Linear Algebra 1.2
Gaussian Elimination

P. Danziger

1 Row Echelon Form

Definition 1 1. A matriz is in Row Echelon Form (REF) if all of the following hold:

(a) Any rows consisting entirely of 0’s appear at the bottom.

(b) In any non-zero row the first number, from the left, is a one. Called the leading one or
pivot.

(c) In any two successive non-zero rows the leading one on top is to the left of the one on
the bottom.

2. A matriz is in Reduced Row Echelon Form (RREF) if it is in REF' (all of the above hold) and

any column containing a leading one is zero in all other entries.

2 The Gaussian Algorithm

The following Algorithm reduces an n x m matrix to REF by means of elementary row operations
alone.

1. For Each row i (R;) from 1 to n

(a) If any row j below row ¢ has non zero entries to the right of the first non zero entry in
row ¢ exchange row ¢ and j (R; < R;) [Ensure We are working on the leftmost nonzero
entry.]

(b) Preform R; — R; where ¢ = the first non-zero entry of row . [This ensures that row i
starts with a one.]

(c) For each row j (R;) below row i (Each j > 7)

i. Preform R; — R; — dR; where d = the entry in row j which is directly below the
pivot in row 4. [This ensures that row j has a 0 below the pivot of row i.]

(d) If any O rows have appeared exchange them to the bottom of the matrix.

3 The Gaussian-Jordan Algorithm

The following Algorithm reduces an n x m matrix to RREF by means of elementary row operations
alone.

1. Preform Gaussian elimination to get the matrix in REF
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2. For each non zero row i (R;) from n to 1 (bottom to top)

(a) For each row j (R;) above row i (Each j < i)

i. Preform R; — R; —bR; where b = the value in row j directly above the pivot in row
i. [This ensures that row j has a zero above the pivot in row i

Example of Gaussian Elimination and The Gauss-Jordan Method

Solve the following system of equations.

1+ 3x9 — 223+ 225 = 0

2x1 + 6x9 — by — 2x4 + 425 — 3¢ = —1
or3 + 10z4 + 1526 = 5
21’1 + 6272 + 81’4 + 4I5 + 181’6 = 06
The Augmented Matrix is:
13 -2 0 2 01]0
2 6 =5 =2 4 —-3|-1
00 5 10 0 15| 5
26 0 8 4 18] 6
First leading 1 is in the 1,1 position, already 1.
Get all 0’s below this leading 1 position.
13 -2 0 2 0[]0
RQ e R2 — 2R1 00 -1 -2 0 -3|-1
Ry — Ry — 2R, 00 5 10 0 15| 5
00 4 8 0 18] 6
Get leading 1 in second row.
13 =2 0 2 010
00 1 2 0 3|1
Re—==l1"4 0 5 100 155
00 4 8 0 18]6
Get all 0’s below second leading 1.
13 =20 2 0(0
R3 — R3 - 5R2 0 0 1 2 0 3|1
R4 e R4 — 4R2 00 0 00 010
00 0 0O 6|2
Move row of 0’s to bottom:
13 =202 0/0
00 1 20 3|1
Rs=Bal g0 0 00 6|2
00 0 O0O0O0]0
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Get next leading 1.

1
R3 — 6R3

OO O
OO O W
o O =

S O N O
S O O N

Matrix is now in Row Echelon Form.

O = W o

Gauss Elimination

Wi —= O

P. Danziger

We now use back substitution. The Matrix translates to the following system of equations:

T+ 31‘2 - 21’3 + 21’5 =
T3 + 21‘4 + 3£B6 =
Tg —

Wl = O

For each variable corresponding to a column not containing a leading 1, we assign a free variable.

Let s,t,7 € R.

Let xo = s,x4 =1, 25 = 1.

Then the equations imply: zg = %
r3=1—2x4—3x¢=1—2t — 1= =2t So 3 = —2t.

x1 = —3x9 + 2x3 — 2x5 = —3s + 2(—2t) — 2r. So x; = —3s — 4t — 2r.

Thus the final solution is:
(21, T2, T3, Ty, T5, 6) = (—3s — 4t — 2r, 5, =21, 1,7, %)

Gauss-Jordan

We continue the algorithm to get the matrix in Reduced Row Echelon Form.

Get 0’s above rightmost leading 1 (in column 6).

13 =20
00 1 2
o= =3l g g o
00 0 O
Get 0’s above next leading 1 (in column 3).

1 3 0 4

001 2

Rl — Rl + 2R2 0000

0000

The Matrix is now in Reduced Row Echelon Form.
The Matrix translates to the following system of equations:

T +3x2+4x4+2x5 =
T3+ 24 =
Tg =

S O O N

S O O

w— o O

O = OO

o= O O

Owr O O

Owr O O



Linear Algebra 1.2 Gaussian Elimination P. Danziger

For each variable corresponding to a column not containing a leading 1, we assign a free variable.
Let s, t,r € R.

Let xo = s,x4 =1, x5 = 1.

Then the matrix implies: zg = %
T3 = —2t

1 = —3x9 — 4wy — 205 = —3s — 4t — 2r.

Thus the final solution is

(21, T2, T3, Ty, T5, 6) = (—3s — 4t — 21, 5, =2, t, 7, %)



