Cramer's Rule

P. Danziger

1 Cramer's Rule

Cramer's rule is a method for solving $n \times n$ systems of equations using determinants. Generally it is less preferable than Gaussian elimination or Gauss-Jordan as there are more operations involved. However, in some circumstances it is a preferred method.

Let A be an $n \times n$ matrix

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$$

Consider the system of equations

$$A\mathbf{x} = \mathbf{b}$$
, where $\mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$.

Define

$$A_{1} = \begin{pmatrix} b_{1} & a_{12} & \dots & a_{1n} \\ b_{2} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n} & a_{n2} & \dots & a_{nn} \\ a_{11} & b_{1} & \dots & a_{1n} \\ a_{21} & b_{2} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & b_{n} & \dots & a_{nn} \end{pmatrix}$$

$$\vdots$$

$$A_{n} = \begin{pmatrix} a_{11} & a_{12} & \dots & b_{n} \\ a_{21} & a_{22} & \dots & b_{n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & b_{n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & b_{n} \end{pmatrix}$$

So, A_i is the matrix A with the i^{th} column replaced by **b**.

Define $D_i = |A_i|$ - The determinant of A_i .

Define D = |A| - The determinant of A.

Theorem 1 (Cramer's Rule) Given an $n \times n$ matrix A with $det(A) \neq 0$ and a vector \mathbf{b} then the equation $A\mathbf{x} = \mathbf{b}$ has solutions

$$x_1 = \frac{D_1}{D}, x_2 = \frac{D_2}{D}, \dots, x_n = \frac{D_n}{D},$$

Example 2

$$x + 2y + z = 1$$

$$3x + y + 2z = 0$$

$$2x + y + z = 0$$

$$A = \begin{pmatrix} 1 & 2 & 1\\ 3 & 1 & 2\\ 2 & 1 & 1 \end{pmatrix} \text{ and } \mathbf{b} = \begin{pmatrix} 1\\ 0\\ 0 \end{pmatrix}$$

$$A_1 = \begin{pmatrix} 1 & 2 & 1\\ 0 & 1 & 2\\ 0 & 1 & 1 \end{pmatrix}, A_2 = \begin{pmatrix} 1 & 1 & 1\\ 3 & 0 & 2\\ 2 & 0 & 1 \end{pmatrix}, A_3 = \begin{pmatrix} 1 & 2 & 1\\ 3 & 1 & 0\\ 2 & 1 & 0 \end{pmatrix}$$

Expanding down the first, second and third column respectively gives,

$$D = |A| = \begin{vmatrix} 1 & 2 \\ 1 & 1 \end{vmatrix} - 2 \begin{vmatrix} 3 & 2 \\ 2 & 1 \end{vmatrix} + \begin{vmatrix} 3 & 1 \\ 2 & 1 \end{vmatrix} = -1 - (-2) + 1 = 2$$

So $x_1 = \frac{D_1}{D} = \frac{-1}{2}, x_2 = \frac{D_2}{D} = \frac{1}{2}, x_3 = \frac{D_3}{D} = \frac{1}{2}.$