Cramer's Rule P. Danziger

1 Cramer's Rule

Cramer's rule is a method for solving $n \times n$ systems of equations using determinants. Generally it is less preferable than Gaussian elimination or Gauss-Jordan as there are more operations involved. However, in some circumstances it is a preferred method.

Let A be an $n \times n$ matrix

$$
A = \left(\begin{array}{cccc} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{array}\right)
$$

Consider the system of equations

$$
A\mathbf{x} = \mathbf{b}
$$
, where $\mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$.

Define

$$
A_{1} = \begin{pmatrix} b_{1} & a_{12} & \dots & a_{1n} \\ b_{2} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n} & a_{n2} & \dots & a_{nn} \\ a_{11} & b_{1} & \dots & a_{1n} \\ a_{21} & b_{2} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & b_{n} & \dots & a_{nn} \end{pmatrix}
$$

$$
A_{2} = \begin{pmatrix} a_{11} & a_{12} & \dots & b_{n} \\ a_{21} & a_{22} & \dots & b_{n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & b_{n} \end{pmatrix}
$$

So, A_i is the matrix A with the i^{th} column replaced by **b**. Define $D_i = |A_i|$ - The determinant of A_i . Define $D = |A|$ - The determinant of A.

4.3 Cramer's Rule P. Danziger

Theorem 1 (Cramer's Rule) Given an $n \times n$ matrix A with $det(A) \neq 0$ and a vector **b** then the equation $A\mathbf{x} = \mathbf{b}$ has solutions

$$
x_1 = \frac{D_1}{D}, x_2 = \frac{D_2}{D}, \dots, x_n = \frac{D_n}{D},
$$

Example 2

$$
x + 2y + z = 1
$$

\n
$$
3x + y + 2z = 0
$$

\n
$$
2x + y + z = 0
$$

\n
$$
A = \begin{pmatrix} 1 & 2 & 1 \\ 3 & 1 & 2 \\ 2 & 1 & 1 \end{pmatrix} \text{ and } \mathbf{b} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}
$$

\n
$$
A_1 = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & 2 \\ 0 & 1 & 1 \end{pmatrix}, A_2 = \begin{pmatrix} 1 & 1 & 1 \\ 3 & 0 & 2 \\ 2 & 0 & 1 \end{pmatrix}, A_3 = \begin{pmatrix} 1 & 2 & 1 \\ 3 & 1 & 0 \\ 2 & 1 & 0 \end{pmatrix}
$$

Expanding down the first, second and third column respectively gives,

$$
D_1 = \begin{vmatrix} 1 & 2 \\ 1 & 1 \end{vmatrix} D_2 = - \begin{vmatrix} 3 & 2 \\ 2 & 1 \end{vmatrix} D_3 = \begin{vmatrix} 3 & 1 \\ 2 & 1 \end{vmatrix}
$$

= 1 - 2 = - (3 - 4)
= 1. = 1

$$
D = |A| = \begin{vmatrix} 1 & 2 \\ 1 & 1 \end{vmatrix} - 2 \begin{vmatrix} 3 & 2 \\ 2 & 1 \end{vmatrix} + \begin{vmatrix} 3 & 1 \\ 2 & 1 \end{vmatrix} = -1 - (-2) + 1 = 2
$$

So $x_1 = \frac{D_1}{D} = \frac{-1}{2}, x_2 = \frac{D_2}{D} = \frac{1}{2}, x_3 = \frac{D_3}{D} = \frac{1}{2}.$

2