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MEYNIEL’'S CONJECTURE

CONJECTURE (MEYNIEL'S CONJECTURE)

There is a constant D > 0 such that for all connected graphs of order n,

c(G) < Dy/n.
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MEYNIEL’'S CONJECTURE

CONJECTURE (MEYNIEL'S CONJECTURE)

There is a constant D > 0 such that for all connected graphs of order n,

c(G) < Dy/n.

Progress:
® (FRANKL, 1987): ¢(G) < (1 + 0(1))M

logn

¢ (CHINIFOROOSHAN, 2008): ¢(G) = O(n/ log n)
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MEYNIEL’'S CONJECTURE

CONJECTURE (MEYNIEL'S CONJECTURE)

There is a constant D > 0 such that for all connected graphs of order n,

c(G) < Dy/n.

Progress:
e (FRANKL, 1987): ¢(G) < (1+ 0(1))M

logn
¢ (CHINIFOROOSHAN, 2008): ¢(G) = O(n/ log n)
® (Frieze, KrRIvELEVICH, LoH, 2012), (Lu, PENG, 2012), (ScOTT,

Subakov, 2011): ¢(G) = O (m
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MEYNIEL EXTREMAL FAMILIES

Let / be an infinite set of positive integers.

The family {Gp} ¢/ is called Meyniel extremal if there exists a positive
constant d such that for G, we have ¢(G,) > dv/n for all n € I.
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INCIDENCE GRAPHS OF THE PROJECTIVE PLANES

e A projective plane P consists of a set of points and lines obeying
certain axioms

@ There is exactly one line incident with every pair of distinct points

® There is exactly one point incident with every pair of distinct lines

® There are four points such that no line is incident with more than two
of them
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INCIDENCE GRAPHS OF THE PROJECTIVE PLANES

e A projective plane P consists of a set of points and lines obeying
certain axioms
@ There is exactly one line incident with every pair of distinct points
® There is exactly one point incident with every pair of distinct lines
® There are four points such that no line is incident with more than two
of them

® Projective planes are known to exist for prime powers
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INCIDENCE GRAPHS OF THE PROJECTIVE PLANES

If I is the set of prime powers then let G, for g € I be the incidence graph
of the projective plane on g? + g + 1 lines and g + g + 1 points. Then
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INCIDENCE GRAPHS OF THE PROJECTIVE PLANES

If I is the set of prime powers then let G, for g € I be the incidence graph
of the projective plane on g? + g + 1 lines and g + g + 1 points. Then

® Gg has 2(q% + q + 1) vertices
® Ggis (q+ 1)-regular
® Gq has girth 6
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INCIDENCE GRAPHS OF THE PROJECTIVE PLANES

If I is the set of prime powers then let G, for g € I be the incidence graph
of the projective plane on g? + g + 1 lines and g + g + 1 points. Then

® Gg has 2(q% + q + 1) vertices
® Ggis (q+ 1)-regular
® Gq has girth 6

LEMMA (AIGNER, FROMME, 1984)
If G has girth at least 5, then c(G) > §(G).
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INCIDENCE GRAPHS OF THE PROJECTIVE PLANES

If I is the set of prime powers then let G, for g € I be the incidence graph
of the projective plane on g? + g + 1 lines and g + g + 1 points. Then

® Gg has 2(q% + q + 1) vertices
® Ggis (q+ 1)-regular
® Gq has girth 6

LEMMA (AIGNER, FROMME, 1984)
If G has girth at least 5, then c(G) > §(G).

® Soc(Gg)>q+1

® So there exists some d > 0 with ¢(Gg) > d4/2(q? + g + 1) for all

gel
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OTHER MEYNIEL EXTREMAL FAMILIES

Known Meyniel extremal families
® from designs (BoNaTO, BURGESS, 2013)
® from partial affine planes (BAIRD, BoNaTO, 2012)
® polarity graphs (BoNaTO, BURGESS, 2013)
® t-orbit graphs (BoNaATO, BURGESS, 2013)

e certain Cayley graphs (HASIRI, SHINKAR, 2021), (BRADSHAW,
HossEINI, TURCOTTE, 2021)
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NEW MEYNIEL EXTREMAL FAMILIES

All known Meyniel extremal families have degrees in ©(|/|V]|). We find
families that have much smaller minimum degree
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NEW MEYNIEL EXTREMAL FAMILIES

All known Meyniel extremal families have degrees in ©(|/|V]|). We find
families that have much smaller minimum degree

THEOREM (BonaTo, C., MARBACH, 2022+ )

Fix 0 < & < 1. If {Gp}nes is a family of Cy-free graphs with degrees in
©(y/n), then there exists r pairwise nonisomorphic, Meyniel extremal,
spanning families of { Gp}pey, where

r > 2d()3(60)

where d(e) is a constant depending on ¢.
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TooLs: NEw LOWER BOUND

Verification for many Meyniel extremal families rely on the following
lemma (or (AIGNER, FROMME, 1984))

LEMMA (BonATO, BURGESS, 2013)

Let t > 1 be an integer. If G is Ky ¢-free, then c(G) > 6(G)/t.
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TooLs: NEw LOWER BOUND

Verification for many Meyniel extremal families rely on the following
lemma (or (AIGNER, FROMME, 1984))

LEMMA (BonATO, BURGESS, 2013)

Let t > 1 be an integer. If G is Ky ¢-free, then c(G) > 6(G)/t.

We present the following generalization.

LEMMA (Bonato, C., MARBACH, 2022+ )

Let n > 1,k > 0 be integers with n > k. If G is Ky -free for t > 1 an
integer and has n — k vertices of degree at least D and k vertices of degree
less than D, with D > k, then
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SKETCH: NEW MEYNIEL EXTREMAL FAMILIES

® |et v be a vertex of degree J,
in G,

* Let x = (x)%7, where
x; < deg(v;) —3

® Delete x; edges from v; to v
N2(v)

® New LB: cop number still at

least (0, — €0,)/2 = Q(y/n)

® Can choose many x that are
nonisomorphic

€dp,

Nl(V) N2(V)
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REGULAR WITH LARGE CHROMATIC NUMBER

For graphs G and H, define the lexicographic product written G e H to
have vertices V(G) x V(H), and (u,v) is adjacent to (x,y) if u is
adjacent to x in G or u = x, and v is adjacent to y in H.

Think of G e H as replacing each vertex x of G with a copy of H labeled as
Hy, such that if xy € E(G), then all edges are present between H, and H,
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REGULAR WITH LARGE CHROMATIC NUMBER

For graphs G and H, define the lexicographic product written G e H to
have vertices V(G) x V(H), and (u,v) is adjacent to (x,y) if u is
adjacent to x in G or u = x, and v is adjacent to y in H.

Think of G e H as replacing each vertex x of G with a copy of H labeled as
Hy, such that if xy € E(G), then all edges are present between H, and H,

THEOREM (SCHRODER, 1998)
If ¢(G) > 2 then c(G e H) = ¢(G).
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REGULAR WITH LARGE CHROMATIC NUMBER

For graphs G and H, define the lexicographic product written G e H to
have vertices V(G) x V(H), and (u,v) is adjacent to (x,y) if u is
adjacent to x in G or u = x, and v is adjacent to y in H.

Think of G e H as replacing each vertex x of G with a copy of H labeled as
Hy, such that if xy € E(G), then all edges are present between H, and H,

THEOREM (SCHRODER, 1998)
If ¢(G) > 2 then c(G o H) = ¢(G).

THEOREM (BonaTo, C., MARBACH, 2022+ )

For an integer t > 1, there exist Meyniel extremal families containing
graphs that are regular and with clique and chromatic number at least t.
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REGULAR WITH LARGE CHROMATIC NUMBER
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LARGE DIAMETER

Most examples of Meyniel extremal families have very small diameter.

THEOREM

Let g be a prime power and m a positive integer. The graph BF(q, m) is a
bipartite graph with the following properties:

©® order 2(q°> + g+ 1)m and (¢*> + q + 1)(q + 1)m edges
® Cy-free

® diameter 2m

@ (g + 1)-regular

® cop number at least g + 1
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LARGE DIAMETER
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TOOLS FROM HYPERGRAPHS

A blocking set of a hypergraph is a subset of its vertices such that
each edge contains one vertex from the subset of vertices.

® |et x, be an indicator variable for v being in the blocking set.
® Integer program

minimize Z Xy (1)
veV
subject tonv >1
vee
® If we let x, € [0,1], we have a linear program (2).
[ ]

(LovAsz, 1975) We may approximate the solution to (1) by the
solution to (2).
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VERTEX TRANSITIVE GRAPHS

A graph is vertex-transitive if for every two vertices x and y, there is an
automorphism mapping x to y.

Let G be a vertex-transitive graph G with degree m, and let
d = m-diam(G). We have that

3nlogd

c(G) < 7
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SKETCH

¢ diameter length caterpillar (DLC) as a minimum distance
caterpillar of length diam(G)

u
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SKETCH

¢ diameter length caterpillar (DLC) as a minimum distance
caterpillar of length diam(G)

u
14
e Define a hypergraph H with hyperedges based on DLCs

® Vertex-transitivity allows the number of DLCs each vertex is in to be
the same for all vertices
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SKETCH

¢ diameter length caterpillar (DLC) as a minimum distance
caterpillar of length diam(G)

u
14
e Define a hypergraph H with hyperedges based on DLCs

® Vertex-transitivity allows the number of DLCs each vertex is in to be
the same for all vertices

® Set up an LP to find blocking set for H and use (LovAsz, 1975)

e Blocking set of H correspond to set of DLCs that cover all vertices,
and 5 cops may guard each of the DLCs
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NEW BOUNDS

COROLLARY

If G is a vertex-transitive graph with degree m = ©(n'~¢) for a constant
0<e<1, then
c(G) = O(n*~% log n)
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OPEN PROBLEMS

® There are Meyniel extremal families with /n vertices of constant
degree

® However, the maximum and average degree are still Q(v/n)

® (HOSSEINI ET AL., 2021) There are subcubic graphs with
c(G) = Q(n"/?7)
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OPEN PROBLEMS

® There are Meyniel extremal families with \/n vertices of constant
degree

® However, the maximum and average degree are still Q(v/n)

® (HOSSEINI ET AL., 2021) There are subcubic graphs with
c(G) = Q(n"/?7)

Every Meyniel extremal family contains graphs with maximum degree w(1)

Every Meyniel extremal family contains graphs with average degree w(1) \
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(QUESTIONS?

THANK YOU

RyAN CUSHMAN MEYNIEL EXTREMAL FAMILIES



	Meyniel extremal families
	New Constructions
	New results from hypergraphs
	Open Problems

