ON MEYNIEL EXTREMAL FAMILIES OF GRAPHS

Ryan Cushman Postdoctoral Research Fellow Toronto Metropolitan University

10th Graph Searching in Canada Workshop Thursday, August 4, 2022

Ryan Cushman

Meyniel Extremal Families

1 Meyniel extremal families

2 New Constructions

3 New results from hypergraphs

4 Open Problems

< ∃ >

3

There is a constant D > 0 such that for all connected graphs of order n, $c(G) \le D\sqrt{n}$.

Progress:

There is a constant D > 0 such that for all connected graphs of order n, $c(G) \le D\sqrt{n}$.

Progress:

• (FRANKL, 1987): $c(G) \le (1 + o(1)) \frac{n \log \log n}{\log n}$

There is a constant D > 0 such that for all connected graphs of order n, $c(G) \le D\sqrt{n}$.

Progress:

- (FRANKL, 1987): $c(G) \le (1 + o(1)) \frac{n \log \log n}{\log n}$
- (Chiniforooshan, 2008): $c(G) = O(n/\log n)$

There is a constant D > 0 such that for all connected graphs of order n, $c(G) \le D\sqrt{n}$.

Progress:

- (FRANKL, 1987): $c(G) \le (1 + o(1)) \frac{n \log \log n}{\log n}$
- (Chiniforooshan, 2008): $c(G) = O(n/\log n)$
- (FRIEZE, KRIVELEVICH, LOH, 2012), (LU, PENG, 2012), (SCOTT, SUDAKOV, 2011): $c(G) = O\left(\frac{n}{2^{(1-o(1))\sqrt{\log_2 n}}}\right)$

Let I be an infinite set of positive integers.

The family $\{G_n\}_{n \in I}$ is called **Meyniel extremal** if there exists a positive constant *d* such that for G_n we have $c(G_n) \ge d\sqrt{n}$ for all $n \in I$.

Incidence Graphs of the Projective Planes

- A **projective plane** *P* consists of a set of points and lines obeying certain axioms
 - **1** There is exactly one line incident with every pair of distinct points
 - 2 There is exactly one point incident with every pair of distinct lines
 - There are four points such that no line is incident with more than two of them

INCIDENCE GRAPHS OF THE PROJECTIVE PLANES

- A **projective plane** *P* consists of a set of points and lines obeying certain axioms
 - **1** There is exactly one line incident with every pair of distinct points
 - 2 There is exactly one point incident with every pair of distinct lines
 - There are four points such that no line is incident with more than two of them
- Projective planes are known to exist for prime powers

- G_q has $2(q^2 + q + 1)$ vertices
- G_q is (q+1)-regular
- *G_q* has girth 6

- G_q has $2(q^2 + q + 1)$ vertices
- G_q is (q+1)-regular
- G_q has girth 6

LEMMA (Aigner, Fromme, 1984)

If G has girth at least 5, then $c(G) \ge \delta(G)$.

- G_q has $2(q^2 + q + 1)$ vertices
- G_q is (q+1)-regular
- G_q has girth 6

LEMMA (Aigner, Fromme, 1984)

If G has girth at least 5, then $c(G) \ge \delta(G)$.

• So $c(G_q) \ge q+1$

• So there exists some d>0 with $c(G_q)\geq d\sqrt{2(q^2+q+1)}$ for all $q\in I$

Known Meyniel extremal families

- from designs (BONATO, BURGESS, 2013)
- from partial affine planes (BAIRD, BONATO, 2012)
- polarity graphs (BONATO, BURGESS, 2013)
- *t*-orbit graphs (BONATO, BURGESS, 2013)
- certain Cayley graphs (HASIRI, SHINKAR, 2021), (BRADSHAW, HOSSEINI, TURCOTTE, 2021)

1 Meyniel extremal families

2 New Constructions

3 New results from hypergraphs

4 Open Problems

< ∃ >

3

All known Meyniel extremal families have degrees in $\Theta(|\sqrt{|V|}|)$. We find families that have much smaller minimum degree

All known Meyniel extremal families have degrees in $\Theta(|\sqrt{|V|}|)$. We find families that have much smaller minimum degree

THEOREM (BONATO, C., MARBACH, 2022+)

Fix $0 < \varepsilon < 1$. If $\{G_n\}_{n \in I}$ is a family of C_4 -free graphs with degrees in $\Theta(\sqrt{n})$, then there exists r pairwise nonisomorphic, Meyniel extremal, spanning families of $\{G_n\}_{n \in I}$, where

 $r \geq 2^{d(\varepsilon)\delta(G_n)}$

where $d(\varepsilon)$ is a constant depending on ε .

Verification for many Meyniel extremal families rely on the following lemma (or (AIGNER, FROMME, 1984))

LEMMA (BONATO, BURGESS, 2013)

Let $t \ge 1$ be an integer. If G is $K_{2,t}$ -free, then $c(G) \ge \delta(G)/t$.

Verification for many Meyniel extremal families rely on the following lemma (or (AIGNER, FROMME, 1984))

LEMMA (BONATO, BURGESS, 2013)

Let $t \ge 1$ be an integer. If G is $K_{2,t}$ -free, then $c(G) \ge \delta(G)/t$.

We present the following generalization.

LEMMA (BONATO, C., MARBACH, 2022+)

Let $n \ge 1, k \ge 0$ be integers with $n \ge k$. If G is $K_{2,t}$ -free for $t \ge 1$ an integer and has n - k vertices of degree at least D and k vertices of degree less than D, with D > k, then

$$c(G)\geq \frac{D-k}{t}.$$

Sketch: New Meyniel Extremal Families

- Let v be a vertex of degree δ_n in G_n
- Let $\mathbf{x} = (x_i)_{i=1}^{\varepsilon \delta_n}$, where $x_i \le \deg(v_i) 3$
- Delete x_i edges from v_i to N₂(v)
- New LB: cop number still at least $(\delta_n \varepsilon \delta_n)/2 = \Omega(\sqrt{n})$
- Can choose many **x** that are nonisomorphic

For graphs G and H, define the **lexicographic product** written $G \bullet H$ to have vertices $V(G) \times V(H)$, and (u, v) is adjacent to (x, y) if u is adjacent to x in G or u = x, and v is adjacent to y in H.

Think of $G \bullet H$ as replacing each vertex x of G with a copy of H labeled as H_x , such that if $xy \in E(G)$, then all edges are present between H_x and H_y

For graphs G and H, define the **lexicographic product** written $G \bullet H$ to have vertices $V(G) \times V(H)$, and (u, v) is adjacent to (x, y) if u is adjacent to x in G or u = x, and v is adjacent to y in H.

Think of $G \bullet H$ as replacing each vertex x of G with a copy of H labeled as H_x , such that if $xy \in E(G)$, then all edges are present between H_x and H_y

THEOREM (SCHRÖDER, 1998)

If $c(G) \ge 2$ then $c(G \bullet H) = c(G)$.

For graphs G and H, define the **lexicographic product** written $G \bullet H$ to have vertices $V(G) \times V(H)$, and (u, v) is adjacent to (x, y) if u is adjacent to x in G or u = x, and v is adjacent to y in H.

Think of $G \bullet H$ as replacing each vertex x of G with a copy of H labeled as H_x , such that if $xy \in E(G)$, then all edges are present between H_x and H_y

THEOREM (SCHRÖDER, 1998)

If $c(G) \ge 2$ then $c(G \bullet H) = c(G)$.

THEOREM (BONATO, C., MARBACH, 2022+)

For an integer $t \ge 1$, there exist Meyniel extremal families containing graphs that are regular and with clique and chromatic number at least t.

ヘロト A倒ト A目ト A目トー

REGULAR WITH LARGE CHROMATIC NUMBER

< ∃ >

3

Most examples of Meyniel extremal families have very small diameter.

Theorem

Let q be a prime power and m a positive integer. The graph BF(q, m) is a bipartite graph with the following properties:

- order $2(q^2 + q + 1)m$ and $(q^2 + q + 1)(q + 1)m$ edges
- Q C₄-free
- 8 diameter 2m
- (q+1)-regular
- **(5)** cop number at least q + 1

LARGE DIAMETER

E

LARGE DIAMETER

E

< ∃⇒

1 Meyniel extremal families

2 New Constructions

3 New results from hypergraphs

4 Open Problems

< ∃ >

3

- A **blocking set** of a hypergraph is a subset of its vertices such that each edge contains one vertex from the subset of vertices.
- Let x_v be an indicator variable for v being in the blocking set.
- Integer program

$$\begin{array}{l} \text{minimize} \sum_{v \in V} x_v & (1) \\ \text{subject to} \sum_{v \in e} x_v \geq 1 \end{array} \end{array}$$

- If we let $x_v \in [0, 1]$, we have a linear program (2).
- (LovÁsz, 1975) We may approximate the solution to (1) by the solution to (2).

A graph is **vertex-transitive** if for every two vertices x and y, there is an automorphism mapping x to y.

Theorem

Let G be a vertex-transitive graph G with degree m, and let $d = m \cdot \text{diam}(G)$. We have that

$$c(G) \leq \frac{3n\log d}{d}$$

• diameter length caterpillar (DLC) as a minimum distance caterpillar of length diam(G)

3

< ∃ >

• diameter length caterpillar (DLC) as a minimum distance caterpillar of length diam(G)

- Define a hypergraph ${\mathcal H}$ with hyperedges based on DLCs
- Vertex-transitivity allows the number of DLCs each vertex is in to be the same for all vertices

• diameter length caterpillar (DLC) as a minimum distance caterpillar of length diam(G)

- Define a hypergraph ${\mathcal H}$ with hyperedges based on DLCs
- Vertex-transitivity allows the number of DLCs each vertex is in to be the same for all vertices
- Set up an LP to find blocking set for \mathcal{H} and use (Lovász, 1975)
- Blocking set of $\mathcal H$ correspond to set of DLCs that cover all vertices, and 5 cops may guard each of the DLCs

COROLLARY

If G is a vertex-transitive graph with degree $m = \Theta(n^{1-\varepsilon})$ for a constant $0 \le \varepsilon < 1$, then

$$c(G) = O(n^{1-\varepsilon} \log n)$$

 $\leftarrow \equiv \rightarrow$

3

1 Meyniel extremal families

2 New Constructions

3 New results from hypergraphs

4 Open Problems

-< ∃ →

- There are Meyniel extremal families with \sqrt{n} vertices of constant degree
- However, the maximum and average degree are still $\Omega(\sqrt{n})$
- (HOSSEINI ET AL., 2021) There are subcubic graphs with $c(G) = \Omega(n^{1/2-arepsilon})$

- There are Meyniel extremal families with \sqrt{n} vertices of constant degree
- However, the maximum and average degree are still $\Omega(\sqrt{n})$
- (HOSSEINI ET AL., 2021) There are subcubic graphs with $c(G) = \Omega(n^{1/2-\varepsilon})$

Conjecture

Every Meyniel extremal family contains graphs with maximum degree $\omega(1)$

Conjecture

Every Meyniel extremal family contains graphs with average degree $\omega(1)$

THANK YOU

Ryan Cushman

Meyniel Extremal Families

 $24 \, / \, 24$

1

→ 돈 ► → 돈 ►