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1 Vectors and Matrices

1.1 Definitions

Definition 1

1. A Matrix is an m x n (m by n) array of numbers.

a1 a12 Ce A1p
a921 a9292 e Aoy,
Am1 Am2 ... Qmn

2. A Vectoris a 1 x n or n X 1 matrix. That is an ordered set of n numbers.

We say that such a vector is of dimension n.

3. A scalar is a number (usually either real or complex).
Notation 2

e We generally use uppercase letters from the beginning of the alphabet (A, B,C'...) to denote
matrices.

e We generally use lowercase boldface letters from the end of the alphabet (u, v, w...) to denote

vectors.
e We use the convention that u = (uy, ug, ..., u,), x = (1, 29,...,2,), etc.
o If x = (z1,x9,...,x,) then the scalars z, xs, ..., x, are called the components of x.

e We denote the set of all vectors of dimension n whose components are real numbers by R™.
e We denote the set of all vectors of dimension n whose components are complex numbers by

Cc™.

Note This definition of vector differs from the usual ‘High School” definition involving magnitude
and direction.
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1.2 Special Matrices and Vectors

1.

The Identity matrix
The identity matrix is a square matrix with 1’s down the diagonal, and zeros elsewhere. The
n X n identity matrix is denoted I,,.

1 0 . 0

0 1 . 0
In: .

0 0 1

. The Zero Matrix

The zero matrix is an m X n matrix, all of whose entries are 0.

00 ... 0
0 0 0
00 ... 0

The Zero Vector
The zero vector is a vector, all of whose entries are 0.

0=(0,0,...,0)

Elementary Vectors An elementary vector, e; is a vector which has zeros everywhere, except
in the i*" position, where it is one.

el =(1,0,...,0)
e;=(0,1,...,0)
e; = (0,0,...,1,...,0) 1 in i*" position

e, =(0,0,...,1)

Operations on Matrices

. Transpose

Given an m x n matrix, A, the transpose of A is obtained by interchanging the rows and
columns of A. We denote the transpose of A by Af, or AT,

Note that if A is m x n then A? will be n x m.
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Example 3

(a)

(1 2 3>t_ ; ‘51
4 5 6 3 6
(b)
12 3\’ 14 7
4 5 6 =] 2 5 8
7 8 9 3 6 9
(c)
1
(1,2,3)t: 2
3
2. Matrix Addition
Given two m X n matrices
a1 a2 ... Qip bin bz ... biy
A Q21  dg2 ... Q2p  B= bai by ... Doy
Am1 Am2 --. OGmp bml bm2 bmn

We may define the sum of A and B, A + B, to be the sum componentwise, i.e.

air +bu apt+biz ... ayt+biy
A4 B = a1 + bor  ax + bea ... ag, + ban
A1 —|— b1 Qmo —|— bmo . Qmn + bimn
This works for vectors as well.
U+ v = (up, U, ..., Uy) + (V1,09 ..., 0,) = (U + V1, Uz + Vo ..., Uy + V)

Note that matrix addition is only defined if A and B have the same size.

Example 4

(a)

1 2 3 10 11 12 1+10 2+11 3+12 11 13 15
4 56 |+ 13 14 15 | =| 4+13 5+14 6+15 | = 17 19 21
789 16 17 18 7+16 8+17 9+18 23 25 27
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(b)
(1,2,3) + (4,5,6) = (1+4,2+5,3+6) = (5,7,9)
3. Matrix Multiplication

(a) Scalar Multiplication

Given a matrix A, and a scalar k, we define the scalar product of k£ with A, kA by
multiplying each entry of A by k.

a1 a2 ... QAip k:au ka12 e k:aln

a921 A929 ... QA9pn ]{?agl k:a22 e kagn
A=k T T = T

Aml Ama - -- Qmn ka1 kQpmas ... kamn

Note that this works for vectors as well.
ku = k(uy,ug, ..., u,) = (kuy, kusg, . .., kuy,)

Examples
i.

3 10 20 30
6 | =1 40 50 60
9 70 80 90

i,
5(1,2,3) = (5,10, 15)

(b) Vector Scalar Product or Dot Product

Given two n dimensional vectors u and v we define the vector scalar product or dot product
of u and v as the sum of the product of the components. So

u-v = (U, U, ...y Up) - (V1,09 ..., U,) = U1 + UV + . ..+ UV,

Note that the dot product is defined only for vectors, furthermore the dot product of
two vectors yields a scalar.

Example 5

(1,2,3) - (4,5,6) =1 x44+2x5+3x6=4+10+18 =32
Definition 6

i. The dot product of a vector u with itself (u - u) is the square of the length or
magnitude of u. We write |u| = y/u-u.



1.8

Vectors and Matrices

P. Danziger

ii. A vector, u, of length one is called a unit vector. Note that a unit vector satisfies

u-u=1.

Example 7

Find the magnitude of the vector u = (1,2, 3)

u-u=(1,23)-(1,23)=14+2+9=14

Thus |u| = V14.

Theorem 8 Given two n dimensional vectors w and v then u-v = |u] |v|cosf, where
0 s the angle between u and v.

Matrix Multiplication

If A and B are two matrices where A has the same number of columns as B has rows
(i,e. Aism xn and B is n x r) we define the matrix product, AB to be the matrix
in which the 4, *" entry is made up of the dot product of the i'" row of A with the ;™

column of B.

a11011 + a12b21 + ...+ a1,bpa
a21011 4 agebay + ... 4 agnbpa

am1b11 + CLmeQl + ...+ amnbnl

Example 9

1 2 3
4
7

NelNep!

3
8

Am1

9 8 7
6 5 4
3 21

Am2

Q1n bi1 bio
Q2p, ba1  bao
’ b= : :
Amn bnl an
Q1n b1 b2
Q2n, ba1  ba
Amn bnl bn2

blr
b27‘

b’l’b’/‘

a1101y + a12bo, + ...+ arpbyy
a2101y + ag2boy + ...+ agp by,

amlblr + ameZT +...+ amnbnr

I1xX94+2x6+3x3 1 x8+2%x5H+3x2 1x7+2x44+3x1
= 4Xx9+5X6+6%x3 4Xx8+HXx5H+6x%x2 4xT7T+5x4+6x1
TX9+8X6+9%x3 TXR8+8XxH5+9x2 7TxT7T+8x4+9x1

9412+9

8+10+6

T+8+3

36+30+18 32+25+12 28+20+6 | =
63 +48 +27 56440+ 18 49+ 3249

30 24 18
84 69 54
138 114 90
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Note that Matrix multiplication is only defined if A has the same number of columns
as B has rows.

Example 10

Theorem 11 (1.4.1)
(k+0)A=kA+1A

Distributivity of scalar multiplication I)
k(A+ B) =kA+ kB Distributivity of scalar multiplication IT)
AB+C)=AB+ AC Distributivity of matrix multiplication)

(
(
(
A(BC) = (AB)C (Associativity of matrix multiplication)
(
(
(

o e e e

A+B=B+A Commutativity of matrix addition)
(A+B)+C=A+(B+CC) (Associativity of matrix addition)
k(AB) = A(kB) Commutativity of Scalar Multiplication)

o e e

—
— S N

1

BIG Note
Matrix multiplication is NOT commutative. i.e. It is NOT true that AB = BA (where
defined).



