisting entirely of 0’s appear at the bottom.

(b) In any non-zero row the first number, from the left, is a one. Called the leading one or
pivot.

(c) In any two successive non-zero rows the leading one on top is to the left of the one on
the bottom.

2. A matrix is in Reduced Row Echelon Form (RREF) if it is in REF (all of the above hold) and
any column containing a leading one is zero in all other entries.

Example 5

1. The following are in REF  1 1 3

0 1 1

0 0 1

  0 1 3 3

0 0 0 1
0 0 0 0


(

1 1 0

0 0 1

)  1 2

0 1
0 0


1 indicates a pivot.

2. The following are NOT in REF 1 1 0
0 1 1
0 1 1

  1 1 3 3
0 0 0 0
0 0 1 1


(

1 1 3
3 0 1

)  1 2
0 0
0 1


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3. The following are in RREF 1 0 0

0 1 0

0 0 1

  0 1 3 0

0 0 0 1
0 0 0 0


(

1 2 0

0 0 1

)  1 0

0 1
0 0


1 indicates a pivot. All of the 0’s in these examples are forced.

4. The following are NOT in RREF 1 0 2

0 1 0

0 0 1

  0 1 3 0

0 0 0 1
0 0 0 1


(

1 2 3

0 0 1

)  1 2

0 1
0 0


4 The Gaussian Algorithm

The following Algorithm reduces an m× n matrix to REF by means of elementary row operations
alone.

1. For Each row i (Ri) from 1 to m

(a) If any row j below row i has non zero entries to the left of the first non zero entry in
row i exchange row i and j (Ri ↔ Rj) [Ensure We are working on the leftmost nonzero
entry.]

(b) Preform Ri → 1
c
Ri where c = the first non-zero entry of row i. [This ensures that row i

starts with a one.]

(c) For each row j (Rj) below row i (Each j > i)

i. Preform Rj → Rj − dRi where
d = the entry in row j which is directly below the pivot in row i. [This ensures that
row j has a 0 below the pivot of row i.]

(d) If any 0 rows have appeared exchange them to the bottom of the matrix.

5 The Gaussian-Jordan Algorithm

The following Algorithm reduces an n×m matrix to RREF by means of elementary row operations
alone.
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1. Preform Gaussian elimination to get the matrix in REF

2. For each non zero row i (Ri) from n to 1 (bottom to top)

(a) For each row j (Rj) above row i (Each j < i)

i. Preform Rj → Rj − bRi where
b = the value in row j directly above the pivot in row i. [This ensures that row j
has a zero above the pivot in row i]

5.1 Gaussian Elimination

To Solve a system of equations we preform the following steps:

1. Translate the system to its augmented matrix A.

2. Use Gaussian elimination to reduce A to REF. Note that the REF form of A has the same
solution set.

3. For each column which does not contain a pivot introduce a parameter and set the corre-
sponding variable equal to that parameter.

4. Substitute the parameters back into the remaining non zero equations, this will produce a
solution for the remaining variables.

The number of pivots in the REF of a matrix A is called the rank of A and is denoted by r or r(A).
Note that the number of parameters in the solution is equal to n− r.

Example 6 Solve the following system of equations.

x1 + 2x2 + x3 = 3
x1 + 3x2 + 2x3 = 5

2x2 + x3 = 6

Row reduce augmented matrix to REF 1 2 1 3
1 3 2 5
0 2 1 6

 R2 → R2 −R1 1 2 1 3
0 1 1 2
0 2 1 6

 R3 → R3 − 2R2 1 2 1 3
0 1 1 2
0 0 1 −2


For Gaussian elimination use back substitution:

x1 + 2x2 + x3 = 3 (1)
x2 + x3 = 2 (2)

x3 = −2 (3)
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From (3) x3 = −2,
From (2) x2 = 2− x3 = 2− (−2) = 4 and
From (1) x1 = 3− 2x2 − x3 = 3− 2(4)− (−2) = −3.

5.2 Gaussian-Jordan

Instead of using back substitution as in Gaussian elimination, we can continue reducing until A is
in RREF.
As before, for each column which does not contain a pivot introduce a parameter and set the
corresponding variable equal to that parameter.
But now we may read off the other variables with no further work.

Example 7 Solve the following system of equations.

x1 + x2 + 3x3 = 3
2x1 + 2x2 + 3x3 = 3
x1 + x2 + x3 = 1

We write out the Augmented matrix and use Gaussian-Jordan to reduce it to RREF. 1 1 3 3
2 2 3 3
1 1 1 1

 R2 → R2 − 2R1

R3 → R3 −R1 1 1 3 3
0 0 −3 −3
0 0 −2 −2

 R2 → −1
3
R2 1 1 3 3

0 0 1 1
0 0 −2 −2

 R3 → R3 + 2R2 1 1 3 3
0 0 1 1
0 0 0 0

 R1 → R1 − 3R2 1 1 0 0
0 0 1 1
0 0 0 0


We let the variable corresponding to the column not containing a pivot (the second column which
corresponds to x2) be the free variable.
Let t ∈ R, set x2 = t, then x3 = 1 (from row 2) and
x1 = −x2 = −t (from row 1).
Or (x1, x2, x3) = (−t, t, 1)

Example 8 Solve the following system of equations.

x1 + 3x2 − 2x3 + 2x5 = 0
2x1 + 6x2 − 5x3 − 2x4 + 4x5 − 3x6 = −1

5x3 + 10x4 + 15x6 = 5
2x1 + 6x2 + 8x4 + 4x5 + 18x6 = 6
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The Augmented Matrix is: 
1 3 −2 0 2 0 0
2 6 −5 −2 4 −3 −1
0 0 5 10 0 15 5
2 6 0 8 4 18 6


First leading 1 is in the 1,1 position, already 1.
Get all 0’s below this leading 1 position.

R2 −→ R2 − 2R1

R4 −→ R4 − 2R1


1 3 −2 0 2 0 0
0 0 −1 −2 0 −3 −1
0 0 5 10 0 15 5
0 0 4 8 0 18 6


Get leading 1 in second row.

R2 −→ −R2


1 3 −2 0 2 0 0
0 0 1 2 0 3 1
0 0 5 10 0 15 5
0 0 4 8 0 18 6


Get all 0’s below second leading 1.

R3 −→ R3 − 5R2

R4 −→ R4 − 4R2


1 3 −2 0 2 0 0
0 0 1 2 0 3 1
0 0 0 0 0 0 0
0 0 0 0 0 6 2


Move row of 0’s to bottom:

R3 ↔ R4


1 3 −2 0 2 0 0
0 0 1 2 0 3 1
0 0 0 0 0 6 2
0 0 0 0 0 0 0


Get next leading 1.

R3 −→
1

6
R3


1 3 −2 0 2 0 0
0 0 1 2 0 3 1
0 0 0 0 0 1 1

3

0 0 0 0 0 0 0


Matrix is now in Row Echelon Form.

Gauss Elimination

We now use back substitution. The Matrix translates to the following system of equations:

x1 + 3x2 − 2x3 + 2x5 = 0
x3 + 2x4 + 3x6 = 1

x6 = 1
3
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For each variable corresponding to a column not containing a leading 1, we assign a free variable.
Let s, t, r ∈ R.
Let x2 = s, x4 = t, x5 = r.
Then the equations imply: x6 = 1

3

x3 = 1− 2x4 − 3x6 = 1− 2t− 1 = −2t So x3 = −2t.
x1 = −3x2 + 2x3 − 2x5 = −3s+ 2(−2t)− 2r. So x1 = −3s− 4t− 2r.
Thus the final solution is:
(x1, x2, x3, x4, x5, x6) = (−3s− 4t− 2r, s,−2t, t, r, 1

3
)

Gauss-Jordan

We continue the algorithm to get the matrix in Reduced Row Echelon Form.
Get 0’s above rightmost leading 1 (in column 6).

R2 −→ R2 − 3R3


1 3 −2 0 2 0 0
0 0 1 2 0 0 0
0 0 0 0 0 1 1

3

0 0 0 0 0 0 0


Get 0’s above next leading 1 (in column 3).

R1 −→ R1 + 2R2


1 3 0 4 2 0 0
0 0 1 2 0 0 0
0 0 0 0 0 1 1

3

0 0 0 0 0 0 0


The Matrix is now in Reduced Row Echelon Form.
The Matrix translates to the following system of equations:

x1 + 3x2 + 4x4 + 2x5 = 0
x3 + 2x4 = 0

x6 = 1
3

For each variable corresponding to a column not containing a leading 1, we assign a free variable.
Let s, t, r ∈ R.
Let x2 = s, x4 = t, x5 = r.
Then the matrix implies: x6 = 1

3

x3 = −2t
x1 = −3x2 − 4x4 − 2x5 = −3s− 4t− 2r.
Thus the final solution is
(x1, x2, x3, x4, x5, x6) = (−3s− 4t− 2r, s,−2t, t, r, 1

3
).
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