Lines in \mathbb{R}^3

We wish to represent lines in \mathbb{R}^3 . Note that a line may be described in two different ways:

- By specifying two points on the line.
- By specifying one point on the line and a vector parallel to it.

If we are given two points, P and Q on a line, then a vector parallel to it is \vec{PQ} .

There are three ways of representing a line algebraically.

• Vector Representation of a Line

Given a point $P = (x_0, y_0, z_0)$ on the line and a vector $\mathbf{v} = (a, b, c)$ parallel to it.

An arbitrary point $X = (x, y, z)$ on the line will be given by the vector equation:

$$
\vec{OX} = \vec{OP} + t\mathbf{v}.
$$

$$
\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix} + t \begin{pmatrix} a \\ b \\ c \end{pmatrix}
$$

If we are given two points, P and Q on the line, then take $v = PQ$.

• Parametric Representation of a Line

Given a point $P = (x_0, y_0, z_0)$ on the line and a vector $\mathbf{v} = (a, b, c)$ parallel to it.

An arbitrary point $X = (x, y, z)$ on the line will be given by the system of equations:

$$
\begin{array}{rcl}\nx & = & x_0 + ta \\
y & = & y_0 + tb \\
z & = & z_0 + tc\n\end{array}
$$

If we are given two points, P and $Q = (x_1, y_1, z_1)$ on the line, then take $v = \vec{PQ}$ and this becomes.

$$
x = x_0 + t(x_1 - x_0)
$$

\n
$$
y = y_0 + t(y_1 - y_0)
$$

\n
$$
z = z_0 + t(z_1 - z_0)
$$

• Symmetric Representation of a Line

Solving for t gives the Symmetric Representation of a Line.

$$
t = \frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c}
$$

Note that this is only definied if a, b and c are non-zero.

- 1. Find the equation of the line ℓ joining $P =$ $(1, 1, 1)$ to $Q = (1, 0, 1)$ in vector form. $\vec{PQ} = (0, -1, 0)$, so the equation os given by $\sqrt{ }$ $\overline{\mathcal{L}}$ \overline{x} \hat{y} z \setminus $\Big\} =$ $\sqrt{ }$ $\overline{\mathcal{L}}$ 1 1 1 \setminus $+ t$ $\sqrt{ }$ $\overline{\mathcal{L}}$ 0 −1 0 \setminus $\Big\}$
- 2. Find the equation in parametric form of the line ℓ above.

$$
\begin{array}{rcl}\nx &=& 1 \\
y &=& 1 - t \\
z &=& 1\n\end{array}
$$

3. Find the equation in symmetric form of the line ℓ above.

This does not exist.

4. Does $R = (1, 2, 2)$ lie on ℓ ?

Substituting $R = (1, 2, 2)$ for $X = (x, y, z)$ we get $1 = 1$ $2 = 1 - t$

 $2 = 1$

Which has no solution, so R does not lie on the line.

5. Does
$$
S = (1, 2, 1)
$$
 lie on ℓ ?

Substituting $S = (1, 2, 1)$ for $X = (x, y, z)$ we get $1 - 1$

$$
\begin{array}{rcl} 1 & = & 1 \\ 2 & = & 1 - t \\ 1 & = & 1 \end{array}
$$

Which is true when $t = -1$, so this lies on the line.

6. With the parameterization above at what point will we be when $t = -2$

When $t = -2$ we will be at $(1, 3, 1)$.

Planes in \mathbb{R}^3

We wish to represent planes in \mathbb{R}^3 . Note that a plane may be described in three different ways:

- By specifying three points on the plane.
- By specifying one point in the plane and two vectors parallel to it.
- By specifying one point in the plane and a vector perpendicular to it.

The third form is preferable since it needs the least information.

Let π be a plane described by a vector $\mathbf{n} = (a, b, c)$ orthogonal to it and a point $P = (x_0, y_0, z_0)$ which lies in it.

Consider a point $Q = (x, y, z)$ on the plane π .

Since n is orthogonal to the plane $n \cdot v = 0$ for any vector v parallel to the plane.

Now $\vec{PQ} = (x - x_0, y - y_0, z - z_0)$ is in the plane.

So $\mathbf{n} \cdot \vec{PQ} = 0$, or

$$
a(x - x_0) + b(y - y_0) + c(z - z_0) = 0
$$

This is called the *point normal form* of the equation of a plane.

Setting $d = ax_0 + by_0 + cz_0 = \mathbf{n} \cdot \vec{OP}$, we get

 $ax + by + cz = d$

This is called the *standard form* of the equation of a plane.

Example 2

1. Find the equation of the plane π which is orthogonal to the vector $n = (1, 1, 2)$ and through the point $P=(1,0,1)$

$$
d = \mathbf{n} \cdot \vec{OP} = (1, 1, 2) \cdot (1, 0, 1) = 3
$$

Equation is
$$
\mathbf{n} \cdot \vec{OX} = d
$$

$$
x + y + 2z = 3
$$

2. Is
$$
Q = (1, 2, 3) \in \pi
$$
?

Put $X = Q$ in the equation to get

 $1 + 2 + 2 \times 3 = 9 \neq 3$

So equation is inconsistent and $Q \not\in \pi$.

3. Is
$$
Q = (3, 2, -1) \in \pi
$$
?

Put $X = Q$ in the equation to get

$$
3 + 2 + 2 \times (-1) = 3
$$

So equation is consistent and $Q \in \pi$.

If to vectors u and v parallel to the plane are given we can take solve the equations

```
n \cdot u = 0\mathbf{n} \cdot \mathbf{v} = 0.
```
Generally this will result in an infinite solution set (a line through the origin). Any vector parallel to this line will work for n as all are perpendicular to the plane. The magnitude of n will affect the value of d .

Alternately we can use the cross product $n = u \times v$. (see Section 4.3).

If a plane is defined three points P, Q and R in the plane then \vec{PQ} , \vec{PR} and \vec{QR} are all vectors parallel to the plane and the method outlined above may be used.

Find the equation of the plane π parallel to $u =$ $(1, 0, 1)$ and $v = (2, -1, 2)$, through $P = (1, 1, 1)$.

Let $n = (n_1, n_2, n_3)$ be the normal vector to π .

$$
\mathbf{u} \cdot \mathbf{n} = 0 \Rightarrow (1, 0, 1) \cdot (n_1, n_2, n_3) =
$$

\n
$$
n_1 + n_3 = 0.
$$

\n
$$
\mathbf{v} \cdot \mathbf{n} = 0 \Rightarrow (2, -1, 2) \cdot (n_1, n_2, n_3) =
$$

\n
$$
2n_1 - n_2 + 2n_3 = 0.
$$

The solution to the set of simultaneous equations

$$
n_1 + n_3 = 0.
$$

\n
$$
2n_1 - n_2 + 2n_3 = 0.
$$

are vectors of the form $(t, 0, -t)$, for any $t \in \mathbb{R}$. We arbitrarily pick $t = 1$, so $n = (1, 0, -1)$.

Alternately, using cross product

$$
n = u \times v = \begin{vmatrix} i & j & k \\ 1 & 0 & 1 \\ 2 & -1 & 2 \end{vmatrix} = i - k
$$

Now, $d = \mathbf{n} \cdot \vec{OP} = (1, 0, -1) \cdot (1, 1, 1) = 1 - 1 = 0.$ So the equation of the plane is

$$
x - z = 0
$$

Find the equation of the plane through the points $P = (1, 1, 1), Q = (0, 1, 2)$ and $R = (1, 1, 2)$

 $\vec{PQ} = (-1, 0, 1)$ and $\vec{QR} = (1, 0, 0)$ are two vectors in the plane. Let $n = (n_1, n_2, n_3)$ be the normal vector to the plane.

$$
\vec{PQ} \cdot \mathbf{n} = 0 \Rightarrow (-1, 0, 1) \cdot (n_1, n_2, n_3) = -n_1 + n_3 = 0.
$$

$$
\vec{QR} \cdot \mathbf{n} = 0 \Rightarrow (1, 0, 0) \cdot (n_1, n_2, n_3) = n_1 = 0.
$$

The solution to the set of simultaneous equations

$$
-n_1 + n_3 = 0, \text{ and } n_1 = 0
$$

are vectors of the form $(0, t, 0)$, for any $t \in \mathbb{R}$. We arbitrarily pick $t = 1$, so $n = (0, 1, 0)$.

Alternately, using cross product:

$$
n = \vec{PQ} \times \vec{QR} = \begin{vmatrix} i & j & k \\ -1 & 0 & 1 \\ 1 & 0 & 0 \end{vmatrix} = (0, 1, 0)
$$

Now, $d = \mathbf{n} \cdot \vec{OP} = (0, 1, 0) \cdot (1, 1, 1) = 1$.

So the equation of the plane is $y = 1$

1. Find the point of intersection of the plane $x - z = 0$ with the line ℓ :

$$
\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} + t \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}
$$

The line can be expressed as

$$
x = 2 + 2t, \ y = 1 - t, \ z = 1 + t.
$$

Intersection (x, y, z) for x, y and z which satisfy both the equation of the line and that of the plane. Substitute equation for the line into the equation for the plane and solve for t .

$$
\underbrace{(2+2t)}_{x} - \underbrace{(1+t)}_{z} = 0
$$

$$
t+1 = 0
$$

So the solution is $t = -1$.

Substituting back in the equation for the line ℓ we get the point of intersection:

$$
(2-2(-1),1-(-1),1-1)=(0,2,0)
$$

2. Find the point of intersection of π with the line

$$
\ell: \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + t \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}
$$

Intersect when these are the same x, y and z . $x = 1 + t$, $y = 1 + 2t$, $z = 1 + t$, substitute in equation for plane and solve for t

$$
\underbrace{(1+t)}_{x} - \underbrace{(1+t)}_{z} = 0
$$

$$
0 = 0
$$

Many solutions, so the line is in the plane.

3. Find the point of intersection of π with the line ℓ : $\sqrt{ }$ $\overline{ }$ \overline{x} \hat{y} z \setminus $\Big\} =$ $\sqrt{ }$ $\overline{ }$ 2 1 1 \setminus $+ t$ $\sqrt{ }$ $\overline{ }$ 1 2 1 \setminus $\Big\}$

Intersect when these are the same x , y and z . $x = 2 + t$, $y = 1 + 2t$, $z = 1 + t$, substitute in equation for plane and solve for t

$$
(2+t) - (1+t) = 0
$$

1 = 0

No solution, so the line is parallel to the plane, but not in it.