Algorithms for Burning Graph Families

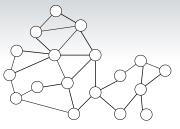
Shahin Kamali

August 6, 2021

Graph Searching in Canada (GRASCan) Workshop

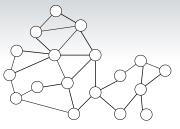
Algorithms for Burning Graph Families

• Given an undirected graph *G*, the goal is to **burn** in a minimum number of **rounds** [Bonato et al., 2014].



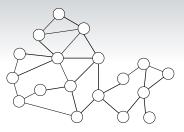
round: 0

• Given an undirected graph *G*, the goal is to **burn** in a minimum number of **rounds** [Bonato et al., 2014].



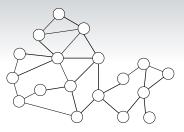
round: 0

- Given an undirected graph *G*, the goal is to **burn** in a minimum number of **rounds** [Bonato et al., 2014].
- At each given round:
 - A new fire can be initiated at any vertex.
 - The existing fires expand to their neighboring vertices.



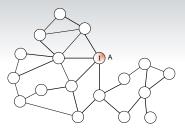
round: 0

- Given an undirected graph *G*, the goal is to **burn** in a minimum number of **rounds** [Bonato et al., 2014].
- At each given round:
 - A new fire can be initiated at any vertex.
 - The existing fires expand to their neighboring vertices.



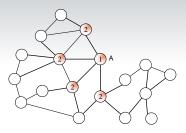
round: 0

- Given an undirected graph *G*, the goal is to **burn** in a minimum number of **rounds** [Bonato et al., 2014].
- At each given round:
 - A new fire can be initiated at any vertex.
 - The existing fires expand to their neighboring vertices.



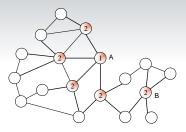
round: 1

- Given an undirected graph *G*, the goal is to **burn** in a minimum number of **rounds** [Bonato et al., 2014].
- At each given round:
 - A new fire can be initiated at any vertex.
 - The existing fires expand to their neighboring vertices.



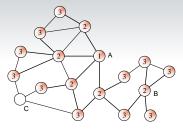
round: 2

- Given an undirected graph *G*, the goal is to **burn** in a minimum number of **rounds** [Bonato et al., 2014].
- At each given round:
 - A new fire can be initiated at any vertex.
 - The existing fires expand to their neighboring vertices.



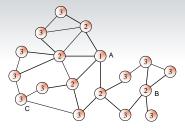
round: 2

- Given an undirected graph *G*, the goal is to **burn** in a minimum number of **rounds** [Bonato et al., 2014].
- At each given round:
 - A new fire can be initiated at any vertex.
 - The existing fires expand to their neighboring vertices.



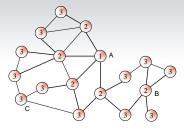
round: 3

- Given an undirected graph *G*, the goal is to **burn** in a minimum number of **rounds** [Bonato et al., 2014].
- At each given round:
 - A new fire can be initiated at any vertex.
 - The existing fires expand to their neighboring vertices.
 - The burning completes when all vertices are on fire.



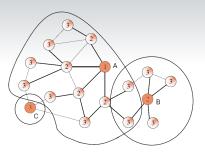
round: 3

- Given an undirected graph *G*, the goal is to **burn** in a minimum number of **rounds** [Bonato et al., 2014].
- At each given round:
 - A new fire can be initiated at any vertex.
 - The existing fires expand to their neighboring vertices.
 - The burning completes when all vertices are on fire.
 - Decision problem:
 - Can we burn G in k rounds?



round: 3

- Given an undirected graph *G*, the goal is to **burn** in a minimum number of **rounds** [Bonato et al., 2014].
- At each given round:
 - A new fire can be initiated at any vertex.
 - The existing fires expand to their neighboring vertices.
 - The burning completes when all vertices are on fire.
 - Decision problem:
 - Can we burn G in k rounds?
 - Equivalently, can we cover the graph with "disks" of radii $0, 1, 2, \ldots, k 1$?



• A path P_n of length n can be covered with disks of radii $0, 1, 2, ..., \lceil \sqrt{n} \rceil$ [Bonato et al. 2014].

• A path P_n of length n can be covered with disks of radii $0, 1, 2, ..., \lceil \sqrt{n} \rceil$ [Bonato et al. 2014].

• A path P_n of length n can be covered with disks of radii $0, 1, 2, ..., \lceil \sqrt{n} \rceil$ [Bonato et al. 2014].

- A path P_n of length n can be covered with disks of radii $0, 1, 2, ..., \lceil \sqrt{n} \rceil$ [Bonato et al. 2014].
- The burning graph conjecture: The burning number of any connected graph is at most $\lceil \sqrt{n} \rceil$ [Bonato et al. 2014].

Burning Paths

- A path P_n of length n can be covered with disks of radii $0, 1, 2, ..., \lceil \sqrt{n} \rceil$ [Bonato et al. 2014].
- The burning graph conjecture: The burning number of any connected graph is at most $\lceil \sqrt{n} \rceil$ [Bonato et al. 2014].
 - The burning number of any connected graph is at most $\frac{\sqrt{6}}{2}\sqrt{n} \approx 1.22\sqrt{n}$ [Land and Lu, 2016].

- Finding the optimal schedule is NP-hard [Bessy et al., 2017].
 - Reduction from 3-Partition problem (an extension of 2-partition problem to 3 set).

Computational Complexity

- Finding the optimal schedule is NP-hard [Bessy et al., 2017].
 - Reduction from 3-Partition problem (an extension of 2-partition problem to 3 set).
 - The problem remains NP-hard for disjoint set of paths, trees, other graph families.

Computational Complexity

- Finding the optimal schedule is NP-hard [Bessy et al., 2017].
 - Reduction from 3-Partition problem (an extension of 2-partition problem to 3 set).
 - The problem remains NP-hard for disjoint set of paths, trees, other graph families.
 - The problem is more "interesting" when the underlying graphs are sparse.

Computational Complexity

- Finding the optimal schedule is NP-hard [Bessy et al., 2017].
 - Reduction from 3-Partition problem (an extension of 2-partition problem to 3 set).
 - The problem remains NP-hard for disjoint set of paths, trees, other graph families.
 - The problem is more "interesting" when the underlying graphs are sparse.
- It is claimed that the problem is APX-hard [Mondal et al., 2021] (no $(1 + \epsilon)$ -approximation exists assuming $P \neq NP$).

• If there are r vertices of pairwise distance $\geq 2r - 1$ in a graph G, then G cannot be burned in less than r rounds.

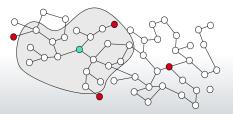
• If there are r vertices of pairwise distance $\geq 2r - 1$ in a graph G, then G cannot be burned in less than r rounds.

Approximation Algorithms

- If there are r vertices of pairwise distance $\geq 2r 1$ in a graph G, then G cannot be burned in less than r rounds.
- Example: suppose there are r = 4 vertices of pairwise 2r 1 = 7 in a graph *G*.
 - It is not possible to cover G with 3 disks of radii 3.
 - Therefore it is not possible to cover G with 3 disks of radii 0, 1, 2.

Approximation Algorithms

- If there are r vertices of pairwise distance $\geq 2r 1$ in a graph G, then G cannot be burned in less than r rounds.
- Example: suppose there are r = 4 vertices of pairwise 2r 1 = 7 in a graph *G*.
 - It is not possible to cover G with 3 disks of radii 3.
 - Therefore it is not possible to cover G with 3 disks of radii 0, 1, 2.



Constant Approximation Algorithm

- Define a procedure Burn-Guess(G,g) which returns:
 - Either a schedule that completes burning in at most 3g 3 rounds.
 - Or 'Bad-Guess', which guarantees burning cannot be complete in g-1 rounds.

Constant Approximation Algorithm

- Define a procedure Burn-Guess(G,g) which returns:
 - Either a schedule that completes burning in at most 3g 3 rounds.
 - Or 'Bad-Guess', which guarantees burning cannot be complete in g-1 rounds.
- The smallest value of g^* for which Burn-Guess returns a schedule gives a burning scheme that completes in $3g^* 3$ while the optimal schedule will require $g^* 1$ rounds to complete.
 - Approximation ratio of at most 3.

• Initially empty sets S of "centers" and L of "labeled vertices".



- Initially empty sets S of "centers" and L of "labeled vertices".
- Take an arbitrary unlabeled vertex u, add it to S and add all unlabeled vertices within distance 2g 2 of u to L.



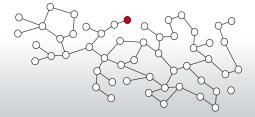
- Initially empty sets S of "centers" and L of "labeled vertices".
- Take an arbitrary unlabeled vertex u, add it to S and add all unlabeled vertices within distance 2g 2 of u to L.



- Initially empty sets S of "centers" and L of "labeled vertices".
- Take an arbitrary unlabeled vertex u, add it to S and add all unlabeled vertices within distance 2g 2 of u to L.



- Initially empty sets S of "centers" and L of "labeled vertices".
- Take an arbitrary unlabeled vertex u, add it to S and add all unlabeled vertices within distance 2g 2 of u to L.

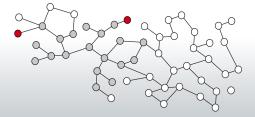


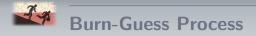


- Initially empty sets S of "centers" and L of "labeled vertices".
- Take an arbitrary unlabeled vertex u, add it to S and add all unlabeled vertices within distance 2g 2 of u to L.

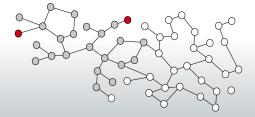


- Initially empty sets S of "centers" and L of "labeled vertices".
- Take an arbitrary unlabeled vertex u, add it to S and add all unlabeled vertices within distance 2g 2 of u to L.





- Initially empty sets S of "centers" and L of "labeled vertices".
- Take an arbitrary unlabeled vertex u, add it to S and add all unlabeled vertices within distance 2g 2 of u to L.





- Initially empty sets S of "centers" and L of "labeled vertices".
- Take an arbitrary unlabeled vertex u, add it to S and add all unlabeled vertices within distance 2g 2 of u to L.



- Initially empty sets S of "centers" and L of "labeled vertices".
- Take an arbitrary unlabeled vertex u, add it to S and add all unlabeled vertices within distance 2g 2 of u to L.

- Initially empty sets S of "centers" and L of "labeled vertices".
- Take an arbitrary unlabeled vertex u, add it to S and add all unlabeled vertices within distance 2g 2 of u to L.
 - If the number of centers becomes g, then return Bad-Guess.

- Initially empty sets S of "centers" and L of "labeled vertices".
- Take an arbitrary unlabeled vertex u, add it to S and add all unlabeled vertices within distance 2g 2 of u to L.
 - If the number of centers becomes g, then return Bad-Guess.

- Initially empty sets S of "centers" and L of "labeled vertices".
- Take an arbitrary unlabeled vertex u, add it to S and add all unlabeled vertices within distance 2g 2 of u to L.
 - If the number of centers becomes g, then return Bad-Guess.

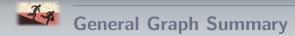
- Initially empty sets S of "centers" and L of "labeled vertices".
- Take an arbitrary unlabeled vertex u, add it to S and add all unlabeled vertices within distance 2g 2 of u to L.
 - If the number of centers becomes g, then return Bad-Guess.

- Initially empty sets S of "centers" and L of "labeled vertices".
- Take an arbitrary unlabeled vertex u, add it to S and add all unlabeled vertices within distance 2g 2 of u to L.
 - If the number of centers becomes g, then return Bad-Guess.

- Initially empty sets S of "centers" and L of "labeled vertices".
- Take an arbitrary unlabeled vertex u, add it to S and add all unlabeled vertices within distance 2g 2 of u to L.
 - If the number of centers becomes g, then return Bad-Guess.

- Initially empty sets S of "centers" and L of "labeled vertices".
- Take an arbitrary unlabeled vertex u, add it to S and add all unlabeled vertices within distance 2g 2 of u to L.
 - If the number of centers becomes g, then return Bad-Guess.

- Initially empty sets S of "centers" and L of "labeled vertices".
- Take an arbitrary unlabeled vertex u, add it to S and add all unlabeled vertices within distance 2g 2 of u to L.
 - If the number of centers becomes g, then return Bad-Guess.
 - If all vertices are added to L, return an arbitrary ordering of centers as the burning scheme (which completes in at most (g-1) + (2g-2) = 3g 3 rounds).
- E.g., here g = 4 and later we look at g = 5.



Theorem

There is a polynomial algorithm with approximation ratio of 3 for burning any graph G = (V, E) [Bonato & S.K., 2019].

• What about graph families? can we get better approximation ratio for families of graphs?

• Finding the optimal schedule is NP-hard [Bessy et al., 2017].

- Finding the optimal schedule is NP-hard [Bessy et al., 2017].
- It is possible to achieve an approximation factor of 2.

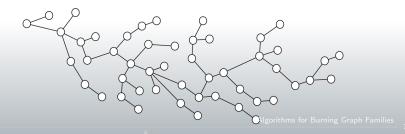
- Finding the optimal schedule is NP-hard [Bessy et al., 2017].
- It is possible to achieve an approximation factor of 2.
- Burn-Guess-Tree (τ, g) returns either a schedule that completes in at most 2g 2 rounds or 'Bad-Guess', which means burning cannot complete in g 1 rounds.

- Finding the optimal schedule is NP-hard [Bessy et al., 2017].
- It is possible to achieve an approximation factor of 2.
- Burn-Guess-Tree (τ, g) returns either a schedule that completes in at most 2g 2 rounds or 'Bad-Guess', which means burning cannot complete in g 1 rounds.
- An approximation factor of at most 2 is guaranteed:
 - The schedule returned by the smallest value of $g = g^*$ completes in $2g^* 2$ rounds.
 - For $g^* 1$, Bad-Guess is returned, which implies that the optimal scheme requires at least $g^* 1$ rounds.

• Burn-Guess-Tree treats τ as a rooted tree:

10 / 22

- Burn-Guess-Tree treats τ as a rooted tree:
 - Maintain sets T of "terminals", C of centers, and L of labeled vertices.

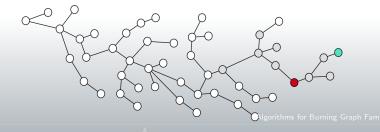


- Burn-Guess-Tree treats τ as a rooted tree:
 - Maintain sets T of "terminals", C of centers, and L of labeled vertices.
 - Take the deepest unlabeled node x, add x to T.
 - let p be the (g 1)-ancestor of x; add p to C and add all nodes within distance g 1 of p to L.

- Burn-Guess-Tree treats τ as a rooted tree:
 - Maintain sets T of "terminals", C of centers, and L of labeled vertices.
 - Take the deepest unlabeled node x, add x to T.
 - let p be the (g 1)-ancestor of x; add p to C and add all nodes within distance g 1 of p to L.

- Burn-Guess-Tree treats τ as a rooted tree:
 - Maintain sets T of "terminals", C of centers, and L of labeled vertices.
 - Take the deepest unlabeled node x, add x to T.
 - let p be the (g 1)-ancestor of x; add p to C and add all nodes within distance g 1 of p to L.

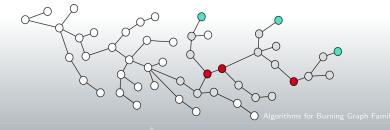
- Burn-Guess-Tree treats τ as a rooted tree:
 - Maintain sets T of "terminals", C of centers, and L of labeled vertices.
 - Take the deepest unlabeled node x, add x to T.
 - let p be the (g 1)-ancestor of x; add p to C and add all nodes within distance g 1 of p to L.



- Burn-Guess-Tree treats τ as a rooted tree:
 - Maintain sets T of "terminals", C of centers, and L of labeled vertices.
 - Take the deepest unlabeled node x, add x to T.
 - let p be the (g 1)-ancestor of x; add p to C and add all nodes within distance g 1 of p to L.

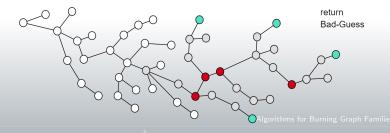
- Burn-Guess-Tree treats τ as a rooted tree:
 - Maintain sets T of "terminals", C of centers, and L of labeled vertices.
 - Take the deepest unlabeled node x, add x to T.
 - let p be the (g 1)-ancestor of x; add p to C and add all nodes within distance g 1 of p to L.

- Burn-Guess-Tree treats τ as a rooted tree:
 - Maintain sets T of "terminals", C of centers, and L of labeled vertices.
 - Take the deepest unlabeled node x, add x to T.
 - let p be the (g 1)-ancestor of x; add p to C and add all nodes within distance g 1 of p to L.

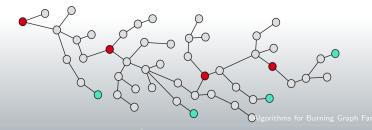


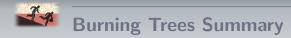
- Burn-Guess-Tree treats τ as a rooted tree:
 - Maintain sets T of "terminals", C of centers, and L of labeled vertices.
 - Take the deepest unlabeled node x, add x to T.
 - let p be the (g 1)-ancestor of x; add p to C and add all nodes within distance g 1 of p to L.

- Burn-Guess-Tree treats τ as a rooted tree:
 - Maintain sets T of "terminals", C of centers, and L of labeled vertices.
 - Take the deepest unlabeled node x, add x to T.
 - let p be the (g 1)-ancestor of x; add p to C and add all nodes within distance g 1 of p to L.
 - When |T| = g, return Bad-Guess.
 - Here, g = 4 returns Bad-Guess and g = 5 returns a schedule.



- Burn-Guess-Tree treats τ as a rooted tree:
 - Maintain sets T of "terminals", C of centers, and L of labeled vertices.
 - Take the deepest unlabeled node x, add x to T.
 - let p be the (g 1)-ancestor of x; add p to C and add all nodes within distance g - 1 of p to L.
 - When |T| = g, return Bad-Guess.
 - When all vertices are labeled, return any ordering of *C* as the burning schedule. All nodes are within distance *g* 1 of *g* centers.
 - Here, g = 4 returns Bad-Guess and g = 5 returns a schedule.





Theorem

There is a polynomial algorithm with approximation ratio of 2 for burning any tree [Bonato & S.K., 2019].

• Open question: what is the best approximation factor attainable for trees? is it possible to get an PTAS (with approximation factor $1 + \epsilon$)?

• It is possible to achieve an approximation factor of 2.75.

- It is possible to achieve an approximation factor of 2.75.
- Burn-Guess-Cactus(C,g) returns either a schedule that completes in at most 2.75g 2 rounds or 'Bad-Guess', which means burning cannot complete in g 1 rounds.

- It is possible to achieve an approximation factor of 2.75.
- Burn-Guess-Cactus(C,g) returns either a schedule that completes in at most 2.75g 2 rounds or 'Bad-Guess', which means burning cannot complete in g 1 rounds.
- Therefore, an approximation factor of at most 2.75 is guaranteed.
 - The schedule returned by the smallest value of $g = g^*$ completes in $2.75g^* 2$ rounds.
 - For $g^* 1$, Bad-Guess is returned, which implies that the optimal scheme requires at least $g^* 1$ rounds.

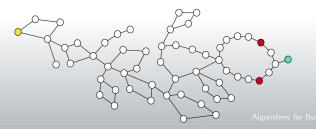
- Burn-Guess-Cactus(C,g) treats C as a rooted cactus:
 - Maintain sets T of terminals T, C paths, and L of labeled vertices.
 - Add the **deepest** unlabeled node x to to T.

- Burn-Guess-Cactus(C,g) treats C as a rooted cactus:
 - Maintain sets T of terminals T, C paths, and L of labeled vertices.
 - Add the **deepest** unlabeled node *x* to to *T*.
 - There is either one or two vertices at distance g 1 of x which are a part of a simple path between x and the root.

- Burn-Guess-Cactus(C,g) treats C as a rooted cactus:
 - Maintain sets T of terminals T, C paths, and L of labeled vertices.
 - Add the **deepest** unlabeled node x to to T.
 - There is either one or two vertices at distance g 1 of x which are a part of a simple path between x and the root.
 - If there is one vertex p_1 , add p to C.
 - if there are two vertices p_1, p_2 , add the path between them to C.
 - Add all nodes within distance g-1 of the path to L.

- Burn-Guess-Cactus(C,g) treats C as a rooted cactus:
 - Maintain sets T of terminals T, C paths, and L of labeled vertices.
 - Add the **deepest** unlabeled node x to to T.
 - There is either one or two vertices at distance g 1 of x which are a part of a simple path between x and the root.
 - If there is one vertex p_1 , add p to C.
 - if there are two vertices p_1, p_2 , add the path between them to C.
 - Add all nodes within distance g-1 of the path to L.
 - Here, we first look at g = 4 and then g = 5.

- Burn-Guess-Cactus(*C*,*g*) treats *C* as a rooted cactus:
 - Maintain sets T of terminals T, C paths, and L of labeled vertices.
 - Add the **deepest** unlabeled node x to to T.
 - There is either one or two vertices at distance g 1 of x which are a part of a simple path between x and the root.
 - If there is one vertex p_1 , add p to C.
 - if there are two vertices p_1, p_2 , add the path between them to C.
 - Add all nodes within distance g-1 of the path to L.
 - Here, we first look at g = 4 and then g = 5.

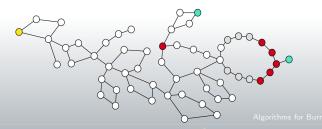


- Burn-Guess-Cactus(*C*,*g*) treats *C* as a rooted cactus:
 - Maintain sets T of terminals T, C paths, and L of labeled vertices.
 - Add the **deepest** unlabeled node x to to T.
 - There is either one or two vertices at distance g 1 of x which are a part of a simple path between x and the root.
 - If there is one vertex p_1 , add p to C.
 - if there are two vertices p_1, p_2 , add the path between them to C.
 - Add all nodes within distance g-1 of the path to L.
 - Here, we first look at g = 4 and then g = 5.

- Burn-Guess-Cactus(C,g) treats C as a rooted cactus:
 - Maintain sets T of terminals T, C paths, and L of labeled vertices.
 - Add the **deepest** unlabeled node x to to T.
 - There is either one or two vertices at distance g 1 of x which are a part of a simple path between x and the root.
 - If there is one vertex p_1 , add p to C.
 - if there are two vertices p_1, p_2 , add the path between them to C.
 - Add all nodes within distance g-1 of the path to L.
 - Here, we first look at g = 4 and then g = 5.

- Burn-Guess-Cactus(C,g) treats C as a rooted cactus:
 - Maintain sets T of terminals T, C paths, and L of labeled vertices.
 - Add the **deepest** unlabeled node x to to T.
 - There is either one or two vertices at distance g 1 of x which are a part of a simple path between x and the root.
 - If there is one vertex p_1 , add p to C.
 - if there are two vertices p_1, p_2 , add the path between them to C.
 - Add all nodes within distance g-1 of the path to L.
 - Here, we first look at g = 4 and then g = 5.

- Burn-Guess-Cactus(C,g) treats C as a rooted cactus:
 - Maintain sets T of terminals T, C paths, and L of labeled vertices.
 - Add the **deepest** unlabeled node x to to T.
 - There is either one or two vertices at distance g 1 of x which are a part of a simple path between x and the root.
 - If there is one vertex p_1 , add p to C.
 - if there are two vertices p_1, p_2 , add the path between them to C.
 - Add all nodes within distance g-1 of the path to L.
 - Here, we first look at g = 4 and then g = 5.



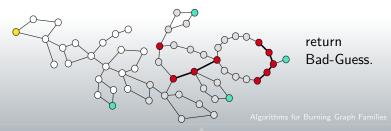
- Burn-Guess-Cactus(C,g) treats C as a rooted cactus:
 - Maintain sets T of terminals T, C paths, and L of labeled vertices.
 - Add the **deepest** unlabeled node x to to T.
 - There is either one or two vertices at distance g 1 of x which are a part of a simple path between x and the root.
 - If there is one vertex p_1 , add p to C.
 - if there are two vertices p_1, p_2 , add the path between them to C.
 - Add all nodes within distance g-1 of the path to L.
 - Here, we first look at g = 4 and then g = 5.

- Burn-Guess-Cactus(C,g) treats C as a rooted cactus:
 - Maintain sets T of terminals T, C paths, and L of labeled vertices.
 - Add the **deepest** unlabeled node x to to T.
 - There is either one or two vertices at distance g 1 of x which are a part of a simple path between x and the root.
 - If there is one vertex p_1 , add p to C.
 - if there are two vertices p_1, p_2 , add the path between them to C.
 - Add all nodes within distance g-1 of the path to L.
 - Here, we first look at g = 4 and then g = 5.

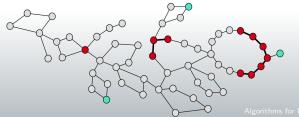
- Burn-Guess-Cactus(C,g) treats C as a rooted cactus:
 - Maintain sets T of terminals T, C paths, and L of labeled vertices.
 - Add the **deepest** unlabeled node x to to T.
 - There is either one or two vertices at distance g 1 of x which are a part of a simple path between x and the root.
 - If there is one vertex p_1 , add p to C.
 - if there are two vertices p_1, p_2 , add the path between them to C.
 - Add all nodes within distance g-1 of the path to L.
 - Here, we first look at g = 4 and then g = 5.

- Burn-Guess-Cactus(C,g) treats C as a rooted cactus:
 - Maintain sets T of terminals T, C paths, and L of labeled vertices.
 - Add the **deepest** unlabeled node x to to T.
 - There is either one or two vertices at distance g 1 of x which are a part of a simple path between x and the root.
 - If there is one vertex p_1 , add p to C.
 - if there are two vertices p_1, p_2 , add the path between them to C.
 - Add all nodes within distance g-1 of the path to L.
 - Here, we first look at g = 4 and then g = 5.

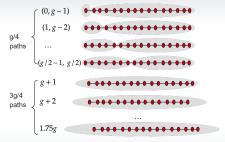
- Burn-Guess-Cactus(C,g) treats C as a rooted cactus:
 - Maintain sets T of terminals T, C paths, and L of labeled vertices.
 - Add the **deepest** unlabeled node x to to T.
 - There is either one or two vertices at distance g 1 of x which are a part of a simple path between x and the root.
 - If there is one vertex p_1 , add p to C.
 - if there are two vertices p_1, p_2 , add the path between them to C.
 - Add all nodes within distance g 1 of the path to L.
 - When |T| = g, return Bad-Guess.
 - Here, we first look at g = 4 and then g = 5.



- Burn-Guess-Cactus(C,g) treats C as a rooted cactus:
 - Maintain sets T of terminals T, C paths, and L of labeled vertices.
 - Add the **deepest** unlabeled node x to to T.
 - There is either one or two vertices at distance g 1 of x which are a part of a simple path between x and the root.
 - If there is one vertex p_1 , add p to C.
 - if there are two vertices p_1, p_2 , add the path between them to C.
 - Add all nodes within distance g 1 of the path to L.
 - When |T| = g, return Bad-Guess.
 - When all vertices are marked, proceed to the next phase.
 - Here, we first look at g = 4 and then g = 5.

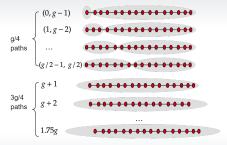


• It is possible to burn a forest C of g disjoint paths, each of length at most 2g nodes in at most 1.75g rounds.

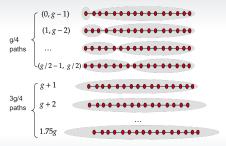


4 / 22

- It is possible to burn a forest C of g disjoint paths, each of length at most 2g nodes in at most 1.75g rounds.
- It is possible to burn all vertices in C in 1.75g.



- It is possible to burn a forest C of g disjoint paths, each of length at most 2g nodes in at most 1.75g rounds.
- It is possible to burn all vertices in C in 1.75g.
- All nodes are within distance g of one of the centers, so all vertices are burned in 1.75g + g = 2.75g rounds.



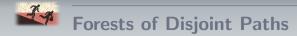
4 / 22

Burning Cacti Summary

Theorem

There is a polynomial algorithm with approximation ratio of 2.75 for burning any cactus graph [S.K. and Shabani, 2021].

- The main idea was to burn paths of centers instead of singular centers.
- The same idea might be applied burning other graph families (e.g., Series-Parallel graphs).

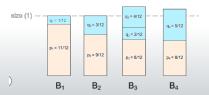


- The burning problem is NP-hard when the input graph is a forest of disjoint paths [Bessy et al., 2017].
 - Given disks of radii $0, 1, \ldots, k 1$, it is not clear which disk should be assigned to which path.
- If there are Θ(1) disjoint paths, there is a polynomial-time algorithm that generates an optimal burning scheme [Bonato and S.K., 2019].
 - Apply a dynamic programming approach!

• Given any positive value ϵ , there is a fully polynomial-time approximation algorithm (FPTAS) that generates a burning scheme that completes within a factor $1 + \epsilon$ of an optimal scheme [Bonato and S.K., 2019].

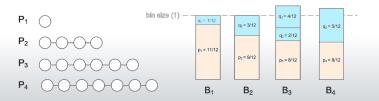
- Given any positive value ϵ , there is a fully polynomial-time approximation algorithm (FPTAS) that generates a burning scheme that completes within a factor $1 + \epsilon$ of an optimal scheme [Bonato and S.K., 2019].
 - Reduce the burning problem to the bin covering problem, and use an existing FPTAS of [Jansen and Solis-Oba, 2003] for the bin covering to get an FPTAS for the burning problem.

- Given any positive value ϵ , there is a fully polynomial-time approximation algorithm (FPTAS) that generates a burning scheme that completes within a factor $1 + \epsilon$ of an optimal scheme [Bonato and S.K., 2019].
 - Reduce the burning problem to the bin covering problem, and use an existing FPTAS of [Jansen and Solis-Oba, 2003] for the bin covering to get an FPTAS for the burning problem.
 - **Bin covering:** "cover" a maximum number of bins of unit size with a given multi-set of items with sizes in (0, 1].

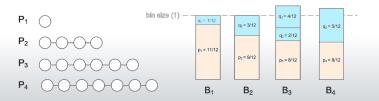


• Reduction: Given a path forest G with b paths generate an instance of the bin covering problem such that G can be burned in k rounds iff it is possible to cover b bins.

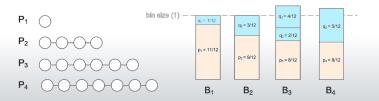
- Reduction: Given a path forest *G* with *b* paths generate an instance of the bin covering problem such that *G* can be burned in *k* rounds iff it is possible to cover *b* bins.
 - Think of paths as uniform "bins" that need to be "covered" by items (disks) of radii $0, 1, \ldots, k 1$.



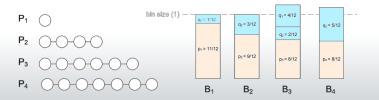
- Reduction: Given a path forest *G* with *b* paths generate an instance of the bin covering problem such that *G* can be burned in *k* rounds iff it is possible to cover *b* bins.
 - Think of paths as uniform "bins" that need to be "covered" by items (disks) of radii $0, 1, \ldots, k 1$.



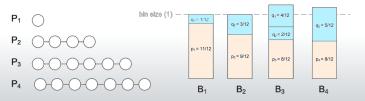
- Reduction: Given a path forest *G* with *b* paths generate an instance of the bin covering problem such that *G* can be burned in *k* rounds iff it is possible to cover *b* bins.
 - Think of paths as uniform "bins" that need to be "covered" by items (disks) of radii $0, 1, \ldots, k 1$.



- Reduction: Given a path forest *G* with *b* paths generate an instance of the bin covering problem such that *G* can be burned in *k* rounds iff it is possible to cover *b* bins.
 - Think of paths as uniform "bins" that need to be "covered" by items (disks) of radii $0, 1, \ldots, k 1$.
 - Items q_1, q_2, \ldots, q_k project disks (fires) of various radii to items of various sizes.



- Reduction: Given a path forest *G* with *b* paths generate an instance of the bin covering problem such that *G* can be burned in *k* rounds iff it is possible to cover *b* bins.
 - Think of paths as uniform "bins" that need to be "covered" by items (disks) of radii $0, 1, \ldots, k 1$.
 - Items q_1, q_2, \ldots, q_k project disks (fires) of various radii to items of various sizes.
 - Items p₁, p₂,..., p_b project paths of various lengths into bins of unit size.

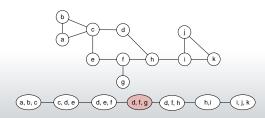


Theorem

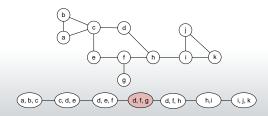
There is a fully polynomial-time approximation scheme (FPTAS) for burning any forest of disjoint paths [Bonato and S.K., 2019].

- The complexity of the problem is settled for forests of disjoint paths.
- For what other graph families an FPTAS might be developed?

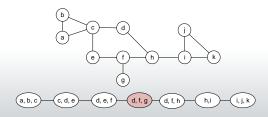
- In a Robertson-Seymour path decomposition:
 - Path-length [Dourisboure and Gavoille, 2007] is the max distance of vertices in any bag.
 - The graph below has path-width 2 and path-length 3.



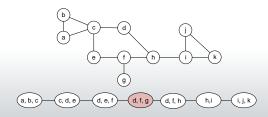
- In a Robertson-Seymour path decomposition:
 - Path-length [Dourisboure and Gavoille, 2007] is the max distance of vertices in any bag.
 - The graph below has path-width 2 and path-length 3.
- The burning number of a graph with **path-length** pl and diameter d is at most $\lceil \sqrt{d} \rceil + pl$ [S.K. et al., 2020].



- In a Robertson-Seymour path decomposition:
 - Path-length [Dourisboure and Gavoille, 2007] is the max distance of vertices in any bag.
 - The graph below has path-width 2 and path-length 3.
 - A graph has path-length 1 if and only if ??
- The burning number of a graph with **path-length** pl and diameter d is at most $\lceil \sqrt{d} \rceil + pl$ [S.K. et al., 2020].

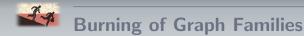


- In a Robertson-Seymour path decomposition:
 - Path-length [Dourisboure and Gavoille, 2007] is the max distance of vertices in any bag.
 - The graph below has path-width 2 and path-length 3.
 - A graph has path-length 1 if and only if it is an interval graph.
- The burning number of a graph with **path-length** pl and diameter d is at most $\lceil \sqrt{d} \rceil + pl$ [S.K. et al., 2020].

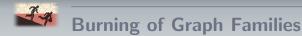


• There is an approximation algorithm with factor 1 + o(1) for burning any graph G of constant path-length [S.K. et al., 2020].

- There is an approximation algorithm with factor 1 + o(1) for burning any graph G of constant path-length [S.K. et al., 2020].
 - If the diameter of G is constant, we can optimally solve the problem.



- There is an approximation algorithm with factor 1 + o(1) for burning any graph G of constant path-length [S.K. et al., 2020].
 - If the diameter of G is constant, we can optimally solve the problem.
 - Otherwise, burn the graph in $\sqrt{d} + pl$ rounds, getting an approximation factor at most $\frac{\sqrt{d}+pl}{\sqrt{d}} = 2 + o(1)$.



- There is an approximation algorithm with factor 1 + o(1) for burning any graph G of constant path-length [S.K. et al., 2020].
 - If the diameter of G is constant, we can optimally solve the problem.
 - Otherwise, burn the graph in $\sqrt{d} + pl$ rounds, getting an approximation factor at most $\frac{\sqrt{d}+pl}{\sqrt{d}} = 2 + o(1)$.
- There is an approximation algorithm with factor 1 + o(1) for burning any graph G of constant path-length [S.K. et al., 2020].

Graph family	Apx. Factor	Details
general graphs	3	[Bonato and S.K., 2019]
trees	2	[Bonato and S.K., 2019]
cacti	2.75	[S.K. and Shabani, 2021]
forests of disjoint paths	$1 + \epsilon$ (FPTAS)	[Bonato and S.K., 2019]
graphs of bounded path-length	1 + o(1)	[S.K. et al., 2020]
graphs of bounded tree-length	2 + o(1)	[S.K. et al., 2020]

References

Bessy, S.; Bonato, A.; Janssen, J. C. M.; Rautenbach, D.; and Roshanbin, E. (2017).

"Burning a graph is hard". Discrete Applied Mathematics, 232, pp. 73–87.

Bonato, A.; Janssen, J. C. M.; and Roshanbin, E. (2014).

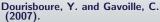
"Burning a Graph as a Model of Social Contagion".

In Workshop of Workshop on Algorithms and Models for the Web Graph, pages 13–22.

Bonato, A. and S.K. (2019).

"Approximation Algorithms for Graph Burning".

In Proc. Theory and Applications of Models of Computation TAMC, volume 11436 of Lecture Notes in Computer Science, pages 74–92. Springer.



"Tree-decompositions with bags of small diameter".

Discrete Mathematics, 307(16), pp. 2008–2029.

Jansen, K. and Solis-Oba, R. (2003).

"An asymptotic fully polynomial time approximation scheme for bin covering". *Theoretical Computer Science*, 306(1-3), pp. 543-551.

Land, M. R. and Lu, L. (2016).

"An Upper Bound on the Burning Number of Graphs".

In Proceedings of Workshop on Algorithms and Models for the Web Graph, pages 1–8.

Mondal, D.; Parthiban, N.; Kavitha, V.; and Rajasingh, I. (2021).

"APX-Hardness and Approximation for the k-Burning Number Problem".

In Uehara, R.; Hong, S.; and Nandy, S. C., editors, Proc. Algorithms and Computation -15th International Conference, volume 12635 of Lecture Notes in Computer Science, pages 272–283. Springer.

S.K.; Miller, A.; and Zhang, K. (2020).

"Burning Two Worlds".

In *Proc. SOFSEM 2020*, volume 12011 of *Lecture Notes in Computer Science*, pages 113–124. Springer.

S.K. and Shabani, M. (2021). "Burning Cacti". Ongoing work.