Algorithms for Burning Graph Families

Shahin Kamali
August 6, 2021
Graph Searching in Canada (GRASCan) Workshop

wls Graph Burning Problem

o Given an undirected graph G, the goal is
to burn in a minimum number of
rounds [Bonato et al., 2014].

round: 0

wls Graph Burning Problem

o Given an undirected graph G, the goal is
to burn in a minimum number of
rounds [Bonato et al., 2014].

round: 0

wlsi Graph Burning Problem

o Given an undirected graph G, the goal is
to burn in a minimum number of
rounds [Bonato et al., 2014].

o At each given round:

o A new fire can be initiated at any
vertex.
o The existing fires expand to their
neighboring vertices. round: 0

wlsi Graph Burning Problem

o Given an undirected graph G, the goal is
to burn in a minimum number of
rounds [Bonato et al., 2014].

o At each given round:

o A new fire can be initiated at any
vertex.
o The existing fires expand to their
neighboring vertices. round: 0

wlsi Graph Burning Problem

o Given an undirected graph G, the goal is
to burn in a minimum number of
rounds [Bonato et al., 2014].

o At each given round:

o A new fire can be initiated at any
vertex.
o The existing fires expand to their
neighboring vertices. round: 1

wlsi Graph Burning Problem

o Given an undirected graph G, the goal is
to burn in a minimum number of
rounds [Bonato et al., 2014].

o At each given round:

o A new fire can be initiated at any
vertex.

o The existing fires expand to their
neighboring vertices. round: 2

wlsi Graph Burning Problem

o Given an undirected graph G, the goal is
to burn in a minimum number of
rounds [Bonato et al., 2014].

o At each given round:

o A new fire can be initiated at any
vertex.

o The existing fires expand to their
neighboring vertices. round: 2

wlsi Graph Burning Problem

o Given an undirected graph G, the goal is
to burn in a minimum number of
rounds [Bonato et al., 2014].

o At each given round:

o A new fire can be initiated at any
vertex.

o The existing fires expand to their
neighboring vertices. round: 3

wlsi Graph Burning Problem

o Given an undirected graph G, the goal is
to burn in a minimum number of
rounds [Bonato et al., 2014].

o At each given round:

o A new fire can be initiated at any
vertex.

o The existing fires expand to their
neighboring vertices. round: 3

o The burning completes when all
vertices are on fire.

wls Graph Burning Problem

o Given an undirected graph G, the goal is
to burn in a minimum number of
rounds [Bonato et al., 2014].

o At each given round:

o A new fire can be initiated at any
vertex.

o The existing fires expand to their
neighboring vertices. round: 3

o The burning completes when all
vertices are on fire.

@ Decision problem:

o Can we burn G in k rounds?

wls Graph Burning Problem

o Given an undirected graph G, the goal is
to burn in a minimum number of
rounds [Bonato et al., 2014].

o At each given round:

o A new fire can be initiated at any
vertex.

o The existing fires expand to their
neighboring vertices.

o The burning completes when all
vertices are on fire.

@ Decision problem:

o Can we burn G in k rounds?
o Equivalently, can we cover the graph with “disks” of radii
0,1,2,...,k—17?

wls Burning Paths

o A path P, of length n can be covered with disks of radii
0,1,2,...,[+/n] [Bonato et al. 2014].

wls Burning Paths

o A path P, of length n can be covered with disks of radii
0,1,2,...,[+/n] [Bonato et al. 2014].

wls Burning Paths

o A path P, of length n can be covered with disks of radii
0,1,2,...,[+/n] [Bonato et al. 2014].

wls Burning Paths

o A path P, of length n can be covered with disks of radii
0,1,2,...,[+/n] [Bonato et al. 2014].

o The burning graph conjecture: The burning number of any
connected graph is at most [/n]| [Bonato et al. 2014].

B0 G000 BCo 00000

wls Burning Paths

o A path P, of length n can be covered with disks of radii
0,1,2,...,[+/n] [Bonato et al. 2014].

o The burning graph conjecture: The burning number of any
connected graph is at most [/n]| [Bonato et al. 2014].
o The burning number of any connected graph is at most
¥6./n ~ 1.22/n [Land and Lu, 2016].

@60 IE 000G o 00 000

& Computational Complexity

o Finding the optimal schedule is NP-hard [Bessy et al., 2017].

o Reduction from 3-Partition problem (an extension of 2-partition
problem to 3 set).

wls Computational Complexity

o Finding the optimal schedule is NP-hard [Bessy et al., 2017].

o Reduction from 3-Partition problem (an extension of 2-partition

problem to 3 set).
o The problem remains NP-hard for disjoint set of paths, trees, other

graph families.

wls Computational Complexity

o Finding the optimal schedule is NP-hard [Bessy et al., 2017].

o Reduction from 3-Partition problem (an extension of 2-partition

problem to 3 set).
o The problem remains NP-hard for disjoint set of paths, trees, other

graph families.
o The problem is more “interesting” when the underlying graphs are

sparse.

wls Computational Complexity

o Finding the optimal schedule is NP-hard [Bessy et al., 2017].

o Reduction from 3-Partition problem (an extension of 2-partition

problem to 3 set).
o The problem remains NP-hard for disjoint set of paths, trees, other

graph families.
o The problem is more “interesting” when the underlying graphs are

sparse.

o It is claimed that the problem is APX-hard [Mondal et al., 2021]
(no (1 + €)-approximation exists assuming P # NP).

wls Approximation Algorithms

o If there are r vertices of pairwise distance > 2r — 1 in a graph G,
then G cannot be burned in less than r rounds.

wlsi Approximation Algorithms

o If there are r vertices of pairwise distance > 2r — 1 in a graph G,
then G cannot be burned in less than r rounds.

wlsi Approximation Algorithms

o If there are r vertices of pairwise distance > 2r — 1 in a graph G,
then G cannot be burned in less than r rounds.

o Example: suppose there are r = 4 vertices of pairwise 2r — 1 =7 in
a graph G.
o It is not possible to cover G with 3 disks of radii 3.
o Therefore it is not possible to cover G with 3 disks of radii 0,1, 2.

wls Approximation Algorithms

o If there are r vertices of pairwise distance > 2r — 1 in a graph G,
then G cannot be burned in less than r rounds.

o Example: suppose there are r = 4 vertices of pairwise 2r — 1 =7 in
a graph G.
o It is not possible to cover G with 3 disks of radii 3.
o Therefore it is not possible to cover G with 3 disks of radii 0,1, 2.

wls Constant Approximation Algorithm

o Define a procedure Burn-Guess(G,g) which returns:

o Either a schedule that completes burning in at most 3g — 3 rounds.
o Or '‘Bad-Guess', which guarantees burning cannot be complete in
g — 1 rounds.

wls Constant Approximation Algorithm

o Define a procedure Burn-Guess(G,g) which returns:

o Either a schedule that completes burning in at most 3g — 3 rounds.
o Or '‘Bad-Guess', which guarantees burning cannot be complete in
g — 1 rounds.

@ The smallest value of g* for which Burn-Guess returns a schedule
gives a burning scheme that completes in 3g™ — 3 while the optimal
schedule will require g* — 1 rounds to complete.

o Approximation ratio of at most 3.

ﬂ Burn-Guess Process

o Initially empty sets S of “centers” and L of “labeled vertices”.

* Burn-Guess Process

o Initially empty sets S of “centers” and L of “labeled vertices”.

o Take an arbitrary unlabeled vertex u, add it to S and add all
unlabeled vertices within distance 2g — 2 of u to L.

6 Burn-Guess Process

o Initially empty sets S of “centers” and L of “labeled vertices”.

o Take an arbitrary unlabeled vertex u, add it to S and add all
unlabeled vertices within distance 2g — 2 of u to L.

o E.g., here g =4 and later we look at g = 5.

6 Burn-Guess Process

o Initially empty sets S of “centers” and L of “labeled vertices”.

o Take an arbitrary unlabeled vertex u, add it to S and add all
unlabeled vertices within distance 2g — 2 of u to L.

o E.g., here g =4 and later we look at g = 5.

6 Burn-Guess Process

o Initially empty sets S of “centers” and L of “labeled vertices”.

o Take an arbitrary unlabeled vertex u, add it to S and add all
unlabeled vertices within distance 2g — 2 of u to L.

o E.g., here g =4 and later we look at g = 5.

6 Burn-Guess Process

o Initially empty sets S of “centers” and L of “labeled vertices”.

o Take an arbitrary unlabeled vertex u, add it to S and add all
unlabeled vertices within distance 2g — 2 of u to L.

o E.g., here g =4 and later we look at g = 5.

6 Burn-Guess Process

o Initially empty sets S of “centers” and L of “labeled vertices”.

o Take an arbitrary unlabeled vertex u, add it to S and add all
unlabeled vertices within distance 2g — 2 of u to L.

o E.g., here g =4 and later we look at g = 5.

6 Burn-Guess Process

o Initially empty sets S of “centers” and L of “labeled vertices”.

o Take an arbitrary unlabeled vertex u, add it to S and add all
unlabeled vertices within distance 2g — 2 of u to L.

o E.g., here g =4 and later we look at g = 5.

6 Burn-Guess Process

o Initially empty sets S of “centers” and L of “labeled vertices”.

o Take an arbitrary unlabeled vertex u, add it to S and add all
unlabeled vertices within distance 2g — 2 of u to L.

o E.g., here g =4 and later we look at g = 5.

6 Burn-Guess Process

o Initially empty sets S of “centers” and L of “labeled vertices”.

o Take an arbitrary unlabeled vertex u, add it to S and add all
unlabeled vertices within distance 2g — 2 of u to L.

o E.g., here g =4 and later we look at g = 5.

é Burn-Guess Process

o Initially empty sets S of “centers” and L of “labeled vertices”.

o Take an arbitrary unlabeled vertex u, add it to S and add all
unlabeled vertices within distance 2g — 2 of u to L.

o If the number of centers becomes g, then return Bad-Guess.

o E.g., here g =4 and later we look at g = 5.

return
BAD-Guess

é Burn-Guess Process

o Initially empty sets S of “centers” and L of “labeled vertices”.

o Take an arbitrary unlabeled vertex u, add it to S and add all
unlabeled vertices within distance 2g — 2 of u to L.

o If the number of centers becomes g, then return Bad-Guess.

o E.g., here g =4 and later we look at g = 5.

é Burn-Guess Process

o Initially empty sets S of “centers” and L of “labeled vertices”.

o Take an arbitrary unlabeled vertex u, add it to S and add all
unlabeled vertices within distance 2g — 2 of u to L.

o If the number of centers becomes g, then return Bad-Guess.

o E.g., here g =4 and later we look at g = 5.

é Burn-Guess Process

o Initially empty sets S of “centers” and L of “labeled vertices”.

o Take an arbitrary unlabeled vertex u, add it to S and add all
unlabeled vertices within distance 2g — 2 of u to L.

o If the number of centers becomes g, then return Bad-Guess.

o E.g., here g =4 and later we look at g = 5.

é Burn-Guess Process

o Initially empty sets S of “centers” and L of “labeled vertices”.

o Take an arbitrary unlabeled vertex u, add it to S and add all
unlabeled vertices within distance 2g — 2 of u to L.

o If the number of centers becomes g, then return Bad-Guess.

o E.g., here g =4 and later we look at g = 5.

é Burn-Guess Process

o Initially empty sets S of “centers” and L of “labeled vertices”.

o Take an arbitrary unlabeled vertex u, add it to S and add all
unlabeled vertices within distance 2g — 2 of u to L.

o If the number of centers becomes g, then return Bad-Guess.

o E.g., here g =4 and later we look at g = 5.

é Burn-Guess Process

o Initially empty sets S of “centers” and L of “labeled vertices”.

o Take an arbitrary unlabeled vertex u, add it to S and add all
unlabeled vertices within distance 2g — 2 of u to L.

o If the number of centers becomes g, then return Bad-Guess.

o E.g., here g =4 and later we look at g = 5.

a Burn-Guess Process

o Initially empty sets S of “centers” and L of “labeled vertices”.

o Take an arbitrary unlabeled vertex u, add it to S and add all
unlabeled vertices within distance 2g — 2 of u to L.
o If the number of centers becomes g, then return Bad-Guess.
o If all vertices are added to L, return an arbitrary ordering of centers
as the burning scheme (which completes in at most
(g — 1)+ (2g — 2) = 3g — 3 rounds).

o E.g., here g =4 and later we look at g = 5.

wls General Graph Summary

Theorem

There is a polynomial algorithm with approximation ratio of 3
for burning any graph G = (V, E) [Bonato & S.K., 2019].

@ What about graph families? can we get better approximation ratio
for families of graphs?

wln Burning Trees

o Finding the optimal schedule is NP-hard [Bessy et al., 2017].

wls Burning Trees

o Finding the optimal schedule is NP-hard [Bessy et al., 2017].

@ It is possible to achieve an approximation factor of 2.

wls Burning Trees

o Finding the optimal schedule is NP-hard [Bessy et al., 2017].
@ It is possible to achieve an approximation factor of 2.

o Burn-Guess-Tree (7, g) returns either a schedule that completes in
at most 2g — 2 rounds or ‘Bad-Guess’, which means burning cannot
complete in g — 1 rounds.

wls Burning Trees

o Finding the optimal schedule is NP-hard [Bessy et al., 2017].
@ It is possible to achieve an approximation factor of 2.

o Burn-Guess-Tree (7, g) returns either a schedule that completes in
at most 2g — 2 rounds or ‘Bad-Guess’, which means burning cannot
complete in g — 1 rounds.

@ An approximation factor of at most 2 is guaranteed:

o The schedule returned by the smallest value of g = g™ completes in
2g™ — 2 rounds.

o For g* — 1, Bad-Guess is returned, which implies that the optimal
scheme requires at least g* — 1 rounds.

ﬂ Trees

o Burn-Guess-Tree treats 7 as a rooted tree:

a Trees

o Burn-Guess-Tree treats 7 as a rooted tree:

o Maintain sets T of “terminals”, C of centers, and L of labeled
vertices.

6 Trees

o Burn-Guess-Tree treats 7 as a rooted tree:

o Maintain sets T of “terminals’, C of centers, and L of labeled
vertices.

o Take the deepest unlabeled node x, add x to T.

o let p be the (g — 1)-ancestor of x; add p to C and add all nodes
within distance g — 1 of p to L.

é Trees

o Burn-Guess-Tree treats 7 as a rooted tree:
o Maintain sets T of “terminals”, C of centers, and L of labeled
vertices.
o Take the deepest unlabeled node x, add x to T.
o let p be the (g — 1)-ancestor of x; add p to C and add all nodes
within distance g — 1 of p to L.

o Here, g = 4 returns Bad-Guess and g = 5 returns a schedule.

é Trees

o Burn-Guess-Tree treats 7 as a rooted tree:
o Maintain sets T of “terminals”, C of centers, and L of labeled
vertices.
o Take the deepest unlabeled node x, add x to T.
o let p be the (g — 1)-ancestor of x; add p to C and add all nodes
within distance g — 1 of p to L.

o Here, g = 4 returns Bad-Guess and g = 5 returns a schedule.

é Trees

o Burn-Guess-Tree treats 7 as a rooted tree:
o Maintain sets T of “terminals”, C of centers, and L of labeled
vertices.
o Take the deepest unlabeled node x, add x to T.
o let p be the (g — 1)-ancestor of x; add p to C and add all nodes
within distance g — 1 of p to L.

o Here, g = 4 returns Bad-Guess and g = 5 returns a schedule.

é Trees

o Burn-Guess-Tree treats 7 as a rooted tree:
o Maintain sets T of “terminals”, C of centers, and L of labeled
vertices.
o Take the deepest unlabeled node x, add x to T.
o let p be the (g — 1)-ancestor of x; add p to C and add all nodes
within distance g — 1 of p to L.

o Here, g = 4 returns Bad-Guess and g = 5 returns a schedule.

é Trees

o Burn-Guess-Tree treats 7 as a rooted tree:
o Maintain sets T of “terminals”, C of centers, and L of labeled
vertices.
o Take the deepest unlabeled node x, add x to T.
o let p be the (g — 1)-ancestor of x; add p to C and add all nodes
within distance g — 1 of p to L.

o Here, g = 4 returns Bad-Guess and g = 5 returns a schedule.

é Trees

o Burn-Guess-Tree treats 7 as a rooted tree:
o Maintain sets T of “terminals”, C of centers, and L of labeled
vertices.
o Take the deepest unlabeled node x, add x to T.
o let p be the (g — 1)-ancestor of x; add p to C and add all nodes
within distance g — 1 of p to L.

o Here, g = 4 returns Bad-Guess and g = 5 returns a schedule.

é Trees

o Burn-Guess-Tree treats 7 as a rooted tree:
o Maintain sets T of “terminals”, C of centers, and L of labeled
vertices.
o Take the deepest unlabeled node x, add x to T.
o let p be the (g — 1)-ancestor of x; add p to C and add all nodes
within distance g — 1 of p to L.

o Here, g = 4 returns Bad-Guess and g = 5 returns a schedule.

a Trees

@ Burn-Guess-Tree treats 7 as a rooted tree:
o Maintain sets T of “terminals”, C of centers, and L of labeled
vertices.
o Take the deepest unlabeled node x, add x to T.
o let p be the (g — 1)-ancestor of x; add p to C and add all nodes
within distance g — 1 of p to L.
o When |T| = g, return Bad-Guess.

o Here, g = 4 returns Bad-Guess and g = 5 returns a schedule.

return
Bad-Guess

a Trees

@ Burn-Guess-Tree treats 7 as a rooted tree:

o Maintain sets T of “terminals”, C of centers, and L of labeled
vertices.

o Take the deepest unlabeled node x, add x to T.

o let p be the (g — 1)-ancestor of x; add p to C and add all nodes
within distance g — 1 of p to L.

o When |T| = g, return Bad-Guess.

o When all vertices are labeled, return any ordering of C as the
burning schedule. All nodes are within distance g — 1 of g centers.

o Here, g = 4 returns Bad-Guess and g = 5 returns a schedule.

wls Burning Trees Summary

Theorem

There is a polynomial algorithm with approximation ratio of 2
for burning any tree [Bonato & S.K., 2019].

o Open question: what is the best approximation factor attainable for

trees? is it possible to get an PTAS (with approximation factor
1+€)?

wln Burning Cacti

@ It is possible to achieve an approximation factor of 2.75.

wlr Burning Cacti

@ It is possible to achieve an approximation factor of 2.75.

o Burn-Guess-Cactus(C,g) returns either a schedule that completes in
at most 2.75g — 2 rounds or ‘Bad-Guess’, which means burning
cannot complete in g — 1 rounds.

wls Burning Cacti

@ It is possible to achieve an approximation factor of 2.75.

o Burn-Guess-Cactus(C,g) returns either a schedule that completes in
at most 2.75g — 2 rounds or ‘Bad-Guess’, which means burning
cannot complete in g — 1 rounds.

@ Therefore, an approximation factor of at most 2.75 is guaranteed.

o The schedule returned by the smallest value of g = g™ completes in

2.75g™ — 2 rounds.
o For g* — 1, Bad-Guess is returned, which implies that the optimal

scheme requires at least g* — 1 rounds.

wlr Burning Cacti

o Burn-Guess-Cactus(C,g) treats C as a rooted cactus:

o Maintain sets T of terminals T, C paths, and L of labeled vertices.
o Add the deepest unlabeled node x to to T.

wlsi Burning Cacti

o Burn-Guess-Cactus(C,g) treats C as a rooted cactus:

o Maintain sets T of terminals T, C paths, and L of labeled vertices.

o Add the deepest unlabeled node x to to T.

o There is either one or two vertices at distance g — 1 of x which are
a part of a simple path between x and the root.

wls Burning Cacti

o Burn-Guess-Cactus(C,g) treats C as a rooted cactus:
o Maintain sets T of terminals T, C paths, and L of labeled vertices.
o Add the deepest unlabeled node x to to T.
o There is either one or two vertices at distance g — 1 of x which are
a part of a simple path between x and the root.
o If there is one vertex p;, add p to C.
o if there are two vertices pi1, p2, add the path between them to C.
o Add all nodes within distance g — 1 of the path to L.

wls Burning Cacti

o Burn-Guess-Cactus(C,g) treats C as a rooted cactus:

o Maintain sets T of terminals T, C paths, and L of labeled vertices.
o Add the deepest unlabeled node x to to T.
o There is either one or two vertices at distance g — 1 of x which are
a part of a simple path between x and the root.
o If there is one vertex p;, add p to C.
o if there are two vertices pi1, p2, add the path between them to C.

o Add all nodes within distance g — 1 of the path to L.

o Here, we first look at g = 4 and then g = 5.

wls Burning Cacti

o Burn-Guess-Cactus(C,g) treats C as a rooted cactus:

o Maintain sets T of terminals T, C paths, and L of labeled vertices.
o Add the deepest unlabeled node x to to T.
o There is either one or two vertices at distance g — 1 of x which are
a part of a simple path between x and the root.
o If there is one vertex p;, add p to C.
o if there are two vertices pi1, p2, add the path between them to C.

o Add all nodes within distance g — 1 of the path to L.

o Here, we first look at g = 4 and then g = 5.

wls Burning Cacti

o Burn-Guess-Cactus(C,g) treats C as a rooted cactus:

o Maintain sets T of terminals T, C paths, and L of labeled vertices.
o Add the deepest unlabeled node x to to T.
o There is either one or two vertices at distance g — 1 of x which are
a part of a simple path between x and the root.
o If there is one vertex p;, add p to C.
o if there are two vertices pi1, p2, add the path between them to C.

o Add all nodes within distance g — 1 of the path to L.

o Here, we first look at g = 4 and then g = 5.

wls Burning Cacti

o Burn-Guess-Cactus(C,g) treats C as a rooted cactus:

o Maintain sets T of terminals T, C paths, and L of labeled vertices.
o Add the deepest unlabeled node x to to T.
o There is either one or two vertices at distance g — 1 of x which are
a part of a simple path between x and the root.
o If there is one vertex p;, add p to C.
o if there are two vertices pi1, p2, add the path between them to C.

o Add all nodes within distance g — 1 of the path to L.

o Here, we first look at g = 4 and then g = 5.

wls Burning Cacti

o Burn-Guess-Cactus(C,g) treats C as a rooted cactus:

o Maintain sets T of terminals T, C paths, and L of labeled vertices.
o Add the deepest unlabeled node x to to T.
o There is either one or two vertices at distance g — 1 of x which are
a part of a simple path between x and the root.
o If there is one vertex p;, add p to C.
o if there are two vertices pi1, p2, add the path between them to C.

o Add all nodes within distance g — 1 of the path to L.

o Here, we first look at g = 4 and then g = 5.

wls Burning Cacti

o Burn-Guess-Cactus(C,g) treats C as a rooted cactus:

o Maintain sets T of terminals T, C paths, and L of labeled vertices.
o Add the deepest unlabeled node x to to T.
o There is either one or two vertices at distance g — 1 of x which are
a part of a simple path between x and the root.
o If there is one vertex p;, add p to C.
o if there are two vertices pi1, p2, add the path between them to C.

o Add all nodes within distance g — 1 of the path to L.

o Here, we first look at g = 4 and then g = 5.

wls Burning Cacti

o Burn-Guess-Cactus(C,g) treats C as a rooted cactus:

o Maintain sets T of terminals T, C paths, and L of labeled vertices.
o Add the deepest unlabeled node x to to T.
o There is either one or two vertices at distance g — 1 of x which are
a part of a simple path between x and the root.
o If there is one vertex p;, add p to C.
o if there are two vertices pi1, p2, add the path between them to C.

o Add all nodes within distance g — 1 of the path to L.

o Here, we first look at g = 4 and then g = 5.

wls Burning Cacti

o Burn-Guess-Cactus(C,g) treats C as a rooted cactus:

o Maintain sets T of terminals T, C paths, and L of labeled vertices.
o Add the deepest unlabeled node x to to T.
o There is either one or two vertices at distance g — 1 of x which are
a part of a simple path between x and the root.
o If there is one vertex p;, add p to C.
o if there are two vertices pi1, p2, add the path between them to C.

o Add all nodes within distance g — 1 of the path to L.

o Here, we first look at g = 4 and then g = 5.

wls Burning Cacti

o Burn-Guess-Cactus(C,g) treats C as a rooted cactus:

o Maintain sets T of terminals T, C paths, and L of labeled vertices.
o Add the deepest unlabeled node x to to T.
o There is either one or two vertices at distance g — 1 of x which are
a part of a simple path between x and the root.
o If there is one vertex p;, add p to C.
o if there are two vertices pi1, p2, add the path between them to C.

o Add all nodes within distance g — 1 of the path to L.

o Here, we first look at g = 4 and then g = 5.

wls Burning Cacti

o Burn-Guess-Cactus(C,g) treats C as a rooted cactus:

o Maintain sets T of terminals T, C paths, and L of labeled vertices.
o Add the deepest unlabeled node x to to T.
o There is either one or two vertices at distance g — 1 of x which are
a part of a simple path between x and the root.
o If there is one vertex p;, add p to C.
o if there are two vertices pi1, p2, add the path between them to C.

o Add all nodes within distance g — 1 of the path to L.

o Here, we first look at g = 4 and then g = 5.

wls Burning Cacti

o Burn-Guess-Cactus(C,g) treats C as a rooted cactus:

o Maintain sets T of terminals T, C paths, and L of labeled vertices.
o Add the deepest unlabeled node x to to T.
o There is either one or two vertices at distance g — 1 of x which are
a part of a simple path between x and the root.
o If there is one vertex p;, add p to C.
o if there are two vertices pi1, p2, add the path between them to C.
o Add all nodes within distance g — 1 of the path to L.
o When |T| = g, return Bad-Guess.

o Here, we first look at g = 4 and then g = 5.

return
Bad-Guess.

wls Burning Cacti

o Burn-Guess-Cactus(C,g) treats C as a rooted cactus:

o Maintain sets T of terminals T, C paths, and L of labeled vertices.
o Add the deepest unlabeled node x to to T.
o There is either one or two vertices at distance g — 1 of x which are
a part of a simple path between x and the root.
o If there is one vertex p;, add p to C.
o if there are two vertices pi1, p2, add the path between them to C.
o Add all nodes within distance g — 1 of the path to L.
o When |T| = g, return Bad-Guess.
o When all vertices are marked, proceed to the next phase.
o Here, we first look at g = 4 and then g = 5.

witn Burning Cacti

@ It is possible to burn a forest C of g ©5=1)" (o latataltatatatnlatatts
disjoint paths, each of length at most 2g v (1,g-2) oee-0-00-0000000000
nodes in at most 1.75g rounds. paths | ... 0-0-0-0-0-0-0-00-00-000-00

(8/2-1, g/2) 6-0-0-0-—0-0-0-0-0-00-00000
g+l 0—0-0-0-0-0-0-0-0-0-0-0-0-0-00
igiﬁs g+2 0-00000000000000

1.75¢ 0-000000000000000

wlsi Burning Cacti

o It is possible to burn a forest C of g 5= (G attatatatatis

disjoint paths, each of length at most 2g v (1,g-2) oee-0-00-0000000000

nodes in at most 1.75g rounds. paths | .- 0-0-0-0-0-0-0-0-0-0-0-0-0-0-00
. /2-1, /2) 6-0-0-0—0000000001000
@ It is possible to burn all vertices in C in Gt e
1.75g. g+l 0-0-0-0-0-0-0-0-0-0-0-0-0-0-00
3g/4

¢00000000000000
paths §+2

1.75¢ 0-000000000000000

wls Burning Cacti

o It is possible to burn a forest C of g 5= (G attatatatatis

disjoint paths, each of length at most 2g "
nodes in at most 1.75g rounds. paths | .- 00000000000 00000
(9/2-1, §/2) 0-0-0-0-0-0-0-0-0-0-0-0-0-0-00

1,8-2) 000000 0000000000

@ It is possible to burn all vertices in C in
1.75g. g+l 0-00-0000000000000
3g/4

¢00000000000000
paths §+2

@ All nodes are within distance g of one of
the centers, so all vertices are burned in 175 PP
1.75g + g = 2.75g rounds.

wls Burning Cacti Summary

Theorem

There is a polynomial algorithm with approximation ratio of 2.75
for burning any cactus graph [S.K. and Shabani, 2021].

@ The main idea was to burn paths of centers instead of singular
centers.

@ The same idea might be applied burning other graph families (e.g.,
Series-Parallel graphs).

wls Forests of Disjoint Paths

@ The burning problem is NP-hard when the input graph is a forest of
disjoint paths [Bessy et al., 2017].

o Given disks of radii 0,1,...,k — 1, it is not clear which disk should
be assigned to which path.

o If there are ©(1) disjoint paths, there is a polynomial-time algorithm
that generates an optimal burning scheme [Bonato and S.K., 2019].

o Apply a dynamic programming approach!

wls Forests of Disjoint Paths

o Given any positive value ¢, there is a fully polynomial-time
approximation algorithm (FPTAS) that generates a burning scheme
that completes within a factor 1 + € of an optimal
scheme [Bonato and S.K., 2019].

wls Forests of Disjoint Paths

o Given any positive value ¢, there is a fully polynomial-time
approximation algorithm (FPTAS) that generates a burning scheme
that completes within a factor 1 + € of an optimal
scheme [Bonato and S.K., 2019].

o Reduce the burning problem to the bin covering problem, and use
an existing FPTAS of [Jansen and Solis-Oba, 2003] for the bin
covering to get an FPTAS for the burning problem.

wls Forests of Disjoint Paths

o Given any positive value ¢, there is a fully polynomial-time
approximation algorithm (FPTAS) that generates a burning scheme
that completes within a factor 1 + € of an optimal
scheme [Bonato and S.K., 2019].

o Reduce the burning problem to the bin covering problem, and use
an existing FPTAS of [Jansen and Solis-Oba, 2003] for the bin
covering to get an FPTAS for the burning problem.

o Bin covering: “cover’ a maximum number of bins of unit size with
a given multi-set of items with sizes in (0, 1].

wls Forests of Disjoint Paths

o Reduction: Given a path forest G with b paths generate an instance
of the bin covering problem such that G can be burned in k rounds
iff it is possible to cover b bins.

wls Forests of Disjoint Paths

@ Reduction: Given a path forest G with b paths generate an instance
of the bin covering problem such that G can be burned in k rounds

iff it is possible to cover b bins.

o Think of paths as uniform “bins” that need to be “covered” by
items (disks) of radii 0,1,...,k — 1.
bin size (1 5= 4112
P1 O ae i Q=312) =512
PZ Q=212
: : : : pi=11/12
P OOO0O000
P OOOOOOO B, B, B B,

wls Forests of Disjoint Paths

@ Reduction: Given a path forest G with b paths generate an instance
of the bin covering problem such that G can be burned in k rounds

iff it is possible to cover b bins.

o Think of paths as uniform “bins” that need to be “covered” by
items (disks) of radii 0,1,...,k — 1.
bin size (1 5= 4112
P1 O ae i Q=312) =512
PZ Q=212
: : : : pi=11/12
P OOO0O000
P OOOOOOO B, B, B B,

wls Forests of Disjoint Paths

@ Reduction: Given a path forest G with b paths generate an instance
of the bin covering problem such that G can be burned in k rounds

iff it is possible to cover b bins.

o Think of paths as uniform “bins” that need to be “covered” by
items (disks) of radii 0,1,...,k — 1.
bin size (1 5= 4112
P1 O ae i Q=312) =512
PZ Q=212
: : : : pi=11/12
P OOO0O000
P OOOOOOO B, B, B B,

wls Forests of Disjoint Paths

@ Reduction: Given a path forest G with b paths generate an instance
of the bin covering problem such that G can be burned in k rounds
iff it is possible to cover b bins.

o Think of paths as uniform “bins” that need to be “covered” by
items (disks) of radii 0,1,...,k — 1.
o ltems g1, qo, ..., qx project disks (fires) of various radii to items of
various sizes.

P, O size g Q=412
Q=312 =512
Q=212
P O-O-0OO0
pi= 11112
Py Q O O Q Q O p2=9/12 ps=8/12 pe=8/12

P OOOOOOO B B, B By

wls Forests of Disjoint Paths

@ Reduction: Given a path forest G with b paths generate an instance
of the bin covering problem such that G can be burned in k rounds
iff it is possible to cover b bins.

o Think of paths as uniform “bins” that need to be “covered” by
items (disks) of radii 0,1,...,k — 1.

o ltems g1, qo, ..., qx project disks (fires) of various radii to items of
various sizes.
o ltems p1, p2,..., pp project paths of various lengths into bins of
unit size.
5 = Q=412
P1 O de i =312 =512
p =212
(=R ps=8/12 pe=8/12
P+ OOOO0OO

P OOOOOOO B B, B By

ke Burning Forests of Disjoint Paths Sum-
mary

Theorem

There is a fully polynomial-time approximation scheme (FPTAS)
for burning any forest of disjoint paths [Bonato and S.K., 2019].

o The complexity of the problem is settled for forests of disjoint paths.

o For what other graph families an FPTAS might be developed?

wls Tree Decomposition & Burning

o In a Robertson-Seymour path decomposition:
o Path-length [Dourisboure and Gavoille, 2007] is the max distance
of vertices in any bag.
o The graph below has path-width 2 and path-length 3.

wls Tree Decomposition & Burning

o In a Robertson-Seymour path decomposition:

o Path-length [Dourisboure and Gavoille, 2007] is the max distance
of vertices in any bag.
o The graph below has path-width 2 and path-length 3.

@ The burning number of a graph with path-length p/ and diameter
d is at most [vV/d] + p/ [S.K. et al., 2020].

wls Tree Decomposition & Burning

o In a Robertson-Seymour path decomposition:
o Path-length [Dourisboure and Gavoille, 2007] is the max distance

of vertices in any bag.
o The graph below has path-width 2 and path-length 3.
o A graph has path-length 1 if and only if 7?7

@ The burning number of a graph with path-length p/ and diameter
d is at most [vV/d] + p/ [S.K. et al., 2020].

wls Tree Decomposition & Burning

o In a Robertson-Seymour path decomposition:
o Path-length [Dourisboure and Gavoille, 2007] is the max distance
of vertices in any bag.
o The graph below has path-width 2 and path-length 3.
o A graph has path-length 1 if and only if it is an interval graph.

@ The burning number of a graph with path-length p/ and diameter
d is at most [vV/d] + p/ [S.K. et al., 2020].

wls Burning of Graph Families

@ There is an approximation algorithm with factor 1 + o(1) for
burning any graph G of constant path-length [S.K. et al., 2020].

wlsi Burning of Graph Families

@ There is an approximation algorithm with factor 1 + o(1) for
burning any graph G of constant path-length [S.K. et al., 2020].

o If the diameter of G is constant, we can optimally solve the problem.

wlsi Burning of Graph Families

@ There is an approximation algorithm with factor 1 + o(1) for
burning any graph G of constant path-length [S.K. et al., 2020].

o If the diameter of G is constant, we can optimally solve the problem.

o Otherwise, burn the graph in v/d + pl rounds, getting an

approximation factor at most f%”' =2+ o(1).

wls Burning of Graph Families

@ There is an approximation algorithm with factor 1 + o(1) for
burning any graph G of constant path-length [S.K. et al., 2020].

o If the diameter of G is constant, we can optimally solve the problem.
o Otherwise, burn the graph in v/d + pl rounds, getting an

approximation factor at most ‘f%”' =2+ o(1).

@ There is an approximation algorithm with factor 1 + o(1) for
burning any graph G of constant path-length [S.K. et al., 2020].

wls Summary

| Graph family | Apx. Factor | Details \
general graphs 3 [Bonato and S.K., 2019]
trees 2 [Bonato and S.K., 2019]
cacti 2.75 [S.K. and Shabani, 2021]
forests of disjoint paths 1+ ¢ (FPTAS) | [Bonato and S.K., 2019]
graphs of bounded path-length | 1+ o(1) [S.K. et al., 2020]
graphs of bounded tree-length | 2+ o(1) [S.K. et al., 2020]

wlp

References

References

Bessy, S.; Bonato, A.; Janssen, J.
C. M.; Rautenbach, D.; and
Roshanbin, E. (2017).

"Burning a graph is hard”.

Discrete Applied Mathematics, 232, pp. 73-87.

Bonato, A.; Janssen, J. C. M.; and
Roshanbin, E. (2014).

"Burning a Graph as a Model of Social
Contagion”.

In Workshop of Workshop on Algorithms and
Models for the Web Graph, pages 13-22.

Bonato, A. and S.K. (2019).

" Approximation Algorithms for Graph
Burning”.

In Proc. Theory and Applications of Models of
Computation TAMC, volume 11436 of Lecture
Notes in Computer Science, pages 74-92.
Springer.

Dourisboure, Y. and Gavoille, C.

(2007).

" Tree-decompositions with bags of small
diameter” .

2008-2029.

—Jansen, K. and Solis-Oba, R.
(2003.
" An asymptotic fully polynomial time
approximation scheme for bin covering”.
Theoretical Computer Science, 306(1-3), pp.
543-551.

Land, M. R. and Lu, L. (2016).

" An Upper Bound on the Burning Number of
Graphs”.

In Proceedings of Workshop on Algorithms
and Models for the Web Graph, pages 1-8.

Mondal, D.; Parthiban, N.;
Kavitha, V.; and Rajasingh, I.
(2021).

" APX-Hardness and Approximation for the
k-Burning Number Problem” .

In Uehara, R.; Hong, S.; and Nandy, S. C.,
editors, Proc. Algorithms and Computation -
15th International Conference, volume 12635
of Lecture Notes in Computer Science, pages
272-283. Springer.

S.K.; Miller, A.; and Zhang, K.
(2020).
" Burning Two Worlds" .

Lecture Notes in Computer Science, pages

N "Burning Cacti”.
113-124. Springer.

Ongoing work.

	References

