3.1 Matrices P. Danziger

Matrices
Definitions

Definition 1

1. A Matrix isan mxn (m by n) array of numbers.

a:]_]_ &12 o o a,ln
a/ml am2 o o o CLmn

2. The entries in a matrix are called the com-
ponents of the matrix and can be written as
a;;, where ¢ indicates the row number and runs
from 1 to m, and j indicates the column num-
ber and runs from 1 to n.

3. AVectorisalxnornx1matrix. That is an

ordered set of n numbers.
We say that such a vector is of dimension n.

4. A scalar is a number (usually either real or
complex).
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Notation 2

e \We generally use uppercase letters from the
beginning of the alphabet (A,B,C...) to de-
note matrices.

e A matrix is identified with its components, given
a matrix A with components a;;, 1 < i < m,
1 <35 <n, we may write

A = [a;]

Example 3

Find the 4 x 4 matrix A with compoents given
by a;; =1+ 7.
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e \We generally use lowercase boldface letters from
the end of the alphabet (u,v,w...) to denote

vectors.
e We use the convention that u = (uq,uo,...,un),
x = (x1,x2,...,xn), etc.
o Ifx = (x1,22,...,2n) then the scalars xq,xo,...,2n

are called the components of x.

e \We denote the set of all vectors of dimension
n whose components are real numbers by R™.

e \We denote the set of all vectors of dimension
n whose components are complex numbers by
Ccm.

Note This definition of vector differs from the
usual ‘High School’ definition involving magnitude
and direction.
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Special Matrices and Vectors

1. The Identity matrix
The identity matrix is a square matrix with 1's
down the diagonal, and zeros elsewhere. The
n X n identity matrix is denoted 1.

10 ...0
o
00 ..1

2. The Zero Matrix
The zero matrix is an mxn matrix, all of whose
entries are O.

O 0 . o)
O 0 . O
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Operations on Matrices

1. Transpose
Given an m x n matrix, A, the transpose of
A is obtained by interchanging the rows and

columns of A. We denote the transpose of A
by At, or AT

Notes:
o If Ais m xn then AT will be n x m.
o If A= [a,ij], then [aij]T = [a]z]

Example 4

(a) 123\ _ (3¢
45 6 |
36
(b) 1 2 3\' 1 4 7
456 | =|2 58
7 8 9 36 9
1
C
(©) (1,2,3) = | 2
3
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2. Matrix Addition

Given two m X n matrices

ai1 a2 ... G1p b11 bio ... bin

a a L..a b b ... b
a=| @2 9z oo | g | ba b2 b

aAml Om2 --- Gmn b1 bmo2 ... bmn

We may define the sum of A and B, A+ B, to
be the sum componentwise, i.e.

a11 +b11 aio+bio ... ai,+bin
A+B = a>1 +bo1 aoo+boo ... ap,+bo,
am1 +bm1 am2+bn2 ... amn+ dbmn

Componentwise: [CLZ]} + [bw} = [aij + bw]
T his works for vectors as well.

u—+ v

(U]_,UQ,...,un)—I—(’U]_,’UQ,...,’Un)
= (u1 +vi,up +v2,...,un + vp)

Note that matrix addition is only defined if A
and B have the same size.



3.1

Matrices P. Danziger

Example 5

(a)

(b)

~N D e
0 01 N

1410
= | 4413
7+ 16

11 13
= 17 19
23 25

(1,2,3) 4+ (4,5,6)

10 11 12

3
o |+ | 13 14 15
9

16 17 18

2411 3412
5414 6+ 15
8+ 17 9+ 18

15
21
27

(1+4,2+5,3+6)
(5,7,9)
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3. Matrix Multiplication

(a) Scalar Multiplication

Given a matrix A, and a scalar k, we de-
fine the scalar product of k£ with A, kKA by
multiplying each entry of A by k.

a a R
kA= k| T2t Te2oo T
ka11 ka1 ... kaip
. ka>1 kaoo ... kao,

Componentwise: k {aij} = [kaij}.
Note that this works for vectors as well.

ku=k(uy,uo,...,un) = (kuy, kuo, ..., kun)
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6

1 2 3

4 5 6 | =
7 8 9

P. Danziger

10 20 30
40 50 60
70 80 90
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(b) Matrix Multiplication

If A and B are two matrices where A has
the same number of columns as B has rows
(i,e. Aismxn and B is n x r) we define
the matrix product, AB to be the matrix

in which the 4, jth entry is made up of the

dot product of the it" row of A with the 5"
column of B.

CL11 a/12 P aln
ar»1 a22 ... ao
A= . . _ S
a/m]_ a/m2 .« e e amn
b]_]_ b]_2 .« o e b]_:r
B = b?l b?g .. b?r
bnl bn2 S bnr
@11 @12 ... Qlp bi1 b2 ... bi,
Aml am2 ... QOmn bni bn2 ... bur
a11b11 + a12b21 + ... + a1nbn1 .. a11biy + a12bor + ...+ a1p
a21b11 + a22b21 + ... + aonbni ... a21b1y + aoobor + ... F a0y,
am1b11 + am2b21 + ... + amnbni oo amibir + am2bor + ..+ am

10
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Example 7
1 2 3 9O 8 7
4 5 6 6 5 4 =
7 8 9 3 21

1xXx94+2x64+3x3 1x84+2x54+3x2 1x74+2x4+4+3x1
4 x94+5x64+6x3 4x84+5x54+46x2 4x7+5x4+6x1
TX948x64+9%x3 7Tx84+8x54+9%x2 7Tx74+8x4+9x%x1

9+12+49 8+ 10+ 6 7T+8+3
36 +30+4+18 32+25+412 28+20+46
63+48+27 56 +40+18 49+32+4+9

30 24 18
= 84 69 b4
138 114 90

Note that Matrix multiplication is only de-
fined if A has the same number of columns
as B has rows.

11
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BIG Note

Matrix multiplication is NOT commutative.
i.e. It is NOT true that AB = BA (where
defined).

Example 8

(13)(22)-(:

12



