Some Useful Sets

The Empty Set

Definition 1 The empty set is the set with no elements, denoted by ϕ .

Number Sets

- $N = \{0, 1, 2, 3, ...\}$ The natural numbers.
- $\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$ The integers.
- $\bullet \mathbb{Q} = \{ \frac{x}{y} \}$ $\frac{x}{y} \, | \, x \in \mathbb{Z} \land y \in \mathbb{N}^+ \}$ - The rationals.
- $\mathbb{R} = (-\infty, \infty)$ The Real numbers.
- $\mathbb{I} = \mathbb{R} \mathbb{Q}$ (all real numbers which are not rational) - The irrational numbers.
- $\mathbb{C} = \{x + yi \mid x, y \in \mathbb{R}\}\$ The Complex numbers.

Note: There are many real numbers which are not rational, e.g. π , $\sqrt{2}$ etc.

Complex Numbers

Introduction

We can't solve the equation $x^2 + 1 = 0$ over the real numbers, so we invent a new number i which is the solution to this equation, i.e. $i^2 = -1$.

Complex numbers are numbers of the form

 $z = x + iy$, where $x, y \in \mathbb{R}$.

The set of complex numbers is represented by \mathbb{C} . Generally we represent Complex numbers by z and w, and real numbers by x, y, u, v , so

 $z = x + iy$, $w = u + iv$, $z, w \in \mathbb{C}$, $x, y, u, v \in \mathbb{R}$. Numbers of the form $z = iy$ (no real part) are called pure imaginary numbers.

Complex numbers may be thought of as vectors in \mathbb{R}^2 with components (x, y) . We can also represent Complex numbers in polar coordinates (r, θ) (θ is the angle to the real (x) axis), in this case we write

$$
z = re^{i\theta}. \text{ Thus } x = r\cos\theta, y = r\sin\theta,
$$

and we have Demoivre's Theorem.

Theorem 2 (Demoivre's Theorem)

 $re^{i\theta} = r(\cos\theta + i\sin\theta)$

Example 3

• Put $1-i$ in polar form.

tan $\theta = -1$, in fourth quadrant so $\theta = -\frac{\pi}{4}$. $r = \sqrt{1^2 + 1^2} = \sqrt{2}$. So √

$$
1 - i = \sqrt{2}e^{-\frac{\pi i}{4}} = \sqrt{2}e^{\frac{7\pi i}{4}}.
$$

• Put $2e^{\frac{\pi}{3}}$ $\overline{3}$ in rectangular form.

$$
2e^{\frac{\pi}{3}} = 2\left(\frac{1}{2} + \frac{\sqrt{3}i}{2}\right) = \sqrt{3} + i.
$$

Operations with Complex numbers

Let $z = x + iy = re^{i\theta}$ and $w = u + iv = qe^{i\phi}$ then we have the following operations:

- The imaginary part of z, Im(z) = y.
- The real part of z, $Re(z) = x$.
- The Complex Conjugate of $z, \overline{z} = x iy =$ $re^{-i\theta}$.

Note: Complex conjugation basically means turn every occurence of an i to a $-i$.

- The modulus of $z, |z| =$ $\overline{z\overline{z}} = \sqrt{x^2 + y^2} = r.$
- The argument of z, arg $(z) = \tan^{-1} y/x = \theta$.

Note: $z\overline{z} = |z|^2$, so $\overline{z} = |z|^2/z$, so $\overline{z}/|z|^2 = 1/z$ this is used to do division.

Example 4

Let $z = -2 + i$ and $w = 1 - i$ then:

1. Re(z) = -2 , Im(z) = 1, Re(w) = 1 and Im(w) = −1.

2.
$$
|z| = \sqrt{(-2)^2 + 1^2} = \sqrt{5}
$$
, $arg(z) = \arctan(-\frac{1}{2})$
so $z = \sqrt{5}e^{i \arctan(-\frac{1}{2})}$.

3. $|w| = \sqrt{1^2 + (-1)^2} =$ $\overline{2}$, arg $(w) = \arctan \frac{-1}{1} =$ $-\frac{\pi}{4}$ $\frac{\pi}{4}$ so $w =$ √ $\overline{2}e$ $-i\pi$ $\frac{3\pi}{4}$.

4.
$$
\overline{z} = -2 - i = \sqrt{5}e^{\frac{-5\pi i}{6}}
$$
 and $\overline{w} = 1 + i = \sqrt{2}e^{\frac{i\pi}{4}}$.

- Addition $z + w = (x + u) + i(y + v)$ (Includes Subtraction).
- Multiplication $zw = (x + iy)(u + vi) = (xu$ $yv) + i(xv + yu) = qre^{i(\theta + \phi)}$.

• Division
$$
\frac{z}{w} = \frac{z\overline{w}}{|w|^2}
$$
.

Example 5

Let $z = -2 + i$ and $w = 1 - i$ then:

- 1. $z + w = (-2 + 1) + (1 1)i = -1$.
- 2. $zw = (-2 + i)(1 i) = -2 + 2i + i i^2 =$ $-2 + 1 + 3i = -1 + 3i$.

3.
$$
z/w = z\overline{w}/|w|^2 = \frac{1}{2}(-2 + i)(1 + i) = \frac{1}{2}(-2 - 2i + i + i^2) = \frac{1}{2}(-3 - i).
$$

Powers

Theorem 6 (Demoivre's Theorem)

$$
(re^{i\theta})^n = r^n(\cos(n\theta) + i\sin(n\theta))
$$

Example 7

Find $(i+i)^{12}$

$$
1 + i = \sqrt{2}e^{\frac{\pi i}{4}}.
$$

So

$$
(1+i)^{12} = \left(\sqrt{2}e^{\frac{\pi i}{4}}\right)^{12}
$$

$$
= \left(\sqrt{2}\right)^{12}e^{\frac{12\pi i}{4}}
$$

$$
= 2^{6}e^{3\pi i}
$$

$$
= 64e^{i\pi}
$$

$$
= -64.
$$

Note $e^{i\pi} = -1$.

Roots of Complex Numbers

In order to find the n^{th} root of a complex number $z = x + iy = re^{i\theta}$ we use the polar form, $z = re^{i\theta}$. Since θ is an angle,

$$
re^{i\theta} = re^{i(\theta + 2k\pi)}
$$

for any intger k . Thus

$$
z^{\frac{1}{n}} = \left(r e^{i(\theta + 2k\pi)} \right)^{\frac{1}{n}}
$$

= $r^{\frac{1}{n}} e^{\frac{i\theta + 2k\pi}{n}}$
= $r^{\frac{1}{n}} \left[\cos \left(\frac{\theta + 2k\pi}{n} \right) + i \sin \left(\frac{\theta + 2k\pi}{n} \right) \right]$

Taking $k = 0, 1, ..., n - 1$ gives the *n* roots.

Since $r\geq 0$, $r^{\tfrac{1}{n}}$ $\bar{\bar{n}}$ always exists, even for even roots.

Example 8

Find All cube roots of 8.

 $8=8e^{2k\pi i}$, so, $8^{\tfrac{1}{3}}$ $\frac{1}{3} = 2e$ $2k\pi i$ $rac{3}{3}$. Taking $k = 0, 1, 2$ gives 2, 2e $\frac{2\pi i}{2}$ $\frac{3}{3}$ and 2e $\frac{4\pi i}{2}$ $\ddot{\overline{3}}$ as the three cube roots of 8.

Fundamental Theorem of Algebra

Note that in $\mathbb C$ all numbers have exactly n n^{th} roots.

This leads to the Fundamental Theorem of algebra:

Every polynomial over the Complex numbers of degree n has exactly n roots

i.e. if $f(z) = a_0 + a_1 z + \ldots + a_n z^n$

then there exist $z_1, z_2 \ldots, z_n \in \mathbb{C}$ such that

$$
f(x) = (z - z_1)(z - z_2) \dots (z - z_n).
$$

That is f can be decomposed into linear factors.