1 Some Useful Sets

1.1 The Empty Set

Definition 1 The empty set is the set with no elements, denoted by ϕ .

1.2 Number Sets

- $\mathbb{N} = \{0, 1, 2, 3, \ldots\}$ The natural numbers.
- $\mathbb{Z} = \{\dots, -3, -2, -1, 0, 1, 2, 3, \dots\}$ The integers.
- $\mathbb{Q} = \{\frac{x}{y} \mid x \in \mathbb{Z} \land y \in \mathbb{N}^+\}$ The rationals.
- $\mathbb{R} = (-\infty, \infty)$ The Real numbers.
- $\mathbb{I} = \mathbb{R} \mathbb{Q}$ (all real numbers which are not rational) The irrational numbers.
- $\mathbb{C} = \{x + yi \mid x, y \in \mathbb{R}\}$ The Complex numbers.

Note: There are many real numbers which are not rational, e.g. π , $\sqrt{2}$ etc.

2 Complex Numbers

2.1 Introduction

We can't solve the equation $x^2 + 1 = 0$ over the real numbers, so we invent a new number *i* which is the solution to this equation, i.e. $i^2 = -1$.

Complex numbers are numbers of the form

$$z = x + iy$$
, where $x, y \in \mathbb{R}$.

The set of complex numbers is represented by \mathbb{C} . Generally we represent Complex numbers by z and w, and real numbers by x, y, u, v, so

$$z = x + iy, w = u + iv, z, w \in \mathbb{C}, x, y, u, v \in \mathbb{R}.$$

Numbers of the form z = iy (no real part) are called pure *imaginary* numbers.

Complex numbers may be thought of as vectors in \mathbb{R}^2 with components (x, y). We can also represent Complex numbers in polar coordinates (r, θ) (θ is the angle to the real (x) axis), in this case we write

$$z = re^{i\theta}$$
. Thus $x = r\cos\theta, y = r\sin\theta$,

and we have Demoivre's Theorem.

Theorem 2 (Demoivre's Theorem)

$$re^{i\theta} = r(\cos\theta + i\sin\theta)$$

Complex Numbers

Appendix B

P. Danziger

Example 3

• Put 1 - i in polar form.

 $\tan \theta = -1$, in fourth quadrant so $\theta = -\frac{\pi}{4}$. $r = \sqrt{1^2 + 1^2} = \sqrt{2}$. So $1 - i = \sqrt{2}e^{-\frac{\pi i}{4}} = \sqrt{2}e^{\frac{7\pi i}{4}}.$

• Put $2e^{\frac{\pi}{3}}$ in rectangular form.

$$2e^{\frac{\pi}{3}} = 2\left(\frac{1}{2} + \frac{\sqrt{3}i}{2}\right) = \sqrt{3} + i.$$

Operations with Complex numbers 2.2

Let $z = x + iy = re^{i\theta}$ and $w = u + iv = qe^{i\phi}$ then we have the following operations:

- The imaginary part of z, Im(z) = y.
- The real part of z, $\operatorname{Re}(z) = x$.
- The Complex Conjugate of $z, \overline{z} = x iy = re^{-i\theta}$.

Note: Complex conjugation basically means turn every occurrence of an i to a -i.

- The modulus of z, $|z| = \sqrt{z\overline{z}} = \sqrt{x^2 + y^2} = r$.
- The argument of z, $\arg(z) = \tan^{-1} y/x = \theta$.

Note: $z\overline{z} = |z|^2$, so $\overline{z} = |z|^2/z$, so $\overline{z}/|z|^2 = 1/z$ this is used to do division.

Example 4

Let $\dot{z} = -2 + i$ and w = 1 - i then:

1. $\operatorname{Re}(z) = -2$, $\operatorname{Im}(z) = 1$, $\operatorname{Re}(w) = 1$ and $\operatorname{Im}(w) = -1$.

2.
$$|z| = \sqrt{(-2)^2 + 1^2} = \sqrt{5}$$
, $\arg(z) = \arctan\left(-\frac{1}{2}\right)$ so $z = \sqrt{5}e^{i\arctan\left(-\frac{1}{2}\right)}$.

3. $|w| = \sqrt{1^2 + (-1)^2} = \sqrt{2}$, $\arg(w) = \arctan \frac{-1}{1} = -\frac{\pi}{4}$ so $w = \sqrt{2}e^{\frac{-i\pi}{4}}$.

4.
$$\overline{z} = -2 - i = \sqrt{5}e^{\frac{-5\pi i}{6}}$$
 and $\overline{w} = 1 + i = \sqrt{2}e^{\frac{i\pi}{4}}$

- Addition z + w = (x + u) + i(y + v) (Includes Subtraction).
- Multiplication $zw = (x + iy)(u + vi) = (xu yv) + i(xv + yu) = qre^{i(\theta + \phi)}$.

• Division
$$\frac{z}{w} = \frac{z\overline{w}}{|w|^2}$$
.

Example 5 Let z = -2 + i and w = 1 - i then:

1.
$$z + w = (-2 + 1) + (1 - 1)i = -1.$$

2. $zw = (-2 + i)(1 - i) = -2 + 2i + i - i^2 = -2 + 1 + 3i = -1 + 3i.$
3. $z/w = z\overline{w}/|w|^2 = \frac{1}{2}(-2 + i)(1 + i) = \frac{1}{2}(-2 - 2i + i + i^2) = \frac{1}{2}(-3 - i).$

Appendix B

Complex Numbers

P. Danziger

2.3**Powers**

Theorem 6 (Demoivre's Theorem)

$$(re^{i\theta})^n = r^n(\cos{(n\theta)} + i\sin{(n\theta)})$$

Example 7 Find $(i+i)^{12}$

So

$$1+i=\sqrt{2}e^{\frac{\pi i}{4}}.$$

$$(1+i)^{12} = \left(\sqrt{2}e^{\frac{\pi i}{4}}\right)^{12}$$
$$= \left(\sqrt{2}\right)^{12}e^{\frac{12\pi}{4}}$$
$$= 2^{6}e^{3\pi i}$$
$$= 64e^{i\pi}$$
$$= -64.$$

Note $e^{i\pi} = -1$.

2.4**Roots of Complex Numbers**

In order to find the n^{th} root of a complex number $z = x + iy = re^{i\theta}$ we use the polar form, $z = re^{i\theta}$. Since θ is an angle,

$$re^{i\theta} = re^{i(\theta + 2k\pi)}$$

for any integr k. Thus

$$z^{\frac{1}{n}} = \left(re^{i(\theta+2k\pi)}\right)^{\frac{1}{n}}$$

= $r^{\frac{1}{n}}e^{\frac{i\theta+2k\pi}{n}}$
= $r^{\frac{1}{n}}\left[\cos\left(\frac{\theta+2k\pi}{n}\right) + i\sin\left(\frac{\theta+2k\pi}{n}\right)\right]$

Taking $k = 0, 1, \ldots, n-1$ gives the *n* roots. Since $r \ge 0$, $r^{\frac{1}{n}}$ always exists, even for even roots.

Example 8 Find All cube roots of 8. $8 = 8e^{2k\pi i}$, so, $8^{\frac{1}{3}} = 2e^{\frac{2k\pi i}{3}}$. Taking k = 0, 1, 2 gives 2, $2e^{\frac{2\pi i}{3}}$ and $2e^{\frac{4\pi i}{3}}$ as the three cube roots of 8.

Fundamental Theorem of Algebra 2.5

Note that in \mathbb{C} all numbers have exactly $n n^{\text{th}}$ roots. This leads to the Fundamental Theorem of algebra:

Every polynomial over the Complex numbers of degree n has exactly n roots

i.e. if
$$f(z) = a_0 + a_1 z + \ldots + a_n z^n$$

then there exist $z_1, z_2, \ldots, z_n \in \mathbb{C}$ such that

 $f(x) = (z - z_1)(z - z_2) \dots (z - z_n).$

That is f can be decomposed into linear factors.