Diagonalization P. Danziger

1 Change of Basis

Given a basis of \mathbb{R}^n , $B = {\mathbf{v}_1, \ldots, \mathbf{v}_n}$, we have seen that the matrix whose columns consist of these vectors can be thought of as a change of basis matrix.

$$A_B = \begin{pmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \dots & \mathbf{v}_n \end{pmatrix}$$

Given a vector $\mathbf{u} \in \mathbb{R}^n$, we write \mathbf{u}_B , to represent the components of \mathbf{u} with respect to the basis B. We write S for the standard basis, so \mathbf{u}_S are the components of \mathbf{u} with respect to the standard basis.

Given a vector $\mathbf{u} \in \mathbb{R}^n$, the components of \mathbf{u} with respect to the basis B by finding the solutions to $A_B \mathbf{u}_B = \mathbf{u}_S$. Since B is a basis, A_B is invertible, and we can find \mathbf{u}_B by

$$\mathbf{u}_B = A_B^{-1} \mathbf{u}_S.$$

[Note in the books rather confusing notation A_B would be called $A_{B\to S}$ and A_B^{-1} is $A_{S\to B}$.]

 A_B can be thought of as a passive transformation, instead of thinking of the transformation T_{A_B} associated with A_B as actively moving the space, we think of it as passively moving the coordinates.

Now, note that if an $n \times n$ matrix P is invertible then the columns of P form a basis for \mathbb{R}^n . So every invertible matrix is a change of basis matrix. P^{-1} can be thought of as the matrix which transforms to the coordinate system consisting of the columns of P. P then transforms such a coordinate system back to the original coordinate system.

Let *B* be the column vectors of *P*. Given a vector $\mathbf{u} \in \mathbb{R}^n$, we can find \mathbf{u}_B by solving the system of equations $P\mathbf{u}_B = \mathbf{u}_S$. We can solve this equation using the inverse $\mathbf{u}_B = P^{-1}\mathbf{u}_S$. Thus the components of \mathbf{u} with respect to the basis given by the column vectors of *P* are

$$\mathbf{u}_B = P^{-1}\mathbf{u}_S$$

Example 1

1. Find the components of $\mathbf{u} = (2, 1)$ with respect to the basis $B = \{(1, 1), (1, 2)\}$.

Consider
$$P = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}, P^{-1} \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix}$$
$$\begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ -1 \end{pmatrix}$$

So $\mathbf{u}_B = (3, -1)_B$ are the components of the vector \mathbf{u} with respect to the basis $\{(1, 1), (1, 2)\}$.

2. Given that a vector has components $(3, -1)_B$ with respect to the basis $B = \{(1, 1), (1, 2)\}$, find the components of **u** with respect to the standard basis.

$$\left(\begin{array}{rrr}1 & 1\\1 & 2\end{array}\right)\left(\begin{array}{r}3\\-1\end{array}\right) = \left(\begin{array}{r}2\\1\end{array}\right)$$

So $(3, -1)_P$ is the vector (2, 1).

2 Similarity

Definition 2 Two $n \times n$ matrices, A and B, are similar if there exists an invertible matrix P such that

$$B = P^{-1}AP.$$

Notes

- If A is similar to B, so $B = P^{-1}AP$, then $PBP^{-1} = A$, and so B is similar to A.
- If A is similar to B, so $B = P^{-1}AP$, then PB = AP.

If A and B are similar matrices, so $B = P^{-1}AP$, then B can be thought of as preforming the same transformation as A, but on vectors given with respect to the basis given by the columns of P^{-1} . Let C be the basis formed by the columns of P^{-1} and for any given $\mathbf{u} \in \mathbb{R}^n$ let $\mathbf{v} = T_A(\mathbf{u})$. Now

$$T_B(\mathbf{u}) = B\mathbf{u} = P^{-1}AP\mathbf{u} = P^{-1}A\mathbf{u}_C = P^{-1}(T_A(\mathbf{u}))_C = P^{-1}\mathbf{v}_C = \mathbf{v}$$

Example 3

Find a matrix similar to $A = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$.

$$P = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}, \quad P^{-1} = \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix}$$

So
$$B = P^{-1}AP = \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$$

$$= \begin{pmatrix} 2 & -1 \\ -1 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 2 & 3 \end{pmatrix}$$

$$= \begin{pmatrix} -2 & -5 \\ 2 & 4 \end{pmatrix}$$

So with respect to the basis $\{(2, -1), (-1, 1)\}, A$ looks like $\begin{pmatrix} -2 & -5 \\ 2 & 4 \end{pmatrix}$

Diagonalization

Theorem 4 If A and B are similar matrices, then they have the same characteristic polynomial, and hence the same eigenvalues.

Proof:Let A and B be similar matrices, so $B = P^{-1}AP$ for some invertible matrix P.

$$\begin{aligned} |\lambda I - B| &= |\lambda I - P^{-1}AP| \\ &= |P^{-1}P(\lambda I) - P^{-1}AP| \quad (P^{-1}P = I) \\ &= |P^{-1}(\lambda I)P - P^{-1}AP| \quad (PI = IP) \\ &= |P^{-1}(\lambda I - A)P| \qquad (Distribution) \\ &= |P^{-1}||\lambda I - A||P| \qquad (|XY| = |X||Y|) \\ &= |\lambda I - A| \qquad (|P^{-1}||P| = 1)\Box \end{aligned}$$

3 Diagonalization

Definition 5 A matrix is said to be diagonalizable if it is similar to a diagonal matrix.

Consider an $n \times n$ matrix A with n linearly independent eigenvectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$, which thus form a basis B. Recall that the matrix associated with a transformation has columns given by the images of the basis vectors. With respect to this basis, $(T_A(\mathbf{v}_i))_B = \lambda_i (\mathbf{v}_i)_B = \lambda_i \mathbf{e}_i$. If D is the matrix of A with respect to this basis D is diagonal.

Let P be the matrix whose columns are the linearly independent eigenvectors of A, then A in this coordinate system will be D, where $A = PDP^{-1}$, or more usefully $D = P^{-1}AP$.

Theorem 6 An $n \times n$ matrix A is diagonalizable if and only if it has n linearly independent eigenvectors, $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ corresponding to eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$ respectively (with possible repitition). In this case A is similar to the matrix $D = diag(\lambda_1, \lambda_2, \ldots, \lambda_n)$.

 $D = P^{-1}AP$, where P is the matrix whose columns are the eigenvectors of A. i.e. $P = \begin{pmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \dots & \mathbf{v}_n \end{pmatrix}$

Note not all matrices have n linearly independent eigenvectors.

Theorem 7 Given an $n \times n$ matrix A, the following statements are equivalent:

- A is diagonalizable.
- A has n linearly independent Eigenvectors.
- The algebraic multiplicity equals the geometric multiplicity for each eigenvalue of A.

Example 8

1. Diagonalize $A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$

Eigenvalues $\lambda = 0, 2$, with corresponding eigenvectors (1, -1) and (1, 1).

$$P = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}, \quad P^{-1} = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$

Diagonalization

P. Danziger

$$D = \operatorname{diag}(0, 2) = \begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix}$$
$$P^{-1}AP = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$$
$$= \frac{1}{2} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 0 & 2 \\ 0 & 2 \end{pmatrix}$$
$$= \begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix}$$

2. Diagonalize $A = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 2 & -1 \\ 0 & 0 & 1 \end{pmatrix}$

Eigenvalues $\lambda = 1$ and $\lambda = 2$.

But Algebraic multiplicity of $\lambda = 1$ is 2, whereas the geometric multiplicity is 1. So A is **not** diagonalizable.

4 Applications

4.1 Powers of Matrices

Theorem 9 If $D = P^{-1}AP$, then $A^k = PD^kP^{-1}$

Proof: $D = P^{-1}AP$, so

$$D^{k} = \underbrace{(P^{-1}AP)(P^{-1}AP)\dots(P^{-1}AP)}_{k}$$
$$= \underbrace{P^{-1}A(PP^{-1})A(PP^{-1})A\dots A(PP^{-1})AP}_{k}$$
$$= \underbrace{P^{-1}AAA\dots AAP}_{k}$$
$$= \underbrace{P^{-1}A^{k}P}^{k}$$

Example 10

1. Find
$$A^{10}$$
, where $A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$

$$P = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}, P^{-1} = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$

$$D = \operatorname{diag}(0, 2) = \begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix}$$

Diagonalization

$$D^{10} = \begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix}^{10} = \begin{pmatrix} 0 & 0 \\ 0 & 2^{10} \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 1024 \end{pmatrix}$$
$$PD^{10}P^{-1} = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1024 \end{pmatrix}^{\frac{1}{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 512 & 512 \end{pmatrix}$$
$$= \begin{pmatrix} 512 & 512 \\ 512 & 512 \end{pmatrix}$$

So $A^{10} = \begin{pmatrix} 512 & 512 \\ 512 & 512 \end{pmatrix}$

4.2 Application to Differential Equations

Suppose we have n functions of some variable $t, x_1(t), x_2(t), \ldots x_n(t)$. We may represent them with the vector

$$\mathbf{x}(t) = \begin{pmatrix} x_1(t) \\ x_2(t) \\ \vdots \\ x_n(t) \end{pmatrix}$$

 $\mathbf{x}(t)$ is called a vector function.

We wish to solve a system of differential equations of the form

$$\begin{aligned} x_1'(t) &= a_{11}x_1(t) + a_{12}x_2(t) + \ldots + a_{1n}x_n(t) \\ x_2'(t) &= a_{21}x_1(t) + a_{22}x_2(t) + \ldots + a_{2n}x_n(t) \\ &\vdots \\ x_n'(t) &= a_{n1}x_1(t) + a_{n2}x_2(t) + \ldots + a_{nn}x_n(t) \end{aligned}$$

Where x'_i indicates the derivative of the function $x_i(t)$. We can represent this in matrix notation as $\mathbf{x}'(t) = A\mathbf{x}(t)$.

Given such a system and a set of initial conditions we would like to find the functions $x_i(t)$. Recall for an arbitrary function x(t),

$$x'(t) = \lambda x(t) \Rightarrow x(t) = Ce^{\lambda t},$$

where C is a constant of integration.

Example 11

Solve the system

$$\begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix} = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 9 \end{pmatrix} \begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix}$$

Where x(0) = 1, y(0) = 3, $z(1) = 2e^9$.

Diagonalization

P. Danziger

 So

$$x'(t) = 3x(t), y'(t) = 2y(t), z'(t) = 9z(t),$$

Thus

$$x(t) = C_1 e^{3t}, \ y(t) = C_2 e^{2t}, \ z(t) = C_3 e^{9t},$$

Substituting in the initial conditions gives

 $C_1 = 1, C_2 = 3, C_3 = 2.$

Now suppose that A is diagonalizable, so there exists invertable P and diagonal D such that $D = P^{-1}AP$. Suppose $\mathbf{x}(t)$ satisfies the linear system of differential equations

$$\mathbf{x}'(t) = A\mathbf{x} (*)$$

Define $\mathbf{y}(t) = P^{-1}\mathbf{x}(t)$.

Now
$$\mathbf{x}'(t) = A\mathbf{x}$$
 (*).
So, premultiplying by P^{-1} , $P^{-1}\mathbf{x}'(t) = P^{-1}APP^{-1}\mathbf{x}$. $(PP^{-1} = I)$
 $\Rightarrow \mathbf{y}'(t) = D\mathbf{y}(t)$.

Thus to solve (*), we first solve

$$\mathbf{y}'(t) = D\mathbf{y}(t)$$

to find $\mathbf{y}(t)$. Then

$$\mathbf{x}'(t) = C\mathbf{y}'(t).$$

Example 12

Solve

$$\left(\begin{array}{c} x_1'(t) \\ x_2'(t) \end{array}\right) = \left(\begin{array}{c} 1 & 1 \\ 1 & 1 \end{array}\right) \left(\begin{array}{c} x_1(t) \\ x_2(t) \end{array}\right)$$

Where $x_1(0) = 0, x_2(0) = 1$. We know $A = P^{-1}DP$, where

$$P = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}, \text{ and } D = \operatorname{diag}(0, 2) = \begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix}$$

Consider

$$\left(\begin{array}{c}y_1'(t)\\y_2'(t)\end{array}\right) = \left(\begin{array}{cc}0&0\\0&2\end{array}\right) \left(\begin{array}{c}y_1(t)\\y_2(t)\end{array}\right)$$

So

$$y_1'(t) = 0 \Rightarrow y_1(t) = C_1$$

$$y_2'(t) = 2y(t) \Rightarrow y_2(t) = C_2 e^{2t}$$

Now,

$$\mathbf{x}(t) = P\mathbf{y}(t)$$

$$= \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} C_1 \\ C_2 e^{2t} \end{pmatrix}$$

$$= \begin{pmatrix} C_1 + C_2 e^{2t} \\ -C_1 + C_2 e^{2t} \end{pmatrix}$$

Now apply the initial conditions, $x_1(0) = 0$, so $C_1 + C_2 = 0$, and $x_2(0) = 1$ gives $-C_1 + C_2 = 1$ Solving gives $C_1 = -\frac{1}{2}$, $C_2 = \frac{1}{2}$.

So
$$\begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} = \frac{1}{2} \begin{pmatrix} e^{2t} + 1 \\ e^{2t} - 1 \end{pmatrix}$$