
3.2, 3.3

Inverting Matrices
P. Danziger

1 Properties of Transpose

Transpose has higher precedence than multiplication and addition, so

ABT = A
(
BT
)

and A+BT = A+
(
BT
)

As opposed to the bracketed expressions

(AB)T and (A+B)T

Example 1

Let A =

(
1 2 1
2 5 2

)
and B =

(
1 0 1
1 1 0

)
.

Find ABT , and (AB)T .

ABT =

(
1 2 1
2 5 2

)(
1 0 1
1 1 0

)T
=

(
1 2 1
2 5 2

) 1 1
0 1
1 0


=

(
2 3
4 7

)
Whereas (AB)T is undefined.

Theorem 2 (Properties of Transpose) Given matrices A and B so that the operations can be
preformed

1. (AT )T = A

2. (A+B)T = AT +BT and (A−B)T = AT −BT

3. (kA)T = kAT

4. (AB)T = BTAT

2 Matrix Algebra

Theorem 3 (Algebraic Properties of Matrix Multiplication)

1. (k + `)A = kA+ `A (Distributivity of scalar multiplication I)

2. k(A+B) = kA+ kB (Distributivity of scalar multiplication II)
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3. A(B + C) = AB + AC (Distributivity of matrix multiplication)

4. A(BC) = (AB)C (Associativity of matrix multiplication)

5. A+B = B + A (Commutativity of matrix addition)

6. (A+B) + C = A+ (B + C) (Associativity of matrix addition)

7. k(AB) = A(kB) (Commutativity of Scalar Multiplication)

The matrix 0 is the identity of matrix addition. That is, given a matrix A,

A+ 0 = 0 + A = A.

Further 0A = A0 = 0, where 0 is the appropriately sized 0 matrix.
Note that it is possible to have two non-zero matrices which multiply to 0.

Example 4 (
1 −1
−1 1

)(
1 1
1 1

)
=

(
1− 1 1− 1
−1 + 1 −1 + 1

)
=

(
0 0
0 0

)
The matrix I is the identity of matrix multiplication. That is, given an m× n matrix A,

AIn = ImA = A

Theorem 5 If R is in reduced row echelon form then either R = I, or R has a row of zeros.

Theorem 6 (Power Laws) For any square matrix A,

ArAs = Ar+s and (Ar)s = Ars

Example 7

1.  0 0 1
1 0 1
2 2 0

4

=

 0 0 1
1 0 1
2 2 0

2 2

2. Find A6, where

A =

(
1 0
1 1

)

A6 = A2A4 = A2 (A2)
2
. Now A2 =

(
1 0
2 1

)
, so

A2
(
A2
)2

=

(
1 0
2 1

)(
1 0
2 1

)2

=

(
1 0
2 1

)(
1 0
3 1

)

=

(
1 0
5 1

)
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3 Inverse of a matrix

Given a square matrix A, the inverse of A, denoted A−1, is defined to be the matrix such that

AA−1 = A−1A = I

Note that inverses are only defined for square matrices
Note Not all matrices have inverses.
If A has an inverse, it is called invertible.
If A is not invertible it is called singular.

Example 8

1. A =

(
1 2
2 5

)
A−1 =

(
5 −2
−2 1

)
Check:

(
1 2
2 5

)(
5 −2
−2 1

)
=

(
1 0
0 1

)

2. A =

(
1 2
2 4

)
Has no inverse

3. A =

 1 1 1
1 2 1
1 1 2

 A−1 =

 3 −1 −1
−1 1 0
−1 0 1


Check:

 1 1 1
1 2 1
1 1 2

 3 −1 −1
−1 1 0
−1 0 1

 =

 1 0 0
0 1 0
0 0 1


4. A =

 1 2 1
2 1 3
3 3 4

 Has no inverse

3.1 Inverses of 2× 2 Matrices

Given a 2× 2 matrix

A =

(
a b
c d

)
A is invertible if and only if ad− bc 6= 0 and

A−1 =
1

ad− bc

(
d −b
−c a

)
The quantity ad− bc is called the determinant of the matrix and is written det(A), or |A|.

Example 9

A =

(
1 2
3 3

)
A−1 = 1

−3

(
3 −2
−3 1

)
=

(
−1 2

3

1 −1
3

)
Check: 1

−3

(
3 −2
−3 1

)(
1 2
3 3

)
= −1

3

(
−3 0
0 −3

)
= I
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4 Algebra of Invertibility

Theorem 10 Given an invertible matrix A:

1. (A−1)−1 = A,

2. (An)−1 = (A−1)n (= A−n),

3. (kA)−1 = 1
k
A−1,

4. (AT )−1 = (A−1)T ,

Theorem 11 Given two invertible matrices A and B

(AB)−1 = B−1A−1.

Proof: Let A and B be invertible matricies and let C = AB, so C−1 = (AB)−1.
Consider C = AB.
Multiply both sides on the left by A−1:

A−1C = A−1AB = B.

Multiply both sides on the left by B−1.

B−1A−1C = B−1B = I.

So, B−1A−1 is the matrix you need to multiply C by to get the identity.
Thus, by the definition of inverse

B−1A−1 = C−1 = (AB)−1.

5 A Method for Inverses

Given a square matrix A and a vector b ∈ Rn, consider the equation

Ax = b

This represents a system of equations with coefficient matrix A.
Multiply both sides by A−1 on the left, to get

A−1Ax = A−1b.

But A−1A = In and Ix = x, so we have

x = A−1b.

Note that we have a unique solution. The assumption that A is invertible is equaivalent to the
assumption that Ax = b has unique solution.
During the course of Gauss-Jordan elimination on the augmented matrix (A|b) we reduce A → I
and b→ A−1b, so (A|b)→ (I|A−1b).
If we instead augment A with I, row reducing will produce (hopefully) I on the left and A−1 on
the right, so (A|I)→ (I|A−1).
The Method:
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1. Augment A with I

2. Use Gauss-Jordan to obtain (I|A−1) .

3. If I does not appear on the left, A is not invertable.

Otherwise, A−1 is given on the right.

Example 12

1. Find A−1, where

A =

 1 2 3
2 5 5
3 5 8


Augment with I and row reduce: 1 2 3 1 0 0

2 5 5 0 1 0
3 5 8 0 0 1

 R2 → R2 − 2R1

R3 → R3 − 3R1 1 2 3 1 0 0
0 1 −1 −2 1 0
0 −1 −1 −3 0 1

 R3 → R3 +R2

 1 2 3 1 0 0
0 1 −1 −2 1 0
0 0 −2 −5 1 1

 R3 → −1
2
R3

 1 2 3 1 0 0
0 1 −1 −2 1 0
0 0 1 5/2 −1/2 −1/2

 R1 → R1 − 3R3

R2 → R2 +R3 1 2 0 −13/2 3/2 3/2
0 1 0 1/2 1/2 −1/2
0 0 1 5/2 −1/2 −1/2

 R1 → R1 − 2R2

 1 0 0 −15/2 1/2 5/2
0 1 0 1/2 1/2 −1/2
0 0 1 5/2 −1/2 −1/2


So

A−1 =
1

2

 −15 1 5
1 1 −1
5 −1 −1


To check inverse multiply together:

AA−1 =

 1 2 3
2 5 5
3 5 8

 1
2

 −15 1 5
1 1 −1
5 −1 −1


= 1

2

 2 0 0
0 2 0
0 0 2

 = I
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2. Solve Ax = b in the case where b = (2, 2, 4)T .

x = A−1b = 1
2

 −15 1 5
1 1 −1
5 −1 −1

 2
2
4


= 1

2

 −18
0
4

 =

 −9
0
2


3. Solve Ax = b in the case where b = (2, 0, 2)T .

x = A−1b = 1
2

 −15 1 5
1 1 −1
5 −1 −1

 2
0
2


= 1

2

 −20
0
8

 =

 −9
0
4


4. Give a solution to Ax = b in the general case where b = (b1, b2, b3)

x = 1
2

 −15 1 5
1 1 −1
5 −1 −1

 b1

b2

b3


= 1

2

 −15b1 + b2 + 5b3

b1 + b2 − b3

5b1 − b2 − b3


6 Elementary Matrices

Definition 13 An Elementary matrix is a matrix obtained by preforming a single row operation
on the identity matrix.

Example 14

1.
 2 0 0

0 1 0
0 0 1

 (R1 → 2R1)

2.
 1 0 0

3 1 0
0 0 1

 (R2 → R2 + 3R1)

3.
 1 0 0

0 0 1
0 1 0

 (R1 ↔ R2)
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Theorem 15 If E is an elementary matrix obtained from Im by preforming the row operation R
and A is any m× n matrix, then EA is the matrix obtained by preforming the same row operation
R on A.

Example 16

A =

 1 1 1
2 1 0
3 2 1


1.

 2 0 0
0 1 0
0 0 1

 1 1 1
2 1 0
3 2 1

 =

 2 2 2
2 1 0
3 2 1

 ∼ 2R2 on A

2.  1 0 0
3 1 0
0 0 1

 1 1 1
2 1 0
3 2 1

 =

 1 1 1
5 4 3
3 2 1

 ∼ R2 → R2 + 3R1

on A

3.
 1 0 0

0 0 1
0 1 0

 1 1 1
2 1 0
3 2 1

 =

 1 1 1
3 2 1
2 1 0

 ∼ R2 ↔ R3

on A

6.1 Inverses of Elementary Matrices

If E is an elementary matrix then E is invertible and E−1 is an elementary matrix corresponding
to the row operation that undoes the one that generated E. Specifically:

• If E was generated by an operation of the form Ri → cRi then E−1 is generated by Ri → 1
c
Ri.

• If E was generated by an operation of the form Ri → Ri + cRj then E−1 is generated by
Ri → Ri − cRj.

• If E was generated by an operation of the form Ri ↔ Rj then E−1 is generated by Ri ↔ Rj.

Example 17

1. E =

 2 0 0
0 1 0
0 0 1

 E−1 =

 1
2

0 0
0 1 0
0 0 1


2. E =

 1 0 0
3 1 0
0 0 1

 E−1 =

 1 0 0
−3 1 0
0 0 1


3. E =

 1 0 0
0 0 1
0 1 0

 E−1 = E
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6.2 Elementary Matricies and Solving Equations

Consider the steps of Gauss Jordan elimination to find the solution to a system of equations Ax = b.
This consists of a series of row operations, each of which is equivalent to multiplying on the left by
an elementary matrix Ei.

A
Ele. row ops.
−−− −→ B,

Where B is the RREF of A.
So EkEk−1 . . . E2E1A = B for some appopriately defined elementary matrices E1 . . . Ek.
Thus A = E−1

1 E−1
2 . . . E−1

k−1E
−1
k B

Now if B = I (so the RREF of A is I), then

A = E−1
1 E−1

2 . . . E−1
k−1E

−1
k

and A−1 = EkEk−1 . . . E2E1

Theorem 18 A is invertable if and only if it is the product of elementary matrices.

7 Summing Up Theorem

Theorem 19 (Summing up Theorem Version 1) For any square n×n matrix A, the following
are equivalent statements:

1. A is invertible.

2. The RREF of A is the identity, In.

3. The equation Ax = b has unique solution (namely x = A−1b).

4. The homogeneous system Ax = 0 has only the trivial solution (x = 0)

5. The REF of A has exactly n pivots.

6. A is the product of elementary matrices.
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