Game of Cops and Robber On Geodesic Spaces

Bojan Mohar

Simon Fraser University

(partly joint work with Vesna Iršič and Alexandra Wesolek)

GraSCan 2022

Bojan Mohar

Graph Searching

Overview

- Cops and Robber game on graphs
- Graphs on a fixed surface and Meyniel's conjecture
- Game on geodesic spaces
- Methods and examples

Game of Cops and Robber

Cop number of a graph

Cop number of G: c(G)

min number of cops to guarantee capturing the robber on G

Petersen's graph is the smallest graph with cop number 3.

Bojan Mohar

Graph Searching

Which graphs have small cop number

- Trees and tree-like graphs
- Planar graphs (Aigner and Fromme, 1984)

Which graphs have small cop number

- Trees and tree-like graphs
- Planar graphs (Aigner and Fromme, 1984)
- Graphs on a fixed surface
- Graphs excluding a fixed minor (Andreae, 1986)
- *d*-dimensional grids $P_n \Box P_m \Box P_l$, or toroidal grids $C_n \Box C_m \Box C_l$

Large cop number (examples with $c(G) = \widetilde{\Theta}(n^{1/2})$)

• Graphs with min degree $\Theta(\sqrt{n})$ and girth ≥ 5

Which graphs have small cop number

- Trees and tree-like graphs
- Planar graphs (Aigner and Fromme, 1984)
- Graphs on a fixed surface
- Graphs excluding a fixed minor (Andreae, 1986)
- *d*-dimensional grids $P_n \Box P_m \Box P_l$, or toroidal grids $C_n \Box C_m \Box C_l$

Large cop number (examples with $c(G) = \widetilde{\Theta}(n^{1/2})$)

- Graphs with min degree $\Theta(\sqrt{n})$ and girth ≥ 5
- Random graphs (Bollobás, Kun, Leader 2013; Łuczak and Prałat 2010)
- Cubic graphs (Gonzalez Hermosillo de la Maza, Hosseini, M. 2021)
- Cayley graphs of Abelian groups (Frankl 1986, Bradshaw 2018)

Bojan Mohar

Graphs on a fixed surface

Theorem (Schroeder, 2001)

If G can be embedded onto a surface of genus g, then $c(G) \leq \frac{3}{2}g + 3$

 $\frac{3}{2}$ was improved to $\frac{4}{3}$ by Erde, Lehner, Pitz, Bowler (2019)

Theorem (Erde and Lehner (2021+)) If G can be embedded onto a surface of genus g, then $c(G) \le \alpha g + 3$, where $\alpha \approx 1.27 + o_g(1)$.

Graphs on a fixed surface. II

 $c(g) := \max\{c(G) \mid G \to S_g\}$

Conjecture (Schroeder, 2001) $c(g) \le g+3$

Graphs on a fixed surface. II

$$c(g) := \max\{c(G) \mid G \to S_g\}$$

Conjecture (Schroeder, 2001) $c(g) \le g+3$

 $\frac{\text{Conjecture (Mohar)}}{c(g) = \widetilde{\Theta}(g^{1/2})}$

Reason?

- Lack of examples coming close to g + 3
- Relationship to another conjecture

Meyniel Conjecture. I

There are many examples of *n*-vertex graphs, whose cop number is of order \sqrt{n} .

Conjecture (Meyniel (1985))

There is a constant α such that every graph of order n has $c(G) \leq \alpha \sqrt{n}$.

Theorem $c(G) \leq O\left(\frac{n}{2^{(1-o(1))\sqrt{\log n}}}\right)$

Scott and Sudakov (2011), Lu and Peng (2012), Frieze, Krivelevich and Loh (2012).

Meyniel Conjecture. II

Conjecture (Weak Meyniel Conjecture)

There are positive constants α and ε such that every graph of order n has $c(G) \leq \alpha n^{1-\varepsilon}$

Theorem (Gonzalez Hermosillo de la Maza, Hosseini, M. 2021) If all subcubic graphs satisfy the ε -Weak Meyniel conjecture, then ALL graphs satisfy the $\frac{1}{2}\varepsilon$ -Weak Meyniel conjecture.

Meyniel Conjecture. III

Game can be defined on metric graphs X(G, w)where edges are intervals of length w(e), $e \in E(G)$

Players move "continuously" with unit speed along the edges of G

Edge-contraction: $w(e) \rightarrow 0$ Edge-deletion: $w(e) \rightarrow \infty$

Conjecture (M. 2021) For every n: $sup_w c(K_n, w) = \Theta(\sqrt{n})$

Lion and Man

Richard Rado / Littlewood / Bollobás

Besicovich strategy of escaping

Radial strategy for approaching

Bojan Mohar

Graph Searching

Cops and Robber game on geodesic spaces

Geodesic space X: compact metric space s.t. $\forall x, y \in X : \exists (x, y) \text{-path of length } d(x, y)$ Isometric path / geodesic

Robber selects againity function: $\tau : \mathbb{N} \to \mathbb{R}_+$ s.t. $\sum_n \tau(n) = \infty$

Rules of the game on X

- The robber selects initial positions of all players
- The robber selects the agility function au(n), $n \in \mathbb{N}$
- In the nth step, robber moves at most τ(n) away, then the cops move at most τ(n) away from their current positions.

Rules of the game on X

- The robber selects initial positions of all players
- The robber selects the agility function $\tau(n)$, $n \in \mathbb{N}$
- In the nth step, robber moves at most τ(n) away, then the cops move at most τ(n) away from their current positions.

Value of the gameplay : $\inf_n d(R_n, C_n)$.

Winning the game (cops) c(X): $\inf_n d(R_n, C_n) = 0$ Catching the robber $c_0(X)$: $\exists n : d(R_n, C_n) = 0$

Rules of the game on X

- The robber selects initial positions of all players
- The robber selects the agility function au(n), $n \in \mathbb{N}$
- In the nth step, robber moves at most τ(n) away, then the cops move at most τ(n) away from their current positions.

Value of the gameplay : $\inf_n d(R_n, C_n)$.

Winning the game (cops) c(X): $\inf_n d(R_n, C_n) = 0$ Catching the robber $c_0(X)$: $\exists n : d(R_n, C_n) = 0$

Summary

- There is a min-max (inf-sup) theorem.
- Winning strategy: For each $\varepsilon > 0$, win the ε -approaching game
- Define c_ε(X): the number of cops needed to win the ε-approaching game
- Then $c(X) = \sup c_{\varepsilon}(X)$
- It may happen that c(X) = 1 and $c_0(X) = \infty$

Guarding an isometric path

Basic idea of Aigner and Fromme for guarding an isometric path works:

Lemma. If P is a geodesic in X then one cop can guard it. (If R ever steps on P, he will be caught).

Proof idea: Let P be an (a, b)-geodesic. Define the shadow $\sigma(x) = b$ if d(a, x) > d(a, b), and let $\sigma(x) = z$ s.t. d(a, x) = d(a, z), otherwise. This is a 1-Lipschitz mapping: $d(\sigma(x), \sigma(x') \le d(x, x')$.

Guarding an isometric path

Basic idea of Aigner and Fromme for guarding an isometric path works:

Lemma. If P is a geodesic in X then one cop can guard it. (If R ever steps on P, he will be caught).

Proof idea: Let *P* be an (a, b)-geodesic. Define the shadow $\sigma(x) = b$ if d(a, x) > d(a, b), and let $\sigma(x) = z$ s.t. d(a, x) = d(a, z), otherwise. This is a 1-Lipschitz mapping: $d(\sigma(x), \sigma(x') \le d(x, x')$. First, a cop catches the shadow $\sigma(R)$ of *R*.

Second, the cop maintains being at the vertex $\sigma(R)$, he can guard P.

Bojan Mohar

How to catch the robber on a torus

Theorem

If a compact geodesic space X is homeomorphic to a subset of the torus, then $\fbox{c(G)\leq 3}$

Florian Lehner's trick:

How to catch the robber on the *n*-sphere

n-dimensional sphere $S^n \subset \mathbb{R}^{n+1}$

$$c(S^n) = 2$$
 (coming ε -close)

 $c_0(S^n) = n + 1$ (catching)

How to catch the robber on the *n*-sphere

n-dimensional sphere $S^n \subset \mathbb{R}^{n+1}$

Guarding the equator

The radial strategy

 $K_n^{(3)}$: the complete 3-uniform hypergraph, simplicial complex by having a simplex for each triple $\{x, y, z\} \subseteq [n]$

A simple strategy with $O(n^2)$ cops works.

 $K_n^{(3)}$: the complete 3-uniform hypergraph, simplicial complex by having a simplex for each triple $\{x, y, z\} \subseteq [n]$

A simple strategy with $O(n^2)$ cops works. But we found a beautiful strategy with O(n) cops.

 $K_n^{(3)}$: the complete 3-uniform hypergraph, simplicial complex by having a simplex for each triple $\{x, y, z\} \subseteq [n]$

A simple strategy with $O(n^2)$ cops works. But we found a beautiful strategy with O(n) cops.

A thought. Would this be a counterexample to my conjecture that the ranks of homology groups give an upper bound on c(X)?

 $K_n^{(3)}$: the complete 3-uniform hypergraph, simplicial complex by having a simplex for each triple $\{x, y, z\} \subseteq [n]$

A simple strategy with $O(n^2)$ cops works. But we found a beautiful strategy with O(n) cops.

A thought. Would this be a counterexample to my conjecture that the ranks of homology groups give an upper bound on c(X)?

Theorem.

$$c_0(K_n^{(3)}) \leq 10$$

Thank you for listening!