Eigenvalues & Eigenvectors P. Danziger

1 Eigenvalues

Definition 1 Given an $n \times n$ matrix A, a scalar $\lambda \in \mathbb{C}$, and a non zero vector $\mathbf{v} \in \mathbb{R}^n$ we say that λ is an eigenvalue of A, with corresponding eigenvalue \mathbf{v} if

$$A\mathbf{v} = \lambda \mathbf{v}$$

Notes

- Eigenvalues and eigenvectors are only defined for square matrices.
- Even if A only has real entries we allow for the possibility that λ and \mathbf{v} are complex.
- Surprisingly, a given square $n \times n$ matrix A, admits only a few eigenvalues (at most n), but infinitely many eignevectors.

Given A, we want to find possible values of λ and \mathbf{v} .

Example 2

1.

$$\begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \end{pmatrix} = 2 \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

So 2 is an eigenvalue of $\begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}$ with corresponding eigenvector $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$.

2. Is $\mathbf{u} = (1, 0, 1)$ an eigenvector for

$$A = \left(\begin{array}{rrr} 2 & 1 & -1 \\ 0 & -1 & 2 \\ 0 & 1 & 1 \end{array}\right)?$$

$$A\mathbf{u} = \begin{pmatrix} 2 & 1 & -1 \\ 0 & -1 & 2 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$

 $(1,0,1) = \lambda(1,2,1)$ has no solution for λ , so (1,0,1) is not an eigenvector of A.

2 Eigenspaces

Theorem 3 If \mathbf{v} is an eigenvector, corresponding to the eigenvalue λ_0 then \mathbf{cu} is also an eigenvector corresponding to the eigenvalue λ_0 .

If \mathbf{v}_1 and \mathbf{v}_2 are an eigenvectors, both corresponding to the eigenvalue λ_0 , then $\mathbf{v}_1 + \mathbf{v}_2$ is also an eigenvector corresponding to the eigenvalue λ_0 .

Proof:

$$A(c\mathbf{v}) = cA\mathbf{v} = c\lambda_0\mathbf{v} = \lambda_0(c\mathbf{v})$$
$$A(\mathbf{v}_1 + \mathbf{v}_2) = A\mathbf{v}_1 + A\mathbf{v}_2 = \lambda_0\mathbf{v}_1 + \lambda_0\mathbf{v}_2 = \lambda_0(\mathbf{v}_1 + \mathbf{v}_2)$$

Corollary 4 The set of vectors corresponding to an eigenvalue λ_0 of an $n \times n$ matrix is a subspace of \mathbb{R}^n .

Thus when we are asked to find the eigenvectors corresponding to a given eigenvalue we are being asked to find a subspace of \mathbb{R}^n . Generally, we describe such a space by giving a basis for it.

Definition 5 Given an $n \times n$ square matrix A, with an eigenvalue λ_0 , the set of eigenvectors corresponding to λ_0 is called the Eigenspace corresponding to λ .

$$E_{\lambda_0} = \{ \mathbf{v} \in \mathbb{R}^n \mid A\mathbf{v} = \lambda_0 \mathbf{v} \}$$

The dimension of the eigenspace corresponding to λ , $dim(E_{\lambda_0})$, is called the Geometric Multiplicity of the Eigenvalue λ_0

3 Characteristic Polynomials

Given square matrix A we wish to find possible eigenvalues of A.

$$A\mathbf{v} = \lambda \mathbf{v}$$

$$\Rightarrow \mathbf{0} = \lambda \mathbf{v} - A\mathbf{v}$$

$$\Rightarrow \mathbf{0} = \lambda I \mathbf{v} - A \mathbf{v}$$

$$\Rightarrow \mathbf{0} = (\lambda I - A) \mathbf{v}$$

This homogeneous system will have non trivial solutions if and only if $det(\lambda I - A) = 0$.

Example 6

Find all eigenvalues of

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$
$$\det(\lambda I - A) = \det\left(\lambda \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}\right)$$
$$= \begin{vmatrix} \lambda - 1 & -1 \\ -1 & \lambda - 1 \end{vmatrix}$$
$$= (\lambda - 1)^2 - 1$$
$$= \lambda^2 - 2\lambda$$
$$= \lambda(\lambda - 2)$$

So $det(\lambda I - A) = 0$ if and only if $\lambda = 0$ or 2.

P. Danziger

Definition 7 Given an $n \times n$ square matrix A, $det(\lambda I - A)$ is a polynomial in λ of degree n. This polynomial is called the characteristic polynomial of A, denoted $p_A(\lambda)$. The equation $p_A(\lambda) = 0$ is called the characteristic equation of A.

Example 8

Find the characteristic polynomial and the characteristic equation of the matrix

$$A = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 2 & -1 \\ 0 & 0 & 1 \end{pmatrix}$$
$$p_A(\lambda) = \det(\lambda I - A)$$
$$= \begin{vmatrix} \lambda - 1 & -2 & -1 \\ 0 & \lambda - 2 & 1 \\ 0 & 0 & \lambda - 1 \\ = (\lambda - 1)(\lambda - 2)(\lambda - 1) \\ = (\lambda - 1)^2(\lambda - 2)$$

If A is an $n \times n$ matrix, $p_A(\lambda)$ will be a degree n polynomial. By the Fundamental Theorem of Algebra, a degree n polynomial has n roots over the complex numbers. Note that some of these roots may be equal.

Given an $n \times n$ square matrix A, with distinct eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_k$, then

$$p_A(\lambda) = (\lambda - \lambda_1)^{r_1} (\lambda - \lambda_2)^{r_2} \dots (\lambda - \lambda_k)^{r_k}$$

for some positive integers r_1, r_2, \ldots, r_k .

Definition 9 For a given i the positive integer r_i is called the algebraic multiplicity of the eigenvalue λ_i .

Theorem 10 For a given square matrix the geometric multiplicity of any eigenvalue is always less than or equal to the algebraic multiplicity.

Example 11

Find the distinct eigenvalues of A above and give the algebraic multiplicity in each case.

$$p_A(\lambda) = (\lambda - 1)^2(\lambda - 2)$$

So the distinct eigenvalues of A are $\lambda = 1$ and $\lambda = 2$. The algebraic multiplicity of $\lambda = 1$ is 2. The algebraic multiplicity of $\lambda = 2$ is 1.

4 Finding Egenvalues & Eigenspaces

Note if we are asked to find eigenvectors of a matrix A, we are actually being asked to find eigenspaces.

Given an $n \times n$ matrix A we may find the Eigenvalues and Eigenspaces of A as follows:

1. Find the characteristic polynomial

$$p_A(\lambda) = |\lambda I - A|.$$

2. Find the roots of $p_A(\lambda) = 0, \lambda_1, \ldots, \lambda_k, n$ roots with possible repetition.

$$p_A(\lambda) = (\lambda - \lambda_1)^{r_1} (\lambda - \lambda_2)^{r_2} \dots (\lambda - \lambda_k)^{r_k}$$

3. For each distinct eigenvalue λ_i in turn solve the homogeneous system

$$(\lambda_i I - A)\mathbf{x} = \mathbf{0}$$

The solution set is E_{λ_i} .

Example 12

1. Find all eigenvalues and eigenvectors of

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$
$$p_A(\lambda) = |\lambda I - A| = \begin{vmatrix} \lambda - 1 & -1 \\ -1 & \lambda - 1 \end{vmatrix} = \lambda(\lambda - 2)$$

Solutions are $\lambda = 0$ or 2.

 $\underline{\lambda = 0}$ Solving $-A\mathbf{x} = \mathbf{0}$.

$$\begin{pmatrix} -1 & -1 & | & 0 \\ -1 & -1 & | & 0 \end{pmatrix} \quad R_2 \to R_2 - R_1 \qquad \begin{pmatrix} -1 & -1 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix}$$

Let $t \in \mathbb{R}$, $x_2 = t$, $x_1 = -t$, so

$$E_0 = \{ t(-1,1) \mid t \in \mathbb{R} \}.$$

 $\underline{\lambda = 2}$ Solving $(2I - A)\mathbf{x} = \mathbf{0}$.

$$\left(\begin{array}{cc|c} 1 & -1 & 0 \\ -1 & 1 & 0 \end{array}\right) \quad R_2 \to R_2 + R_1 \qquad \left(\begin{array}{cc|c} 1 & -1 & 0 \\ 0 & 0 & 0 \end{array}\right)$$

Let $t \in \mathbb{R}, x_2 = t, x_1 = t$, so

$$E_2 = \{t(1,1) \mid t \in \mathbb{R}\}.$$

In both cases Algebraic Multiplicity = Geometric Multiplicity = 1

2. Find all eigenvalues and eigenvectors of

$$A = \left(\begin{array}{rrrr} 1 & 2 & 1 \\ 0 & 2 & -1 \\ 0 & 0 & 1 \end{array}\right)$$

We proved earlier that

$$p_A(\lambda) = (\lambda - 1)^2 (\lambda - 2)$$

So eigenvalues are $\lambda = 1$ and $\lambda = 2$.

 $\lambda = 1$ has algebraic multiplicity 2, while $\lambda = 2$ has algebraic multiplicity 1. $\underline{\lambda = 1}$ Solving $(I - A)\mathbf{x} = \mathbf{0}$.

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & -2 & -1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 1 & 0 \\ 0 & 2 & -1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Let $t \in \mathbb{R}$, set $x_1 = t$ and $x_3 = 0$, $x_2 = 0$.

$$E_1 = \{ t(1,0,0) \mid t \in \mathbb{R} \}$$

geometric multiplicity = $1 \neq$ algebraic multiplicity. $\underline{\lambda = 2}$ Solving $(2I - A)\mathbf{x} = \mathbf{0}$.

$$\begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \end{pmatrix} - \begin{pmatrix} 1 & 2 & 1 & 0 \\ 0 & 2 & -1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & -2 & -1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$R_3 \to R_3 - R2$$

Let $t \in \mathbb{R}$, set $x_2 = t$ and $x_3 = 0$, $x_1 = 2t$.

$$E_2 = \{ t(2, 1, 0) \mid t \in \mathbb{R} \}$$

Theorem 13 If A is a square triangular matrix, then the eigenvalues of A are the diagonal entries of A

Theorem 14 A square matrix A is invertible if and only if $\lambda = 0$ is **not** an eigenvalue of A.

Theorem 15 Given a square matrix A, with an eigenvalue λ_0 and corresponding eigenvector \mathbf{v} , then for any positive integer k, λ_0^k is an eigenvalue of A^k and $A^k \mathbf{v} = \lambda_0^k \mathbf{v}$.

Theorem 16 If $\lambda_1, \ldots, \lambda_k$ are distinct eigenvalues of a matrix, and $\mathbf{v}_1, \ldots, \mathbf{v}_k$ are corresponding eigenvectors respectively, then the are linearly independent. *i.e.* Eigenvectors corresponding to distinct eigenvalues are linearly independent.

Corollary 17 If A is an $n \times n$ matrix, A has n linearly independent eigenvectors if and only if the algebraic multiplicity = geometric multiplicity for each distinct eigenvalue.