Inverting Matrices
P. Danziger

1 Properties of Transpose

Transpose has higher precedence than multiplication and addition, so
AB" = A(B") and A+ B" = A+ (B")

As opposed to the bracketed expressions

(AB)" and (A+ B)"

Example 1
1 21 1 01
LetA<252>andB(1 10).

Find ABT, and (AB)7.

[E s R
O =

Whereas (AB)7T is undefined.

Theorem 2 (Properties of Transpose) Given matrices A and B so that the operations can be
preformed

2 DMatrix Algebra

Theorem 3 (Algebraic Properties of Matrix Multiplication)

1. (k+0)A =kA+ (A (Distributivity of scalar multiplication I)

2. k(A+ B) = kA + kB (Distributivity of scalar multiplication II)



3.2, 3.3 Inverting Matrices P. Danziger

3. A(B+ ()= AB + AC (Distributivity of matrix multiplication)
4. A(BC) = (AB)C (Associativity of matrix multiplication)
5. A+ B = B + A (Commutativity of matrix addition)

6. (A+ B)+C = A+ (B + () (Associativity of matrix addition)
7. k(AB) = A(kB) (Commutativity of Scalar Multiplication)
The matrix 0 is the identity of matrix addition. That is, given a matrix A,
A+0=0+A=A

Further 0A = A0 = 0, where 0 is the appropriately sized 0 matrix.
Note that it is possible to have two non-zero matrices which multiply to 0.

(5 G- 25 ) =00

The matrix [ is the identity of matrix multiplication. That is, given an m x n matrix A,

Example 4

Al,=1,A=A
Theorem 5 If R is in reduced row echelon form then either R = I, or R has a row of zeros.

Theorem 6 (Power Laws) For any square matriz A,

ATAS = AT and (AT)° = A

Example 7

1. )
00 1\" 00 1\
101 | = 101
22 0 22 0

2. Find AS, where

N
|
VRS
—_ =
)
N——

AS — A2A% — A2 (A2)2. Now A? — ( - ) S0

e ()-GO
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3 Inverse of a matrix

Given a square matrix A, the inverse of A, denoted A~!, is defined to be the matrix such that
AAT = ATTA=1T

Note that inverses are only defined for square matrices
Note Not all matrices have inverses.

If A has an inverse, it is called invertible.

If A is not invertible it is called singular.

1. A:(é?) Al:(—52 _12)
o (12)(5 7)=(47)

Example 8

1 2 .
2. A= ( 5 4 ) Has no inverse
1 1 1 3 -1 -1
3. A= 1 2 1 Al = -1 1 0
1 1 2 -1 0 1
1 1 1 3 -1 -1 1 00
Check: 1 21 -1 1 0 =010
1 1 2 -1 0 1 0 01
1 2 1
4. A= 2 1 3 Has no inverse
3 3 4

3.1 Inverses of 2 x 2 Matrices

- (24)

A is invertible if and only if ad — bc # 0 and

1 d —b
ATl =
ad — bc ( —c a )
The quantity ad — be is called the determinant of the matrix and is written det(A), or |A|.
g (12 gt (3 2N\ _ (-1 3
33 S\ 3 1 )7 ~1
L1 3 =2 12\ _ (-3 _
Check: — < 3 3 3 )= "3 _3 =1

Given a 2 X 2 matrix

Example 9
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4 Algebra of Invertibility

Theorem 10 Given an invertible matriz A:

1 (A1)l =4,
2. (AMTt=(AT)" (=A™,
3. (kA)y"t =141,

4. (AT)h= (AT,
Theorem 11 Given two invertible matrices A and B

(AB)™' = B1A",

Proof: Let A and B be invertible matricies and let C'= AB, so C~! = (AB)™%.

Consider C' = AB.
Multiply both sides on the left by A~!:

A'C=A"AB=B.
Multiply both sides on the left by B~
B'AT'C=B"'B=1

So, B~'A~! is the matrix you need to multiply C' by to get the identity.
Thus, by the definition of inverse

Bl'A'=C'=(AB)"L

5 A Method for Inverses

Given a square matrix A and a vector b € R", consider the equation
Ax=Db

This represents a system of equations with coefficient matrix A.
Multiply both sides by A~! on the left, to get

A Ax = A7 'b.
But A™'A = I, and Ix = x, so we have

x = A" 'b.

P. Danziger

Note that we have a unique solution. The assumption that A is invertible is equaivalent to the

assumption that Ax = b has unique solution.

During the course of Gauss-Jordan elimination on the augmented matrix (A|b) we reduce A — I

and b — A~'b, so (A|b) — (I|A~'b).

If we instead augment A with I, row reducing will produce (hopefully) I on the left and A~' on

the right, so (A|I) — (I|A71).
The Method:
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1. Augment A with [
2. Use Gauss-Jordan to obtain (I|A™!) .

3. If I does not appear on the left, A is not invertable.
Otherwise, A~! is given on the right.

Example 12
1. Find A~!, where
1 2 3
A=1 2 5 5
3 5 8
Augment with I and row reduce:
1 2 3/1 00 Ry — Ry — 2R,
2 5 5|0 10 P R 3R
35 8[(0 01 3 3 !
1 2 3 1 00
0 1 —11-2 10 R3—>R3+R2
0 -1 —-1/-3 0 1
1 2 3 1 00
01 —-1}{—-2 10 R3—>—%R3
00 -2|-5 11
1 2 3 1 0 0 Ry — R, — 3R
01 —-1|-2 1 0 Ry — Ry + R
00 1152 —1/2 —1/2 2 2
1 2 0]-13/2 3/2 3/2
01 0 1/2 /2 —1/2 R, — Ry — 2R,
00 1| 5/2 —-1/2 —1/2
1 0 0|-15/2 1/2 5/2
010 1/2 /2 —1/2
001 5/2 —=1/2 —1/2
So
-15 1 5
At =C 1 1 -1
5 -1 -1
To check inverse multiply together:
1 2 3 —-15 1 5
AATL = 2 5 5 % 1 1 -1
3 5 8 5 -1 -1
2 00
= % 020 | =1
0 0 2

P. Danziger
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2. Solve Ax = b in the case where b = (2,2,4)7.

—15 1 5) 2
x = A'b= % 1 1 -1 2
5 -1 -1 4

—18 -9

=11 0 = 0

4 2

3. Solve Ax = b in the case where b = (2,0,2)7.

—15 1 5) 2
5 -1 -1 2

—20 -9

=11 0 |={( o0

8 4

4. Give a solution to Ax = b in the general case where b = (by, by, b3)

-15 1 5 by
x = 1 1 1 -1 by
5 —1 -1 bs
—15b; + by + 5b3
=1 by + by — bg
5by — by — bs

6 Elementary Matrices

Definition 13 An Elementary matrix is a matriz obtained by preforming a single row operation
on the identity matriz.

Example 14
1. 2 00
010 (R1 — 2Ry)
0 0 1
2. 1 00
310 (Ry — Ry + 3R)
0 01
3. 1 00
001 (Rl — R2>
010
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Theorem 15 If E is an elementary matriz obtained from I, by preforming the row operation R
and A is any m X n matriz, then EA is the matriz obtained by preforming the same row operation

R on A.

Example 16
111
A=[21 0
3 9 1
L 20 0 111 2 92 2
010 210]|=]210]~2RonA
00 1 3921 39 1
2
100 111 111
310 210 |=(543 NR?ZRQ+3Rl
00 1 321 321 on
100 111 11 1
3 N
00 1 210 ]|=|(321 1":;22}23
010 321 21 0 n

6.1 Inverses of Elementary Matrices

If E is an elementary matrix then £ is invertible and E~! is an elementary matrix corresponding
to the row operation that undoes the one that generated E. Specifically:

e If £ was generated by an operation of the form R; — cR; then E~! is generated by R; — %Ri.

e If £ was generated by an operation of the form R, — R; + cR; then E~' is generated by
Ri — Rl — CRj.

e If F was generated by an operation of the form R; <> R; then E~! is generated by R; < R;.

Example 17

2 00 5 00

1. E=1010 E'=1010
00 1 (001)
100 1 00

2. E=1310 El'=[ -3 10
001 0 01
1 00

3. E=10 01 E'=E
010
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6.2 Elementary Matricies and Solving Equations

Consider the steps of Gauss Jordan elimination to find the solution to a system of equations Ax = b.
This consists of a series of row operations, each of which is equivalent to multiplying on the left by
an elementary matrix F;.

Ele. row ops.
— — — — B,

Where B is the RREF of A.
So EyEy_1... E3E1 A = B for some appopriately defined elementary matrices Ej ... Ey.

Thus A= E;'Ey' ... B E,'B
Now if B = I (so the RREF of A is I), then

A=E'E;N . ENE!
and A~ = EL.E,._ ... E5E,

Theorem 18 A is invertable if and only if it is the product of elementary matrices.

7 Summing Up Theorem

Theorem 19 (Summing up Theorem Version 1) For any square nxn matriz A, the following
are equivalent statements:

1. A 1s invertible.

2. The RREF of A is the identity, I,,.

co

The equation Ax = b has unique solution (namely x = A™'b).

~

The homogeneous system Ax = 0 has only the trivial solution (x =0)

“

The REF of A has exactly n pivots.

6. A is the product of elementary matrices.



