Basis and Dimension P. Danziger

1 Basis and Dimension

Definition 1 A basis of a vector space V, is a set of vectors $B = {\bf{v}_1, v_2, ..., v_n}$ such that

- 1. $\{v_1, v_2, \ldots, v_n\}$ span V,
- 2. $\{v_1, v_2, \ldots, v_n\}$ are linearly independent and hence the a_i above are unique.

Notes

• Point 1 says that any vector in V may be written as a linear combination of vectors from B . So for every vector $\mathbf{u} \in V$ there are scalars a_1, \ldots, a_n such that

$$
\mathbf{u} = a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + \ldots + a_n \mathbf{v}_n
$$

The a_i are called the *components* of **u** with respect to the basis B .

- Point 2 says that all of the vectors in $\{v_1, v_2, \ldots, v_n\}$ are needed.
- The plural of basis is bases, pronounced 'base ease'.

Since given a basis $B = {\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n}$ of \mathbb{R}^n , any vector in $\mathbf{u} \in \mathbb{R}^n$ can be written as

$$
\mathbf{u} = a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + \ldots + a_n \mathbf{v}_n
$$

for a **unique** set of scalars a_1, \ldots, a_n , we can then write every $\mathbf{u} \in \mathbb{R}^n$ with respect to the basis B as

$$
\mathbf{u}_B=(a_1,a_2,\ldots,a_n)_B.
$$

Where the subscript B indicates that the components are with respect to the basis B , not the standard basis.

In general, we can find the coordinates of a vector \bf{u} with respect to a given basis B by solving A_B **u**_B = **u**, for **u**_B, where A_B is the matrix whose columns are the vectors in B. A_B is called the change of basis matrix for B.

If B is a basis there must be a unique solution of $A_B \mathbf{u}_B = \mathbf{u}$ for every $\mathbf{u} \in \mathbb{R}^n$. This means that B is a basis if and ony if the REF of A_B does not contain a row of zeros (rank $(A_B) = n$), or equivalently $\det(A_B) \neq 0.$

Example 2

1. The Standard Basis for \mathbb{R}^n

$$
\mathbf{e}_1 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \mathbf{e}_2 = \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, \dots, \mathbf{e}_n = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}.
$$

Note that if $\mathbf{u} = (u_1, u_2, \dots, u_n)$ is any vector in \mathbb{R}^n ,

$$
\mathbf{u}=u_1\mathbf{e}_1+u_2\mathbf{e}_2+\ldots+u_n\mathbf{e}_n
$$

and this is consistent with the use of the term component above. In fact any set *n* linearly independent vectors in \mathbb{R}^n form a basis.

2. Determine whether $\mathbf{v}_1 = (1, 1, 0)$ and $\mathbf{v}_2 = (1, 0, 1)$ and $\mathbf{v}_3 = (3, 1, 2)$ are a basis in \mathbb{R}^3 .

$$
\begin{pmatrix} 1 & 1 & 3 \ 1 & 0 & 1 \ 0 & 1 & 2 \end{pmatrix} \quad R_2 \to R_2 - R_1 \quad \begin{pmatrix} 1 & 1 & 3 \ 0 & -1 & -2 \ 0 & 1 & 2 \end{pmatrix} \quad R_3 \to R_3 + R_2 \quad \begin{pmatrix} 1 & 1 & 3 \ 0 & -1 & -2 \ 0 & 0 & 0 \end{pmatrix}
$$

Since A_B contains a row of zeros $(\text{rank}(A_B) \neq 3)$, this is not a basis. Alternatively we could have used determinants:

$$
\begin{vmatrix} 1 & 1 & 3 \\ 1 & 0 & 1 \\ 0 & 1 & 2 \end{vmatrix} = \begin{vmatrix} 0 & 1 \\ 1 & 2 \end{vmatrix} - \begin{vmatrix} 1 & 1 \\ 0 & 2 \end{vmatrix} + 3 \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = -1 - 2 + 3 = 0
$$

 $\det(A_B) = 0$, so B is not a basis.

3. (a) Determine whether $B = {\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3}$, where $\mathbf{v}_1 = (1, 1, 0)$ and $\mathbf{v}_2 = (1, 0, 1)$ and $\mathbf{v}_3 =$ $(3, 1, 1)$ is a basis for \mathbb{R}^3 .

Any three linearly independent vectors in \mathbb{R}^3 are a basis These three vectors will be linearly independent if the determinant of the matrix whose columns are v_1 , v_2 and v_3 is non-zero.

$$
\left|\begin{array}{rrr} 1 & 1 & 3 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{array}\right| = 1
$$

This means that these three vectors can be used in place of the standard basis.

(b) Find the components of $\mathbf{u} = (1, 2, 2)$ with respect to the basis B above.

We must solve $\mathbf{u} = a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + a_3 \mathbf{v}_3$ for a_1, a_2 and a_3 . So

$$
\begin{pmatrix} 1 \ 2 \ 2 \end{pmatrix} = a_1 \begin{pmatrix} 1 \ 1 \ 0 \end{pmatrix} + a_2 \begin{pmatrix} 1 \ 0 \ 1 \end{pmatrix} + a_3 \begin{pmatrix} 3 \ 1 \ 1 \end{pmatrix}
$$

$$
= \begin{pmatrix} 1 & 1 & 3 \ 1 & 0 & 1 \ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} a_1 \ a_2 \ a_3 \end{pmatrix}
$$

Basis and Dimension P. Danziger

$$
\begin{pmatrix}\n1 & 1 & 3 & 1 \\
1 & 0 & 1 & 2 \\
0 & 1 & 1 & 2\n\end{pmatrix}\nR_2 \to R_2 - R_1\n\begin{pmatrix}\n1 & 1 & 3 & 1 \\
0 & -1 & -2 & 1 \\
0 & 1 & 1 & 2\n\end{pmatrix}\nR_2 \to -R_2
$$
\n
$$
\begin{pmatrix}\n1 & 1 & 3 & 1 \\
0 & 1 & 2 & 1 \\
0 & 1 & 1 & 2\n\end{pmatrix}\nR_3 \to R_3 - R_2\n\begin{pmatrix}\n1 & 1 & 3 & 1 \\
0 & 1 & 2 & -1 \\
0 & 0 & -1 & 3\n\end{pmatrix}
$$

Solving gives $a_3 = -3$, $a_2 = -1-2(-3) = 5$, $a_1 = 1-5-3(-3) = 5$. So $\underline{\mathbf{u}_B = (5, 5, -3)_B}$. Check: $u = 5v_1 + 5v_2 - 3$

$$
\mathbf{u} = 5\mathbf{v}_1 + 5\mathbf{v}_2 - 3\mathbf{v}_3
$$

= 5(1,1,0) + 5(1,0,1) - 3(3,1,1)
= (5 + 5 - 9,5 - 3,5 - 3)
= (1,2,2) \ \sqrt{2}

(c) Find the coordinates of the arbitrary vector $\mathbf{u} = (a, b, c) \in \mathbb{R}^3$ with respect to this basis.

$$
\begin{pmatrix}\n1 & 1 & 3 & a \\
1 & 0 & 1 & b \\
0 & 1 & 1 & c \\
0 & 1 & 2 & a - b \\
0 & 1 & 1 & c\n\end{pmatrix}\nR_2 \to R_2 - R_1\n\begin{pmatrix}\n1 & 1 & 3 & a \\
0 & -1 & -2 & b - a \\
0 & 1 & 1 & c \\
0 & 1 & 2 & a - b \\
0 & 0 & -1 & c - (a - b)\n\end{pmatrix}\nR_2 \to -R_2
$$

Solving gives

$$
a_3 = a - b - c,
$$

\n
$$
a_2 = (a - b) - 2(a - b - c)
$$

\n
$$
= -a + b + 2c,
$$

\n
$$
a_1 = a - (-a + b + 2c) - 3(a - b - c)
$$

\n
$$
= -a + 2b + c.
$$

So
$$
\mathbf{u}_B = (-a + 2b + c, -a + b + 2c, a - b - c)_B
$$
.

4. Find a basis for the plane $x + 2y - z = 0$.

Any two non colinear vectors in the plane will span it. Take $(1, 1, 3)$ and $(-1, 1, 1)$.

5. Find a basis for the solution set of the system of equations

$$
x_1 + x_3 + x_4 = 0
$$

\n
$$
x_2 + x_3 = 0
$$

\n
$$
x_1 + x_2 + 2x_3 + x_4 = 0
$$

\n
$$
\begin{pmatrix} 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 2 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} R_3 \rightarrow R_3 - R_2
$$

\n
$$
R_3 \rightarrow R_3 - R_2
$$

Let $s, t \in \mathbb{R}$, set

$$
x_3 = s
$$
, $x_4 = t$, thus $x_2 = -s$, $x_1 = -s - t$.

Solutions are of the form

$$
(-s-t, -s, s, t) = s(-1, -1, 1, 0) + t(-1, 0, 0, 1).
$$

So all solutions are a linear combination of $\{(-1, -1, 1, 0), (-1, 0, 0, 1)\}\$. These vectors forma basis for the solution space.

The solution set to any homogeneous system with non-trivial solutions may be expressed in this way.

2 Dimension

Theorem 3 If $\{v_1, v_2, \ldots, v_n\}$ and $\{u_1, u_2, \ldots, u_m\}$ are bases for a vector space V then $m = n$. **Corollary 4** Every basis of \mathbb{R}^n contains exactly n vectors.

Definition 5 The Dimension of a vector space V is the number of vectors in a basis.

We write $\dim(V)$.

Example 6

1. $\dim(\mathbb{R}^n) = n$.

Take the standard basis.

2. dim $(\mathbb{P}_n)=n+1$.

Theorem 7 If U is a subspace of a vector space V, then $dim(U) \leq dim(V)$.

Example 8

1. Let $U = \{(x, y, z) | x - z = 0\} \subseteq \mathbb{R}^3$. (U is the plane $x - z = 0$.) Find the dimension of U.

Solve $x - z = 0$, Let $s, t \in \mathbb{R}$, set $z = s$, $y = t$, then $x = s$. Solutions are of the form $(s, t, s) = s(1, 0, 1) + t(0, 1, 0)$

Thus $\{(0, 1, 0), (1, 0, 1)\}\$, is a basis for U, and so $\dim(U) = 2$.

2. Find the dimension of solution set of the system of equations

$$
x_1 + x_3 + x_4 = 0
$$

$$
x_2 + x_3 = 0
$$

$$
x_1 + x_2 + 2x_3 + x_4 = 0
$$

Above we showed that the solutions are of the form

$$
(-s-t, -s, s, t) = s(-1, -1, 1, 0) + t(-1, 0, 0, 1).
$$

and so $\{(-1, -1, 1, 0), (-1, 0, 0, 1)\}$ forms a basis for the solution space.

Since there are two vectors in the basis, the dimension is 2.

(So this is a 2-dimensional plane in \mathbb{R}^4 .)