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Graph Burning Problem

Given an undirected graph G , the goal is
to burn in a minimum number of
rounds [Bonato et al., 2014].

At each given round:

A new fire can be initiated at any
vertex.
The existing fires expand to their
neighboring vertices.
The burning completes when all
vertices are on fire.
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Decision problem:

Can we burn G in k rounds?
Equivalently, can we cover the graph with “disks” of radii
0, 1, 2, . . . , k − 1?
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Burning Paths

A path Pn of length n can be covered with disks of radii
0, 1, 2, . . . , d

√
ne [Bonato et al. 2014].

The burning graph conjecture: The burning number of any
connected graph is at most d

√
ne [Bonato et al. 2014].

The burning number of any connected graph is at most√
6

2

√
n ≈ 1.22

√
n [Land and Lu, 2016].
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Computational Complexity

Finding the optimal schedule is NP-hard [Bessy et al., 2017].

Reduction from 3-Partition problem (an extension of 2-partition
problem to 3 set).

The problem remains NP-hard for disjoint set of paths, trees, other
graph families.
The problem is more “interesting” when the underlying graphs are
sparse.

It is claimed that the problem is APX-hard [Mondal et al., 2021]
(no (1 + ε)-approximation exists assuming P 6= NP).
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Approximation Algorithms

If there are r vertices of pairwise distance ≥ 2r − 1 in a graph G ,
then G cannot be burned in less than r rounds.

Example: suppose there are r = 4 vertices of pairwise 2r − 1 = 7 in
a graph G .

It is not possible to cover G with 3 disks of radii 3.
Therefore it is not possible to cover G with 3 disks of radii 0, 1, 2.
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Constant Approximation Algorithm

Define a procedure Burn-Guess(G ,g) which returns:

Either a schedule that completes burning in at most 3g − 3 rounds.
Or ‘Bad-Guess’, which guarantees burning cannot be complete in
g − 1 rounds.

The smallest value of g∗ for which Burn-Guess returns a schedule
gives a burning scheme that completes in 3g∗ − 3 while the optimal
schedule will require g∗ − 1 rounds to complete.

Approximation ratio of at most 3.

6 / 22
Algorithms for Burning Graph Families

N



Constant Approximation Algorithm

Define a procedure Burn-Guess(G ,g) which returns:

Either a schedule that completes burning in at most 3g − 3 rounds.
Or ‘Bad-Guess’, which guarantees burning cannot be complete in
g − 1 rounds.

The smallest value of g∗ for which Burn-Guess returns a schedule
gives a burning scheme that completes in 3g∗ − 3 while the optimal
schedule will require g∗ − 1 rounds to complete.

Approximation ratio of at most 3.

6 / 22
Algorithms for Burning Graph Families

N



Burn-Guess Process

Initially empty sets S of “centers” and L of “labeled vertices”.

Take an arbitrary unlabeled vertex u, add it to S and add all
unlabeled vertices within distance 2g − 2 of u to L.

If the number of centers becomes g , then return Bad-Guess.
If all vertices are added to L, return an arbitrary ordering of centers
as the burning scheme (which completes in at most
(g − 1) + (2g − 2) = 3g − 3 rounds).

E.g., here g = 4 and later we look at g = 5.
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General Graph Summary

Theorem

There is a polynomial algorithm with approximation ratio of 3
for burning any graph G = (V ,E ) [Bonato & S.K., 2019].

What about graph families? can we get better approximation ratio
for families of graphs?
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Burning Trees

Finding the optimal schedule is NP-hard [Bessy et al., 2017].

It is possible to achieve an approximation factor of 2.

Burn-Guess-Tree (τ, g) returns either a schedule that completes in
at most 2g − 2 rounds or ‘Bad-Guess’, which means burning cannot
complete in g − 1 rounds.

An approximation factor of at most 2 is guaranteed:

The schedule returned by the smallest value of g = g∗ completes in
2g∗ − 2 rounds.
For g∗ − 1, Bad-Guess is returned, which implies that the optimal
scheme requires at least g∗ − 1 rounds.
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Trees

Burn-Guess-Tree treats τ as a rooted tree:

Maintain sets T of “terminals”, C of centers, and L of labeled
vertices.
Take the deepest unlabeled node x , add x to T .
let p be the (g − 1)-ancestor of x ; add p to C and add all nodes
within distance g − 1 of p to L.
When |T | = g , return Bad-Guess.
When all vertices are labeled, return any ordering of C as the
burning schedule. All nodes are within distance g − 1 of g centers.
Here, g = 4 returns Bad-Guess and g = 5 returns a schedule.
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Burning Trees Summary

Theorem

There is a polynomial algorithm with approximation ratio of 2
for burning any tree [Bonato & S.K., 2019].

Open question: what is the best approximation factor attainable for
trees? is it possible to get an PTAS (with approximation factor
1 + ε)?
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Burning Cacti

It is possible to achieve an approximation factor of 2.75.

Burn-Guess-Cactus(C ,g) returns either a schedule that completes in
at most 2.75g − 2 rounds or ‘Bad-Guess’, which means burning
cannot complete in g − 1 rounds.

Therefore, an approximation factor of at most 2.75 is guaranteed.

The schedule returned by the smallest value of g = g∗ completes in
2.75g∗ − 2 rounds.
For g∗ − 1, Bad-Guess is returned, which implies that the optimal
scheme requires at least g∗ − 1 rounds.
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Burning Cacti

Burn-Guess-Cactus(C ,g) treats C as a rooted cactus:

Maintain sets T of terminals T , C paths, and L of labeled vertices.
Add the deepest unlabeled node x to to T .

There is either one or two vertices at distance g − 1 of x which are
a part of a simple path between x and the root.

If there is one vertex p1, add p to C .
if there are two vertices p1, p2, add the path between them to C .

Add all nodes within distance g − 1 of the path to L.
When |T | = g , return Bad-Guess.
When all vertices are marked, proceed to the next phase.
Here, we first look at g = 4 and then g = 5.
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Here, we first look at g = 4 and then g = 5.

return
Bad-Guess.
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Burning Cacti

It is possible to burn a forest C of g
disjoint paths, each of length at most 2g
nodes in at most 1.75g rounds.

It is possible to burn all vertices in C in
1.75g .

All nodes are within distance g of one of
the centers, so all vertices are burned in
1.75g + g = 2.75g rounds.
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Burning Cacti Summary

Theorem

There is a polynomial algorithm with approximation ratio of 2.75
for burning any cactus graph [S.K. and Shabani, 2021].

The main idea was to burn paths of centers instead of singular
centers.

The same idea might be applied burning other graph families (e.g.,
Series-Parallel graphs).
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Forests of Disjoint Paths

The burning problem is NP-hard when the input graph is a forest of
disjoint paths [Bessy et al., 2017].

Given disks of radii 0, 1, . . . , k − 1, it is not clear which disk should
be assigned to which path.

If there are Θ(1) disjoint paths, there is a polynomial-time algorithm
that generates an optimal burning scheme [Bonato and S.K., 2019].

Apply a dynamic programming approach!
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Forests of Disjoint Paths

Given any positive value ε, there is a fully polynomial-time
approximation algorithm (FPTAS) that generates a burning scheme
that completes within a factor 1 + ε of an optimal
scheme [Bonato and S.K., 2019].

Reduce the burning problem to the bin covering problem, and use
an existing FPTAS of [Jansen and Solis-Oba, 2003] for the bin
covering to get an FPTAS for the burning problem.
Bin covering: “cover” a maximum number of bins of unit size with
a given multi-set of items with sizes in (0, 1].
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Forests of Disjoint Paths

Reduction: Given a path forest G with b paths generate an instance
of the bin covering problem such that G can be burned in k rounds
iff it is possible to cover b bins.

Think of paths as uniform “bins” that need to be “covered” by
items (disks) of radii 0, 1, . . . , k − 1.

Items q1, q2, . . . , qk project disks (fires) of various radii to items of
various sizes.
Items p1, p2, . . . , pb project paths of various lengths into bins of
unit size.
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Items p1, p2, . . . , pb project paths of various lengths into bins of
unit size.
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Burning Forests of Disjoint Paths Sum-
mary

Theorem

There is a fully polynomial-time approximation scheme (FPTAS)
for burning any forest of disjoint paths [Bonato and S.K., 2019].

The complexity of the problem is settled for forests of disjoint paths.

For what other graph families an FPTAS might be developed?
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Tree Decomposition & Burning

In a Robertson-Seymour path decomposition:

Path-length [Dourisboure and Gavoille, 2007] is the max distance
of vertices in any bag.
The graph below has path-width 2 and path-length 3.

A graph has path-length 1 if and only if

The burning number of a graph with path-length pl and diameter
d is at most d

√
de+ pl [S.K. et al., 2020].

a
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e f

g

h i k

d j

a, b, c c, d, e d, e, f d, f, g d, f, h h,i i, j, k
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Tree Decomposition & Burning

In a Robertson-Seymour path decomposition:

Path-length [Dourisboure and Gavoille, 2007] is the max distance
of vertices in any bag.
The graph below has path-width 2 and path-length 3.
A graph has path-length 1 if and only if it is an interval graph.

The burning number of a graph with path-length pl and diameter
d is at most d

√
de+ pl [S.K. et al., 2020].
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Burning of Graph Families

There is an approximation algorithm with factor 1 + o(1) for
burning any graph G of constant path-length [S.K. et al., 2020].

If the diameter of G is constant, we can optimally solve the problem.
Otherwise, burn the graph in

√
d + pl rounds, getting an

approximation factor at most
√
d+pl√
d

= 2 + o(1).

There is an approximation algorithm with factor 1 + o(1) for
burning any graph G of constant path-length [S.K. et al., 2020].
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Summary

Graph family Apx. Factor Details

general graphs 3 [Bonato and S.K., 2019]

trees 2 [Bonato and S.K., 2019]

cacti 2.75 [S.K. and Shabani, 2021]

forests of disjoint paths 1 + ε (FPTAS) [Bonato and S.K., 2019]

graphs of bounded path-length 1 + o(1) [S.K. et al., 2020]

graphs of bounded tree-length 2 + o(1) [S.K. et al., 2020]
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