Game of Cops and Robber On Geodesic Spaces

Bojan Mohar

Simon Fraser University

(partly joint work with Vesna Iršič and Alexandra Wesolek)

GraSCan 2022

Bojan Mohar [Graph Searching](#page-27-0)

Overview

- ▶ Cops and Robber game on graphs
- ▶ Graphs on a fixed surface and Meyniel's conjecture
- ▶ Game on geodesic spaces
- ▶ Methods and examples

Game of Cops and Robber

Cop number of a graph

Cop number of $G: |c(G)|$

min number of cops to guarantee capturing the robber on G

Petersen's graph is the smallest graph with cop number 3.

Bojan Mohar **[Graph Searching](#page-0-0)**

Which graphs have small cop number

- \blacktriangleright Trees and tree-like graphs
- ▶ Planar graphs (Aigner and Fromme, 1984)

Which graphs have small cop number

- \blacktriangleright Trees and tree-like graphs
- ▶ Planar graphs (Aigner and Fromme, 1984)
- \triangleright Graphs on a fixed surface
- ▶ Graphs excluding a fixed minor (Andreae, 1986)
- ▶ d-dimensional grids $P_n \Box P_m \Box P_l$, or toroidal grids $C_n \Box C_m \Box C_l$

Large cop number (examples with $c(G) = \Theta(n^{1/2}))$

► Graphs with min degree $\Theta(\sqrt{n})$ and girth ≥ 5

Which graphs have small cop number

- \blacktriangleright Trees and tree-like graphs
- ▶ Planar graphs (Aigner and Fromme, 1984)
- ▶ Graphs on a fixed surface
- ▶ Graphs excluding a fixed minor (Andreae, 1986)
- ▶ d-dimensional grids $P_n \Box P_m \Box P_l$, or toroidal grids $C_n \Box C_m \Box C_l$

Large cop number (examples with $c(G) = \Theta(n^{1/2}))$

- ► Graphs with min degree $\Theta(\sqrt{n})$ and girth ≥ 5
- \triangleright Random graphs (Bollobás, Kun, Leader 2013; Luczak and Prałat 2010)
- ▶ Cubic graphs (Gonzalez Hermosillo de la Maza, Hosseini, M. 2021)
- ▶ Cayley graphs of Abelian groups (Frankl 1986, Bradshaw 2018)

Graphs on a fixed surface

Theorem (Schroeder, 2001)

If G can be embedded onto a surface of genus g, then $c(G) \leq \frac{3}{2}$ $\frac{3}{2}$ g + 3

3 $\frac{3}{2}$ was improved to $\frac{4}{3}$ by Erde, Lehner, Pitz, Bowler (2019)

Theorem (Erde and Lehner $(2021+)$) If G can be embedded onto a surface of genus g, then $c(G) \leq \alpha g + 3$, where $\alpha \approx 1.27 + o_g(1)$.

Graphs on a fixed surface. II

```
c(g) := \max\{c(G) \mid G \rightarrow S_g\}
```

```
Conjecture (Schroeder, 2001)
c(g) \leq g+3
```
Graphs on a fixed surface. II

$$
c(g) := \max\{c(G) | G \to S_g\}
$$

Conjecture (Schroeder, 2001) $c(g) \leq g+3$

Conjecture (Mohar)

$$
c(g) = \widetilde{\Theta}(g^{1/2})
$$

Reason?

- \blacktriangleright Lack of examples coming close to $g + 3$
- \triangleright Relationship to another conjecture

Meyniel Conjecture. I

There are many examples of *n*-vertex graphs, whose cop number is of There are
order \sqrt{n} .

Conjecture (Meyniel (1985))

There is a constant α such that every graph of order n has $\frac{\pi}{c(G)} \leq \alpha \sqrt{2c(G)}$ \overline{n} |.

Theorem $c(G) \leq O\left(\frac{n}{2(1-c(1))}\right)$ $\frac{n}{2^{(1-o(1))\sqrt{\log n}}}\right)$

Scott and Sudakov (2011), Lu and Peng (2012), Frieze, Krivelevich and Loh (2012).

Meyniel Conjecture. II

Conjecture (Weak Meyniel Conjecture)

There are positive constants α and ε such that every graph of order n has $|$ c(G) $\leq \alpha$ n $^{1-\varepsilon}$

Theorem (Gonzalez Hermosillo de la Maza, Hosseini, M. 2021) If all subcubic graphs satisfy the ε -Weak Meyniel conjecture, then ALL graphs satisfy the $\frac{1}{2}\varepsilon$ -Weak Meyniel conjecture.

Meyniel Conjecture. III

Game can be defined on metric graphs $X(G, w)$ where edges are intervals of length $w(e)$, $e \in E(G)$

Players move "continuously" with unit speed along the edges of G

Edge-contraction: $w(e) \rightarrow 0$ Edge-deletion: $w(e) \rightarrow \infty$

Conjecture (M. 2021) For every n: $\boxed{\sup_{w} c(K_n, w) = \Theta(\sqrt{n})}$

Lion and Man

Richard Rado / Littlewood / Bollobás

Besicovich strategy of escaping Radial strategy for approaching

Cops and Robber game on geodesic spaces

Geodesic space X : compact metric space s.t. $\forall x, y \in X : \exists (x, y)$ -path of length $d(x, y)$

Isometric path / geodesic

Robber selects agility function: $\tau : \mathbb{N} \to \mathbb{R}_+$ s.t. $\sum_n \tau(n) = \infty$

Rules of the game on X

- \blacktriangleright The robber selects initial positions of all players
- **►** The robber selects the agility function $\tau(n)$, $n \in \mathbb{N}$
- \blacktriangleright In the n^{th} step, robber moves at most $\tau(n)$ away, then the cops move at most $\tau(n)$ away from their current positions.

Rules of the game on X

- \triangleright The robber selects initial positions of all players
- **►** The robber selects the agility function $\tau(n)$, $n \in \mathbb{N}$
- \blacktriangleright In the n^{th} step, robber moves at most $\tau(n)$ away, then the cops move at most $\tau(n)$ away from their current positions.

Value of the gameplay : inf_n $d(R_n, C_n)$.

Winning the game (cops) $c(X)$: inf_n $d(R_n, C_n) = 0$ Catching the robber $c_0(X)$: $\exists n : d(R_n, C_n) = 0$

Rules of the game on X

- \triangleright The robber selects initial positions of all players
- **►** The robber selects the agility function $\tau(n)$, $n \in \mathbb{N}$
- \blacktriangleright In the n^{th} step, robber moves at most $\tau(n)$ away, then the cops move at most $\tau(n)$ away from their current positions.

Value of the gameplay : $\inf_n d(R_n, C_n)$.

Winning the game (cops) $c(X)$: inf_n $d(R_n, C_n) = 0$ Catching the robber $c_0(X)$: $\exists n : d(R_n, C_n) = 0$

Summary

- \triangleright There is a min-max (inf-sup) theorem.
- \triangleright Winning strategy: For each $\varepsilon > 0$, win the ε -approaching game
- \triangleright Define $c_{\varepsilon}(X)$: the number of cops needed to win the ε -approaching game
- \blacktriangleright Then $c(X) = \sup c_{\epsilon}(X)$
- ▶ It may happen that $c(X) = 1$ and $c_0(X) = \infty$

Guarding an isometric path

Basic idea of Aigner and Fromme for guarding an isometric path works:

Lemma. If P is a geodesic in X then one cop can guard it. (If R ever steps on P , he will be caught).

Proof idea: Let P be an (a, b) -geodesic. Define the shadow $\sigma(x) = b$ if $d(a, x) > d(a, b)$, and let $\sigma(x) = z$ s.t. $d(a, x) = d(a, z)$, otherwise. This is a 1-Lipschitz mapping: $d(\sigma(x), \sigma(x') \leq d(x, x')).$

Guarding an isometric path

Basic idea of Aigner and Fromme for guarding an isometric path works:

Lemma. If P is a geodesic in X then one cop can guard it. (If R ever steps on P , he will be caught).

Proof idea: Let P be an (a, b) -geodesic. Define the shadow $\sigma(x) = b$ if $d(a, x) > d(a, b)$, and let $\sigma(x) = z$ s.t. $d(a, x) = d(a, z)$, otherwise. This is a 1-Lipschitz mapping: $d(\sigma(x), \sigma(x') \leq d(x, x')).$ First, a cop catches the shadow $\sigma(R)$ of R.

Second, the cop maintains being at the vertex $\sigma(R)$, he can guard P.

How to catch the robber on a torus

Theorem

If a compact geodesic space X is homeomorphic to a subset of the torus, then $|c(G) \leq 3|$

Florian Lehner's trick:

How to catch the robber on the *n*-sphere

n-dimensional sphere $S^n \subset \mathbb{R}^{n+1}$

$$
c(S^n) = 2 \text{ (coming } \varepsilon\text{-close)} \qquad c_0(S)
$$

 $n(n) = n + 1$ (catching)

How to catch the robber on the *n*-sphere

n-dimensional sphere $S^n \subset \mathbb{R}^{n+1}$

Guarding the equator The radial strategy

Bojan Mohar [Graph Searching](#page-0-0)

 $\mathcal{K}_n^{(3)}$: the complete 3-uniform hypergraph, simplicial complex by having a simplex for each triple $\{x, y, z\} \subseteq [n]$

A simple strategy with $O(n^2)$ cops works.

 $\mathcal{K}_n^{(3)}$: the complete 3-uniform hypergraph, simplicial complex by having a simplex for each triple $\{x, y, z\} \subset [n]$

A simple strategy with $O(n^2)$ cops works. But we found a beautiful strategy with $O(n)$ cops.

 $\mathcal{K}_n^{(3)}$: the complete 3-uniform hypergraph, simplicial complex by having a simplex for each triple $\{x, y, z\} \subseteq [n]$

A simple strategy with $O(n^2)$ cops works. But we found a beautiful strategy with $O(n)$ cops.

A thought. Would this be a counterexample to my conjecture that the ranks of homology groups give an upper bound on $c(X)$?

 $\mathcal{K}_n^{(3)}$: the complete 3-uniform hypergraph, simplicial complex by having a simplex for each triple $\{x, y, z\} \subseteq [n]$

A simple strategy with $O(n^2)$ cops works. But we found a beautiful strategy with $O(n)$ cops.

A thought. Would this be a counterexample to my conjecture that the ranks of homology groups give an upper bound on $c(X)$?

Theorem.

$$
c_0(K_n^{(3)})\leq 10
$$

Thank you for listening!