Eigenvalues

Definition 1 Given an $n \times n$ matrix A, a scalar $\lambda \in \mathbb{C}$, and a non zero vector $\mathbf{v} \in \mathbb{R}^n$ we say that λ is an eigenvalue of A , with corresponding eigenvalue v if

$$
A\mathbf{v} = \lambda\mathbf{v}
$$

Notes

- Eigenvalues and eigenvectors are only defined for square matrices.
- \bullet Even if A only has real entries we allow for the possibility that λ and v are complex.
- Surprisingly, a given square $n \times n$ matrix A, admits only a few eigenvalues (at most n), but infinitely many eignevectors.

Given A, we want to find possible values of λ and v.

Example 2

1.

$$
\begin{pmatrix} 2 & 1 \ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \ 0 \end{pmatrix} = \begin{pmatrix} 2 \ 0 \end{pmatrix} = 2 \begin{pmatrix} 1 \ 0 \end{pmatrix}
$$

So 2 is an eigenvalue of $\begin{pmatrix} 2 & 1 \ 0 & 1 \end{pmatrix}$ with corre-
sponding eigenvector $\begin{pmatrix} 1 \ 0 \end{pmatrix}$.

2. Is $u = (1, 0, 1)$ an eigenvector for

$$
A = \left(\begin{array}{rrr} 2 & 1 & -1 \\ 0 & -1 & 2 \\ 0 & 1 & 1 \end{array}\right)?
$$

$$
Au = \begin{pmatrix} 2 & 1 & -1 \\ 0 & -1 & 2 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}
$$

 $(1, 0, 1) = \lambda(1, 2, 1)$ has no solution for λ , so $(1, 0, 1)$ is not an eigenvector of A.

Eigenspaces

Theorem 3 If v is an eigenvector, corresponding to the eigenvalue λ_0 then cu is also an eigenvector corresponding to the eigenvalue λ_0 .

If v_1 and v_2 are an eigenvectors, both corresponding to the eigenvalue λ_0 , then $v_1 + v_2$ is also an eigenvector corresponding to the eigenvalue λ_0 .

Proof:

$$
A(c\mathbf{v}) = cA\mathbf{v} = c\lambda_0\mathbf{v} = \lambda_0(c\mathbf{v})
$$

 $A (v_1 + v_2) = Av_1 + Av_2 = \lambda_0 v_1 + \lambda_0 v_2 = \lambda_0 (v_1 + v_2)$

Corollary 4 The set of vectors corresponding to an eigenvalue λ_0 of an $n \times n$ matrix is a subspace $of \mathbb{R}^n$.

Thus when we are asked to find the eigenvectors corresponding to a given eigenvalue we are being asked to find a subspace of \mathbb{R}^n . Generally, we describe such a space by giving a basis for it.

Definition 5 Given an $n \times n$ square matrix A, with an eigenvalue λ_0 , the set of eigenvectors corresponding to λ_0 is called the Eigenspace corresponding to λ .

$$
E_{\lambda_0} = \{ \mathbf{v} \in \mathbb{R}^n \mid A\mathbf{v} = \lambda_0 \mathbf{v} \}
$$

The dimension of the eigenspace corresponding to λ , dim (E_{λ_0}) , is called the Geometric Multiplicity of the Eigenvalue λ_0

Characteristic Polynomials

Given square matrix A we wish to find possible eigenvalues of A.

$$
Av = \lambda v
$$

\n
$$
\Rightarrow \quad 0 = \lambda v - Av
$$

\n
$$
\Rightarrow \quad 0 = \lambda Iv - Av
$$

\n
$$
\Rightarrow \quad 0 = (\lambda I - A)v
$$

This homogeneous system will have non trivial solutions if and only if det($\lambda I - A$) = 0.

Example 6

Find all eigenvalues of

$$
A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}
$$

\n
$$
det(\lambda I - A) = det \left(\lambda \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \right)
$$

\n
$$
= \begin{vmatrix} \lambda - 1 & -1 \\ -1 & \lambda - 1 \end{vmatrix}
$$

\n
$$
= (\lambda - 1)^2 - 1
$$

\n
$$
= \lambda^2 - 2\lambda
$$

\n
$$
= \lambda(\lambda - 2)
$$

So det($\lambda I - A$) = 0 if and only if $\lambda = 0$ or 2.

Definition 7 Given an $n \times n$ square matrix A, $det(\lambda I - A)$ is a polynomial in λ of degree n. This polynomial is called the characteristic polynomial of A, denoted $p_A(\lambda)$.

The equation $p_A(\lambda) = 0$ is called the characteristic equation of A.

Example 8

Find the characteristic polynomial and the characteristic equation of the matrix

$$
A = \left(\begin{array}{rrr} 1 & 2 & 1 \\ 0 & 2 & -1 \\ 0 & 0 & 1 \end{array}\right)
$$

$$
p_A(\lambda) = \det(\lambda I - A)
$$

=
$$
\begin{vmatrix} \lambda - 1 & -2 & -1 \\ 0 & \lambda - 2 & 1 \\ 0 & 0 & \lambda - 1 \end{vmatrix}
$$

=
$$
(\lambda - 1)(\lambda - 2)(\lambda - 1)
$$

=
$$
(\lambda - 1)^2(\lambda - 2)
$$

6

If A is an $n \times n$ matrix, $p_A(\lambda)$ will be a degree n polynomial. By the Fundamental Theorem of Algebra, a degree n polynomial has n roots over the complex numbers. Note that some of these roots may be equal.

Given an $n \times n$ square matrix A, with distinct eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_k$, then

 $p_A(\lambda) = (\lambda - \lambda_1)^{r_1} (\lambda - \lambda_2)^{r_2} \dots (\lambda - \lambda_k)^{r_k}$

for some positive integers r_1, r_2, \ldots, r_k .

Definition 9 For a given i the positive integer r_i is called the algebraic multiplicity of the eigenvalue λ_i .

Theorem 10 For a given square matrix the geometric multiplicity of any eigenvalue is always less than or equal to the algebraic multiplicity.

Example 11

Find the distinct eigenvalues of A above and give the algebaraic multiplicity in each case.

$$
p_A(\lambda) = (\lambda - 1)^2 (\lambda - 2)
$$

So the distinct eigenvalues of A are $\lambda = 1$ and $\lambda = 2$.

The algebraic multiplicity of $\lambda = 1$ is 2. The algebraic multiplicity of $\lambda = 2$ is 1.

Finding Egenvalues & Eigenspaces

Note if we are asked to find eigenvectors of a matrix A, we are actually being asked to find eigenspaces.

Given an $n \times n$ matrix A we may find the Eigenvalues and Eigenspaces of A as follows:

1. Find the characteristic polynomial

$$
p_A(\lambda) = |\lambda I - A|.
$$

2. Find the roots of $p_A(\lambda) = 0, \lambda_1, \ldots, \ldots \lambda_k$, n roots with possible repetition.

$$
p_A(\lambda) = (\lambda - \lambda_1)^{r_1} (\lambda - \lambda_2)^{r_2} \dots (\lambda - \lambda_k)^{r_k}
$$

3. For each distinct eigenvalue λ_i in turn solve the homogeneous system

$$
(\lambda_i I - A)\mathbf{x} = \mathbf{0}
$$

The solution set is E_{λ_i} .

Example 12

1. Find all eigenvalues and eigenvectors of

$$
A = \left(\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array}\right)
$$

$$
p_A(\lambda) = |\lambda I - A| = \left| \begin{array}{cc} \lambda - 1 & -1 \\ -1 & \lambda - 1 \end{array} \right| = \lambda(\lambda - 2)
$$

Solutions are $\lambda = 0$ or 2.

$$
\begin{aligned}\n\lambda &= 0 \text{ Solving } -A\mathbf{x} = 0. \\
\begin{pmatrix} -1 & -1 & 0 \\ -1 & -1 & 0 \end{pmatrix} R_2 \to R_2 - R_1 \qquad \begin{pmatrix} -1 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \\
\text{Let } t \in \mathbb{R}, \ x_2 = t, \ x_1 = -t, \text{ so} \\
E_0 &= \{t(-1, 1) \mid t \in \mathbb{R}\}.\n\end{aligned}
$$

$$
\begin{aligned}\n\lambda &= 2 \text{ Solving } (2I - A)\mathbf{x} = 0. \\
\begin{pmatrix} 1 & -1 & 0 \\ -1 & 1 & 0 \end{pmatrix} R_2 \rightarrow R_2 + R_1 \qquad \begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \\
\text{Let } t \in \mathbb{R}, \ x_2 = t, \ x_1 = t, \text{ so} \\
E_2 &= \{t(1, 1) \mid t \in \mathbb{R}\}.\n\end{aligned}
$$

In both cases Algebraic Multiplicity = Geomet-
ric Multiplicity =
$$
1
$$

2. Find all eigenvalues and eigenvectors of

$$
A = \left(\begin{array}{rrr} 1 & 2 & 1 \\ 0 & 2 & -1 \\ 0 & 0 & 1 \end{array}\right)
$$

We proved earlier that

$$
p_A(\lambda) = (\lambda - 1)^2(\lambda - 2)
$$

So eigenvalues are $\lambda = 1$ and $\lambda = 2$.

 $\lambda = 1$ has algebraic multiplicity 2, while $\lambda = 2$ has algebraic multiplicity 1.

$$
\lambda = 1
$$
 Solving $(I - A)x = 0$.

$$
\begin{pmatrix}\n1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & -2 & -1 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & 0 & 0\n\end{pmatrix}\n\rightarrow\n\begin{pmatrix}\n1 & 2 & 1 & 0 \\
0 & 2 & -1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0\n\end{pmatrix}
$$
\n
$$
\text{at } t \in \mathbb{P} \text{ set } x_1 = t \text{ and } x_2 = 0, x_3 = 0
$$

Let $t \in \mathbb{R}$, set $x_1 = t$ and $x_3 = 0$, $x_2 = 0$.

$$
E_1 = \{t(1,0,0) \mid t \in \mathbb{R}\}
$$

geometric mutiplicity $= 1 \neq$ algebraic multiplicity.

$$
\begin{aligned}\n\lambda &= 2 \text{ Solving } (2I - A)\mathbf{x} = 0. \\
\begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 2 & 0 \end{pmatrix} - \begin{pmatrix} 1 & 2 & 1 & 0 \\ 0 & 2 & -1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \\
\text{Let } t \in \mathbb{R}, \text{ set } x_2 = t \text{ and } x_3 = 0, x_1 = 2t. \\
E_2 &= \{t(2, 1, 0) \mid t \in \mathbb{R}\}\n\end{aligned}
$$

Theorem 13 If A is a square triangular matrix, then the eigenvalues of A are the diagonal entries of A

Theorem 14 A square matrix A is invertible if and only if $\lambda = 0$ is not an eigenvalue of A.

Theorem 15 Given a square matrix A, with an eigenvalue λ_0 and correspoonding eigenvector v, then for any positive integer k , λ_0^k $_0^k$ is an eigenvalue of A^k and A^k **v** = λ_0^k $_{0}^{k}\mathbf{v}$.

Theorem 16 If $\lambda_1, \ldots, \lambda_k$ are distinct eigenvalues of a matrix, and v_1, \ldots, v_k are corresponding eigenvectors respectively, then the are linearly independent. i.e. Eigenvectors corresponding to distinct eigenvalues are linearly independent.

Corollary 17 If A is an $n \times n$ matrix, A has n linearly independent eigenvectors if and only if the algebraic multiplicity $=$ geometric multiplicity for each distinct eigenvalue.