
2.1-2.3 Determinants P. Danziger

Determinants

Every n×n matrix A has an associated scalar value

called the determinant of A, denoted by det(A) or

|A|.

The determinant gives the (hyper)volume of the

unit (hyper)cube after it has been transformed by

A.

Note that determinant is only defined for square

matricies.
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2× 2 Determinants

The determinant of a 2× 2 matrix

A =

(
a b
c d

)
is defined to be det(A) = |A| = ad− bc

Minors

For an n× n matrix

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
... ... . . . ...

an1 an2 . . . ann



For each pair i, j, 1 ≤ i, j ≤ n, define the ijth minor

Mij to be the matrix obtained from A by deleting

the ith row and jth column from A.
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Example 1

1. If A =

 −3 2 5
1 0 −1
4 −6 7

 .

Find Mij for 1 ≤ i, j ≤ 3.

M11 =

(
0 −1
−6 7

)
M12 =

(
1 −1
4 7

)
M13 =

(
1 −1
4 7

)

M21 =

(
2 5
−6 7

)
M22 =

(
−3 5
4 7

)
M23 =

(
−3 2
4 −6

)

M31 =

(
2 5
0 −1

)
M32 =

(
−3 5
1 −1

)
M33 =

(
−3 2
1 0

)

2. If A =


1 5 7 9
3 4 2 8
1 1 3 6
0 2 5 9

 . Find M3i, for 1 ≤ i ≤ 4.

M31 =

 5 7 9
4 2 8
2 5 9

 M32 =

 1 7 9
3 2 8
0 5 9


M33 =

 1 5 9
3 4 8
0 2 9

 M34 =

 1 5 7
3 4 2
0 2 5
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Cofactors
For an n× n matrix, for each pair i, j, 1 ≤ i, j ≤ n,

define the ijth cofactor by

Aij = (−1)i+j
∣∣∣Mij

∣∣∣
Notes

1.

(−1)i+j =

{
1 when i + j is even
−1 when i + j is odd

For example when n = 6

1 −1 1 −1 1
−1 1 −1 1 −1
1 −1 1 −1 1
−1 1 −1 1 −1
1 −1 1 −1 1
−1 1 −1 1 −1



2.
∣∣∣Mij

∣∣∣ is the determinant of the ijth minor.

Note that these minors are of size

(n− 1)× (n− 1).
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Definition 2 (Determinant) Given any n×n ma-

trix A = [aij], the determinant of A, written det(A)

or |A| is given by

|A| = Σn
j=1a1jA1j

= a11A11 + a12A12 + . . . + a1nA1n

Example 3

Find |A|, where  1 2 3
4 5 6
7 8 9


|A| = a11A11 − a12A12 + a13A13

=

∣∣∣∣∣ 5 6
8 9

∣∣∣∣∣− 2

∣∣∣∣∣ 4 6
7 9

∣∣∣∣∣+ 3

∣∣∣∣∣ 4 5
7 8

∣∣∣∣∣
= (5 · 9− 6 · 8)− 2(4 · 9− 6 · 7) + 3(4 · 8− 5 · 7)

= (45− 48)− 2(36− 42) + 3(32− 35)

= −3− 2(−6) + 3(−3)

= 0

So det(A) = 0.
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Finding Determinants

Finding higher order determinants requires alot of

calculations, we want to find ways of limiting the

number of calculations involved.

Theorem 4 (Cofactor Expansion) Given any n×
n matrix A = [aij], and any fixed row index k

|A| = Σn
j=1akjAkj

= ak1Ak1 + ak2Ak2 + . . . + aknAkn

Thus we may find determinants using any row.

This is called expanding long the kth row.

Warning: Remember the signs!
+ − + −
− + − +
+ − + −
− + − +
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Example 5

Find |A|, where

A =

 1 2 3
0 0 2
7 8 9


We expand along the second row (taking advan-

tage of the 0’s)

|A| = −a21A21 + a22A22 − a23A23

But since a21 = a22 = 0, this becomes

|A| = −a23A23

= −2

∣∣∣∣∣ 1 2
7 8

∣∣∣∣∣ = −2(8− 14) = 12

So det(A) = -6.
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Theorem 6 Given any n× n matrix A, the deter-

minant of A is equal to the determinant of the

transpose.

|A| =
∣∣∣AT

∣∣∣
Thus we may find determinants using any column.

This is called expanding long the kth column.
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Example 7

Find |A|, where 
1 2 0 1
2 1 2 3
7 8 0 0
1 0 0 1


We expand down the 3rd column (taking advan-

tage of the 0’s)

|A| = −a13A13 + a23A23 − a33A33 + a43A43

But since a13 = a33 = a43 = 0, this becomes

|A| = −a23A23

= −2

∣∣∣∣∣∣∣
1 2 1
2 1 3
1 0 1

∣∣∣∣∣∣∣
Expand along third row:

|A| = −2

(∣∣∣∣∣ 2 1
1 3

∣∣∣∣∣+
∣∣∣∣∣ 1 2
2 1

∣∣∣∣∣
)

= −2((6− 1) + (1− 4)) = −4

So det(A) = −4.
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Triangular Matrices

Theorem 8 The determinant of an upper trian-
gular, lower triangular or diagonal matrix is the
product of its diagonal entries.

Example 9

1. ∣∣∣∣∣∣∣∣∣
1 3 5 7
0 9 6 4
0 0 7 8
0 0 0 1

∣∣∣∣∣∣∣∣∣ = 1 · 9 · 7 · 1 = 63

2. ∣∣∣∣∣∣∣∣∣
1 0 0 0
2 3 0 0
5 9 2 0
7 6 4 8

∣∣∣∣∣∣∣∣∣ = 1 · 3 · 2 · 8 = 48

3. ∣∣∣∣∣∣∣∣∣
1 0 0 0
0 2 0 0
0 0 3 0
0 0 0 4

∣∣∣∣∣∣∣∣∣ = 1 · 2 · 3 · 4 = 63
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Row Operations

We know a method (Gaussian Elimination) which

will turn any matrix into a triangular matrix (REF

is triangular). We need to know the effect of row

operations on the determinant.

The effect of the three basic row operations are

given in the table below.

Operation Effect
Ri → cRi ×c |A| → c|A|
Ri → Ri + cRj None |A| → |A|
Ri ↔ Rj ×(−1) |A| → −|A|

Example 10

Find |A|, where

A =


0 1 2 3
1 0 1 1
2 1 0 1
1 1 0 1
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|A| =

∣∣∣∣∣∣∣∣∣
0 1 2 3
1 0 1 1
2 1 0 1
1 1 0 1

∣∣∣∣∣∣∣∣∣ R1 ↔ R2

= −

∣∣∣∣∣∣∣∣∣
1 0 1 1
0 1 2 3
2 1 0 1
1 1 0 1

∣∣∣∣∣∣∣∣∣
R3 → R3 − 2R1
R4 → R4 −R1

= −

∣∣∣∣∣∣∣∣∣
1 0 1 1
0 1 2 3
0 1 −2 −1
0 1 −1 0

∣∣∣∣∣∣∣∣∣
Expand down 1st column

= −

∣∣∣∣∣∣∣
1 2 3
1 −2 −1
1 −1 0

∣∣∣∣∣∣∣
R2 → R2 −R1
R3 → R3 −R1

= −

∣∣∣∣∣∣∣
1 2 3
0 0 −4
0 −3 −3

∣∣∣∣∣∣∣
Expand along 2nd row

= −4

∣∣∣∣∣ 1 2
0 −3

∣∣∣∣∣
= 12
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Determinants and Solutions to
Equations

Theorem 11 (Summing up Theorem Version 2)

For any square n × n matrix A, the following are

equivalent statements:

1. A is invertible.

2. The homogeneous system Ax = 0 has only the

trivial solution (x = 0)

3. The equation Ax = b has unique solution

(namely x = A−1b).

4. The RREF of A is the identity.

5. A is can be expressed as a product of elemen-

tary matrices.
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6. The REF of A has exactly n pivots.

7. det(A) 6= 0

Algebraic Properties of
Determinants

Theorem 12 Given two n×n matrices, A and B,

det(AB) = det(A)det(B), or

|AB| = |A||B|.

Corollary 13 If A and B are invertible n × n ma-

trices then AB is invertible.

Proof: If A and B are invertible then |A| 6= 0 and

|B| 6= 0, so |AB| = |A||B| 6= 0. �

Corollary 14 If A is a non invertible n× n matrix

and B is any n×n matrix then AB is not invertible.

Proof: If A is not invertible, so |A| = 0, so |AB| =
|A||B| = 0. �
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Corollary 15 Given an invertible n × n matrix A,

det
(
A−1

)
= (det(A))−1 = 1

det(A)
, or∣∣∣A−1

∣∣∣ = |A|−1.

Proof: Consider

AA−1 = I.

Taking determinants of both sides, we have

|AA−1| = |I|.

But |AA−1| = |A| |A−1| and |I| = 1, so

|A| |A−1| = 1.

Thus

|A−1| =
1

|A|
. �
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Corollary 16 Given an integer k and an n×n ma-

trix A, det
(
Ak
)
= (det(A))k

|Ak| = |A|k

Proof: If k < 0 then |Ak| = |A−k|−1, so we can

assume that k is positive.

Now, |Ak| = |AAk−1| = |A||Ak−1|. Applying this

rule iteratively we obtain

|Ak| = |A||A| . . . |A|︸ ︷︷ ︸
k

= |A|k

Theorem 17 Given a scalar c and an n×n matrix

A, det(cA) = cndet(A), or

|cA| = cn|A|.

We are multiplying each row by c.
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Summary Given any n× n matrices A and B, in-

teger k and scalar c:

• |AT | = |A|

• |AB| = |A||B|.

• If A is invertible |A−1| = |A|−1.

• |Ak| = |A|k

• |cA| = cn|A|

We can mix and match these rules as desired.
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Example 18

Given that |A| = 2 and |B| = 3, find the following:

1.
∣∣∣ABT

∣∣∣∣∣∣ABT
∣∣∣ = |A|

∣∣∣BT
∣∣∣ = |A||B| = 2 · 3 = 6

2.
∣∣∣A−1B

∣∣∣
∣∣∣A−1B

∣∣∣ = ∣∣∣A−1
∣∣∣ |B| = |A|−1|B| =

3

2

3.
∣∣∣A2B−1

∣∣∣
∣∣∣A2B−1

∣∣∣ = ∣∣∣A2
∣∣∣ ∣∣∣B−1

∣∣∣ = |A|2|B|−1 =
4

3

4.
∣∣∣3A2B−2

∣∣∣, where A and B are 3× 3.

∣∣∣3A2B−2
∣∣∣ = 33

∣∣∣A2
∣∣∣ ∣∣∣∣(B2

)−1
∣∣∣∣ = 33 |A|2

∣∣∣B2
∣∣∣−1

= 33|A|2|B|−2 = 33 · 4
32 = 12
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