Cross Product P. Danziger

1 Cross Product

Big Note Cross product works in \mathbb{R}^3 ONLY

1.1 Definition

Given two non parallel vectors in \mathbb{R}^3 , **u** and **v**, there is a vector **w** which is perpendicular to both of them. The direction of this vector is unique, up to orientation. The *Cross Product* gives us a way to find a vector in this direction.

Definition 1 Given two vectors $\mathbf{u} = (a, b, c)$ and $\mathbf{v} = (d, e, f)$, the cross product,

$$\mathbf{u} \times \mathbf{v} = (bf - ce)\mathbf{i} - (af - cd)\mathbf{j} + (ae - bd)\mathbf{k}$$

Conveniently:

	i	j	\mathbf{k}
$\mathbf{u} \times \mathbf{v} =$	a	b	c
	d	e	f

Notes

- $\mathbf{u} \times \mathbf{v}$ is a vector.
- Order matters $\mathbf{u} \times \mathbf{v} = -(\mathbf{v} \times \mathbf{u})$

Example 2

Find $\mathbf{u} \times \mathbf{v}$, where $\mathbf{u} = (1, 3, 1)$ and $\mathbf{v} = (2, 2, 1)$.

$$\mathbf{u} \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 3 & 1 \\ 2 & 2 & 1 \end{vmatrix}$$
$$= (3-2)\mathbf{i} - (1-2)\mathbf{j} + (2-6)\mathbf{k}$$
$$= \mathbf{i} + \mathbf{j} - 4\mathbf{k}$$

Check:

$$\mathbf{u} \cdot (\mathbf{u} \times \mathbf{v}) = (1, 3, 1) \cdot (1, 1, -4) = 1 + 3 - 4 = 0$$

$$\mathbf{v} \cdot (\mathbf{u} \times \mathbf{v}) = (2, 2, 1) \cdot (1, 1, -4) = 2 + 2 - 4 = 0$$

So $\mathbf{u} \times \mathbf{v}$ is orthogonal to both \mathbf{u} and \mathbf{v} . Note that

$$\mathbf{v} \times \mathbf{u} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 2 & 1 \\ 1 & 3 & 1 \end{vmatrix}$$
$$= -\mathbf{i} - \mathbf{j} + 4\mathbf{k} = -(\mathbf{u} \times \mathbf{v})$$

1.2 Properties of Cross Product

Theorem 3 (Properties of Cross Product) Given three vectors \mathbf{u}, \mathbf{v} and \mathbf{w} in \mathbb{R}^3 :

- 1. (**0** Absorbant) $\mathbf{u} \times \mathbf{0} = \mathbf{0}$
- 2. (Antisymmetric) $\mathbf{u} \times \mathbf{v} = -(\mathbf{v} \times \mathbf{u})$
- 3. (Distributivity) $\mathbf{u} \times (\mathbf{v} + \mathbf{w}) = (\mathbf{u} \times \mathbf{v}) + (\mathbf{u} \times \mathbf{w})$
- 4. (Triple Scalar Product) $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = \mathbf{w} \cdot (\mathbf{u} \times \mathbf{v})$
- 5. $\mathbf{u} \cdot (\mathbf{u} \times \mathbf{v}) = \mathbf{v} \cdot (\mathbf{u} \times \mathbf{v}) = 0$. Both \mathbf{u} and \mathbf{v} are orthogonal to $\mathbf{u} \times \mathbf{v}$.

Right Hand Rule On your right hand, if **u** points along your forefinger and **v** points along your middle finger, then $\mathbf{u} \times \mathbf{v}$ will point along your thumb.

Theorem 4 (Magnitude of $\mathbf{u} \times \mathbf{v}$)

$$||\mathbf{u} \times \mathbf{v}|| = ||\mathbf{u}|| \, ||\mathbf{v}|| \sin \theta$$

Corollary 5 Two non-zero vectors \mathbf{u} and \mathbf{v} are parallel if and only if $\mathbf{u} \times \mathbf{v} = \mathbf{0}$.

1.3 Triple Scalar product

Definition 6 $(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}$ is called the triple scalar product.

Theorem 7 Given three vectors $\mathbf{u} = (u_1, u_2, u_3)$, $\mathbf{v} = (v_1, v_2, v_3)$ and $\mathbf{w} = (w_1, w_2, w_3)$

	u_1	u_2	u_3	
$(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w} =$	v_1	v_2	v_3	
	w_1	w_2	w_3	

Example 8

Find the triple scalar product of \mathbf{u} , \mathbf{v} and \mathbf{w} , where $\mathbf{u} = (1, 3, 1)$, $\mathbf{v} = (2, 2, 1)$ and $\mathbf{w} = (-1, 0, 1)$.

$$(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w} = \begin{vmatrix} 1 & 3 & 1 \\ 2 & 2 & 1 \\ -1 & 0 & 1 \end{vmatrix} = -\begin{vmatrix} 3 & 1 \\ 2 & 1 \end{vmatrix} + \begin{vmatrix} 1 & 3 \\ 2 & 2 \end{vmatrix} = -(3-2) + 2 - 6 = -5$$

1.4 Areas and Volumes

Given two vectors, \mathbf{u} and \mathbf{v} , they map out a parallelogram with area base \times height = $||\mathbf{u} \times \mathbf{v}||$ Given three vectors, \mathbf{u} , \mathbf{v} and \mathbf{w} , they map out a parallelopiped with volume equal to the area of the base \times height = $(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}$