1.3 Lines and Planes in R3 P. Danziger

Lines in R3

We wish to represent lines in R3. Note that a line
may be described in two different ways:

e By specifying two points on the line.

e By specifying one point on the line and a vector
parallel to it.

If we are given two points, P and @@ on a line, then
a vector parallel to it is PQ.

There are three ways of representing a line alge-
braically.
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Vector Representation of a Line

Given a point P = (x0,yg, 20) on the line and
a vector v = (a, b, c) parallel to it.

An arbitrary point X = (z,y,2) on the line will
be given by the vector equation:

OX = O_P—I—tv.

T 0 a
y | = |y |+t b
z 20 C

If we are given two points, P and ¢ on the
line, then take v = P@.
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Parametric Representation of a Line

Given a point P = (xq,y0,20) on the line and
a vector v = (a, b, c) parallel to it.

An arbitrary point X = (x, vy, 2) on the line will
be given by the system of equations:

r = xg + ta
y = Yo T+ tb
z = zog + tc

If we are given two points, P and Q = (x1,vy1, 21)
on the line, then take v = P and this be-
comes.

ro + t(r1—xp)
vo + t(y1—yo)
z0 + t(z1 — 20)

8
[

N
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Symmetric Representation of a Line

Solving for t gives the Symmetric Representa-
tion of a Line.

t:CB—ZI?O:y—yO:Z—ZO
a b C

Note that this is only definied if a, b and ¢ are

non-zero.
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Example 1
1. Find the equation of the line ¢ joining P =

(1,1,1) to Q@ = (1,0,1) in vector form.

PQ = (0,—1,0), so the equation os given by

€T 1 O
y |l=111[4+¢t| —1
z 1 0

. Find the equation in parametric form of the

line ¢ above.
r = 1
y = 1—1¢
z = 1

. Find the equation in symmetric form of the

line ¢ above.

This does not exist.
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4. Does R=(1,2,2) lie on #7

Substituting R = (1,2,2) for X = (x,y,z) we

get 1 = 1

2 = 1-—t

2 =1
Which has no solution, so R does not lie on
the line.

5. Does S =(1,2,1) lie on £7?

Substituting S = (1,2,1) for X = (x,y,z) we

get 1 = 1

2 = 1-—t

1 = 1
Which is true when ¢t = —1, so this lies on the
line.

6. With the parameterization above at what point
will we be when t = —2

When t = —2 we will be at (1,3,1).
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Planes in R3

We wish to represent planes in R3. Note that a
plane may be described in three different ways:

e By specifying three points on the plane.

e By specifying one point in the plane and two
vectors parallel to it.

e By specifying one point in the plane and a vec-
tor perpendicular to it.

The third form is preferable since it needs the least
information.

Let m be a plane described by a vector n = (a, b, ¢)
orthogonal to it and a point P = (xzq, yg, z9) Which
lies in it.

Consider a point Q = (z,y, z) on the plane .
§
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Since n is orthogonal to the plane n-v = 0 for any
vector v parallel to the plane.

Now P_Q = (x — z0,y — Yo, 2 — 20) IS in the plane.

Son-PQ =0, or

a(z — x0) +b(y —yo) +c(z —20) =0

This is called the point normal form of the equa-
tion of a plane.

Setting d = azg + byg + czg = n- OP, we get

ar + by +cz=d

This is called the standard form of the equation
of a plane.

Example 2

1. Find the equation of the plane « which is or-
thogonal to the vectorn = (1,1, 2) and through
the point P = (1,0,1)

d=n-0OP=(1,1,2)-(1,0,1) =3
7
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Equation isn-0X =d

r+y+22=3

2. Is@Q =(1,2,3) € n?
Put X = @ in the equation to get

1+24+2x3=9+%£3

So equation is inconsistent and @ & .

3.IsQ =(3,2,—-1) e n?
Put X = @ in the equation to get
3+424+2x(-1)=3

So equation is consistent and @ € .
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If to vectors u and v parallel to the plane are given
we can take solve the equations

n-u=20

n-v=020.
Generally this will result in an infinite solution set
(a line through the origin). Any vector parallel to
this line will work for n as all are perpendicular

to the plane. The magnitude of n will affect the
value of d.

Alternately we can use the cross productn = uxv.
(see Section 4.3).

If a plane is defined three points P,Q and R in the
plane then PQ, PR and QR are all vectors parallel
to the plane and the method outlined above may
be used.
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Example 3

Find the equation of the plane 7« parallel to u =
(1,0,1) and v=(2,-1,2), through P=(1,1,1).

Let n = (nq1,no,n3) be the normal vector to .

u-n=0= (17071>'(n17n27n3) —
ni1 + n3 = 0.

v-n=0=(2-1,2) (n1,n2,n3) =
2n1 —no + 2n3 = 0.

The solution to the set of simultaneous equations

ni1 + n3 = 0.
2n1 —no + 2n3 = 0.

are vectors of the form (¢,0, —t), for any t € R. We
arbitrarily pick t =1, son=(1,0,-1).

Alternately, using cross product

i j k
n=uxv=|1 0 1|=1—k
2 —1 2

Now, d=n-OP = (1,0,-1)-(1,1,1) =1—-1 = 0.
So the equation of the plane is
r—2z2=020
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Example 4
Find the equation of the plane through the points
P=(1,1,1), @ =(0,1,2) and R=(1,1,2)

PQ =(-1,0,1) and QR = (1,0, 0) are two vectors
in the plane. Let n = (n1,no,n3) be the normal
vector to the plane.

PQ - n=0= (-1,0,1) - (n1,no,n3) =

—n1 + n3 = 0.
QRH:O:> (1,0,0)*(’1?,1,77,2,723) —
n1 = 0.

The solution to the set of simultaneous equations

—n1+n3 =0, and ny =0
are vectors of the form (0,¢,0), for any t € R. We
arbitrarily pick t =1, so n = (0,1,0).

Alternately, using cross product:

i
n = P( xQ?%z —1
1

= (0,1,0)

O O«
orx

Now, d=n-OP =(0,1,0)-(1,1,1) = 1.

So the equation of the planeisy=1
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Example 5

1. Find the point of intersection of the plane
r — z =0 with the line ¢:

T 2 2
y |=1 1|+t —1
z 1 1

The line can be expressed as

r=242t, y=1—-t, z=1+1t.

Intersection (x,y, z) for x, y and z which satisfy
both the equation of the line and that of the
plane. Substitute equation for the line into the
equation for the plane and solve for t.

(2—|—2t)—(1—|—t)—0

t+ 1 =0
So the solution is t = —1.

Substituting back in the equation for the line
¢ we get the point of intersection:
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Find the point of intersection of « with the line

€T 1 1
l: y |=11/[4+¢t| 2
z 1 1

Intersect when these are the same x, y and z.

r=14t y=1+2t, z= 1+ t, substitute in

equation for plane and solve for ¢
g1+t2—§1+t2=0

z

xr
0=20
Many solutions, so the line is in the plane.

. Find the point of intersection of = with the line

T 2 1
l: y |=1| 1 |+t| 2
z 1 1

Intersect when these are the same z, y and z.
r=2+t y=1+42t, z= 14 t, substitute in
equation for plane and solve for ¢
2+t)-(1+t)=0
1=0
No solution, so the line is parallel to the plane,
but not in it.
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