
Algorithms for Burning Graph Families

Shahin Kamali

August 6, 2021

Graph Searching in Canada (GRASCan) Workshop

1 / 22
Algorithms for Burning Graph Families

N

Graph Burning Problem

Given an undirected graph G , the goal is
to burn in a minimum number of
rounds [Bonato et al., 2014].

At each given round:

A new fire can be initiated at any
vertex.
The existing fires expand to their
neighboring vertices.
The burning completes when all
vertices are on fire.

5 4 23 16 2 43 5 6

6 5 34 27 3 54 6 7

13 12 1011 914 10 1211 13 14

15 14 1213 1115 10 1211 13 14

14 15 1415 1315 12 1211 13 14

7

8

15

15

15

14 13 1514 1515 14 1213 13 14 15

p1

p2

...

p9 (=m)

p10

p11

p12

s

cgc2c1 ...

round: 0

Decision problem:

Can we burn G in k rounds?
Equivalently, can we cover the graph with “disks” of radii
0, 1, 2, . . . , k − 1?

2 / 22
Algorithms for Burning Graph Families

N

Graph Burning Problem

Given an undirected graph G , the goal is
to burn in a minimum number of
rounds [Bonato et al., 2014].

At each given round:

A new fire can be initiated at any
vertex.
The existing fires expand to their
neighboring vertices.
The burning completes when all
vertices are on fire.

5 4 23 16 2 43 5 6

6 5 34 27 3 54 6 7

13 12 1011 914 10 1211 13 14

15 14 1213 1115 10 1211 13 14

14 15 1415 1315 12 1211 13 14

7

8

15

15

15

14 13 1514 1515 14 1213 13 14 15

p1

p2

...

p9 (=m)

p10

p11

p12

s

cgc2c1 ...

round: 0

Decision problem:

Can we burn G in k rounds?
Equivalently, can we cover the graph with “disks” of radii
0, 1, 2, . . . , k − 1?

2 / 22
Algorithms for Burning Graph Families

N

Graph Burning Problem

Given an undirected graph G , the goal is
to burn in a minimum number of
rounds [Bonato et al., 2014].

At each given round:

A new fire can be initiated at any
vertex.
The existing fires expand to their
neighboring vertices.

The burning completes when all
vertices are on fire.

5 4 23 16 2 43 5 6

6 5 34 27 3 54 6 7

13 12 1011 914 10 1211 13 14

15 14 1213 1115 10 1211 13 14

14 15 1415 1315 12 1211 13 14

7

8

15

15

15

14 13 1514 1515 14 1213 13 14 15

p1

p2

...

p9 (=m)

p10

p11

p12

s

cgc2c1 ...

round: 0

Decision problem:

Can we burn G in k rounds?
Equivalently, can we cover the graph with “disks” of radii
0, 1, 2, . . . , k − 1?

2 / 22
Algorithms for Burning Graph Families

N

Graph Burning Problem

Given an undirected graph G , the goal is
to burn in a minimum number of
rounds [Bonato et al., 2014].

At each given round:

A new fire can be initiated at any
vertex.
The existing fires expand to their
neighboring vertices.

The burning completes when all
vertices are on fire.

5 4 23 16 2 43 5 6

6 5 34 27 3 54 6 7

13 12 1011 914 10 1211 13 14

15 14 1213 1115 10 1211 13 14

14 15 1415 1315 12 1211 13 14

7

8

15

15

15

14 13 1514 1515 14 1213 13 14 15

p1

p2

...

p9 (=m)

p10

p11

p12

s

cgc2c1 ...

round: 0

Decision problem:

Can we burn G in k rounds?
Equivalently, can we cover the graph with “disks” of radii
0, 1, 2, . . . , k − 1?

2 / 22
Algorithms for Burning Graph Families

N

Graph Burning Problem

Given an undirected graph G , the goal is
to burn in a minimum number of
rounds [Bonato et al., 2014].

At each given round:

A new fire can be initiated at any
vertex.
The existing fires expand to their
neighboring vertices.

The burning completes when all
vertices are on fire.

5 4 23 16 2 43 5 6

6 5 34 27 3 54 6 7

13 12 1011 914 10 1211 13 14

15 14 1213 1115 10 1211 13 14

14 15 1415 1315 12 1211 13 14

7

8

15

15

15

14 13 1514 1515 14 1213 13 14 15

p1

p2

...

p9 (=m)

p10

p11

p12

1 A

s

cgc2c1 ...

round: 1

Decision problem:

Can we burn G in k rounds?
Equivalently, can we cover the graph with “disks” of radii
0, 1, 2, . . . , k − 1?

2 / 22
Algorithms for Burning Graph Families

N

Graph Burning Problem

Given an undirected graph G , the goal is
to burn in a minimum number of
rounds [Bonato et al., 2014].

At each given round:

A new fire can be initiated at any
vertex.
The existing fires expand to their
neighboring vertices.

The burning completes when all
vertices are on fire.

5 4 23 16 2 43 5 6

6 5 34 27 3 54 6 7

13 12 1011 914 10 1211 13 14

15 14 1213 1115 10 1211 13 14

14 15 1415 1315 12 1211 13 14

7

8

15

15

15

14 13 1514 1515 14 1213 13 14 15

p1

p2

...

p9 (=m)

p10

p11

p12

2

2 1

2

2

A

s

cgc2c1 ...

round: 2

Decision problem:

Can we burn G in k rounds?
Equivalently, can we cover the graph with “disks” of radii
0, 1, 2, . . . , k − 1?

2 / 22
Algorithms for Burning Graph Families

N

Graph Burning Problem

Given an undirected graph G , the goal is
to burn in a minimum number of
rounds [Bonato et al., 2014].

At each given round:

A new fire can be initiated at any
vertex.
The existing fires expand to their
neighboring vertices.

The burning completes when all
vertices are on fire.

5 4 23 16 2 43 5 6

6 5 34 27 3 54 6 7

13 12 1011 914 10 1211 13 14

15 14 1213 1115 10 1211 13 14

14 15 1415 1315 12 1211 13 14

7

8

15

15

15

14 13 1514 1515 14 1213 13 14 15

p1

p2

...

p9 (=m)

p10

p11

p12

2

2 1

2 2

2

A

B

s

cgc2c1 ...

round: 2

Decision problem:

Can we burn G in k rounds?
Equivalently, can we cover the graph with “disks” of radii
0, 1, 2, . . . , k − 1?

2 / 22
Algorithms for Burning Graph Families

N

Graph Burning Problem

Given an undirected graph G , the goal is
to burn in a minimum number of
rounds [Bonato et al., 2014].

At each given round:

A new fire can be initiated at any
vertex.
The existing fires expand to their
neighboring vertices.

The burning completes when all
vertices are on fire.

5 4 23 16 2 43 5 6

6 5 34 27 3 54 6 7

13 12 1011 914 10 1211 13 14

15 14 1213 1115 10 1211 13 14

14 15 1415 1315 12 1211 13 14

7

8

15

15

15

14 13 1514 1515 14 1213 13 14 15

p1

p2

...

p9 (=m)

p10

p11

p12

3
3

2

3

3

3

3

3

3
2 1

2 2

3

3
2

3

A

B

C

s

cgc2c1 ...

round: 3

Decision problem:

Can we burn G in k rounds?
Equivalently, can we cover the graph with “disks” of radii
0, 1, 2, . . . , k − 1?

2 / 22
Algorithms for Burning Graph Families

N

Graph Burning Problem

Given an undirected graph G , the goal is
to burn in a minimum number of
rounds [Bonato et al., 2014].

At each given round:

A new fire can be initiated at any
vertex.
The existing fires expand to their
neighboring vertices.
The burning completes when all
vertices are on fire.

5 4 23 16 2 43 5 6

6 5 34 27 3 54 6 7

13 12 1011 914 10 1211 13 14

15 14 1213 1115 10 1211 13 14

14 15 1415 1315 12 1211 13 14

7

8

15

15

15

14 13 1514 1515 14 1213 13 14 15

p1

p2

...

p9 (=m)

p10

p11

p12

3
3

2

3

3

3

3

3

3

3
2 1

2 2

3

3
2

3

A

B

C

s

cgc2c1 ...

round: 3

Decision problem:

Can we burn G in k rounds?
Equivalently, can we cover the graph with “disks” of radii
0, 1, 2, . . . , k − 1?

2 / 22
Algorithms for Burning Graph Families

N

Graph Burning Problem

Given an undirected graph G , the goal is
to burn in a minimum number of
rounds [Bonato et al., 2014].

At each given round:

A new fire can be initiated at any
vertex.
The existing fires expand to their
neighboring vertices.
The burning completes when all
vertices are on fire.

5 4 23 16 2 43 5 6

6 5 34 27 3 54 6 7

13 12 1011 914 10 1211 13 14

15 14 1213 1115 10 1211 13 14

14 15 1415 1315 12 1211 13 14

7

8

15

15

15

14 13 1514 1515 14 1213 13 14 15

p1

p2

...

p9 (=m)

p10

p11

p12

3
3

2

3

3

3

3

3

3

3
2 1

2 2

3

3
2

3

A

B

C

s

cgc2c1 ...

round: 3

Decision problem:

Can we burn G in k rounds?

Equivalently, can we cover the graph with “disks” of radii
0, 1, 2, . . . , k − 1?

2 / 22
Algorithms for Burning Graph Families

N

Graph Burning Problem

Given an undirected graph G , the goal is
to burn in a minimum number of
rounds [Bonato et al., 2014].

At each given round:

A new fire can be initiated at any
vertex.
The existing fires expand to their
neighboring vertices.
The burning completes when all
vertices are on fire.

Decision problem:

Can we burn G in k rounds?
Equivalently, can we cover the graph with “disks” of radii
0, 1, 2, . . . , k − 1?

2 / 22
Algorithms for Burning Graph Families

N

Burning Paths

A path Pn of length n can be covered with disks of radii
0, 1, 2, . . . , d

√
ne [Bonato et al. 2014].

The burning graph conjecture: The burning number of any
connected graph is at most d

√
ne [Bonato et al. 2014].

The burning number of any connected graph is at most√
6

2

√
n ≈ 1.22

√
n [Land and Lu, 2016].

3 / 22
Algorithms for Burning Graph Families

N

Burning Paths

A path Pn of length n can be covered with disks of radii
0, 1, 2, . . . , d

√
ne [Bonato et al. 2014].

The burning graph conjecture: The burning number of any
connected graph is at most d

√
ne [Bonato et al. 2014].

The burning number of any connected graph is at most√
6

2

√
n ≈ 1.22

√
n [Land and Lu, 2016].

3 / 22
Algorithms for Burning Graph Families

N

Burning Paths

A path Pn of length n can be covered with disks of radii
0, 1, 2, . . . , d

√
ne [Bonato et al. 2014].

The burning graph conjecture: The burning number of any
connected graph is at most d

√
ne [Bonato et al. 2014].

The burning number of any connected graph is at most√
6

2

√
n ≈ 1.22

√
n [Land and Lu, 2016].

3 / 22
Algorithms for Burning Graph Families

N

Burning Paths

A path Pn of length n can be covered with disks of radii
0, 1, 2, . . . , d

√
ne [Bonato et al. 2014].

The burning graph conjecture: The burning number of any
connected graph is at most d

√
ne [Bonato et al. 2014].

The burning number of any connected graph is at most√
6

2

√
n ≈ 1.22

√
n [Land and Lu, 2016].

3 / 22
Algorithms for Burning Graph Families

N

Burning Paths

A path Pn of length n can be covered with disks of radii
0, 1, 2, . . . , d

√
ne [Bonato et al. 2014].

The burning graph conjecture: The burning number of any
connected graph is at most d

√
ne [Bonato et al. 2014].

The burning number of any connected graph is at most√
6

2

√
n ≈ 1.22

√
n [Land and Lu, 2016].

3 / 22
Algorithms for Burning Graph Families

N

Computational Complexity

Finding the optimal schedule is NP-hard [Bessy et al., 2017].

Reduction from 3-Partition problem (an extension of 2-partition
problem to 3 set).

The problem remains NP-hard for disjoint set of paths, trees, other
graph families.
The problem is more “interesting” when the underlying graphs are
sparse.

It is claimed that the problem is APX-hard [Mondal et al., 2021]
(no (1 + ε)-approximation exists assuming P 6= NP).

4 / 22
Algorithms for Burning Graph Families

N

Computational Complexity

Finding the optimal schedule is NP-hard [Bessy et al., 2017].

Reduction from 3-Partition problem (an extension of 2-partition
problem to 3 set).
The problem remains NP-hard for disjoint set of paths, trees, other
graph families.

The problem is more “interesting” when the underlying graphs are
sparse.

It is claimed that the problem is APX-hard [Mondal et al., 2021]
(no (1 + ε)-approximation exists assuming P 6= NP).

4 / 22
Algorithms for Burning Graph Families

N

Computational Complexity

Finding the optimal schedule is NP-hard [Bessy et al., 2017].

Reduction from 3-Partition problem (an extension of 2-partition
problem to 3 set).
The problem remains NP-hard for disjoint set of paths, trees, other
graph families.
The problem is more “interesting” when the underlying graphs are
sparse.

It is claimed that the problem is APX-hard [Mondal et al., 2021]
(no (1 + ε)-approximation exists assuming P 6= NP).

4 / 22
Algorithms for Burning Graph Families

N

Computational Complexity

Finding the optimal schedule is NP-hard [Bessy et al., 2017].

Reduction from 3-Partition problem (an extension of 2-partition
problem to 3 set).
The problem remains NP-hard for disjoint set of paths, trees, other
graph families.
The problem is more “interesting” when the underlying graphs are
sparse.

It is claimed that the problem is APX-hard [Mondal et al., 2021]
(no (1 + ε)-approximation exists assuming P 6= NP).

4 / 22
Algorithms for Burning Graph Families

N

Approximation Algorithms

If there are r vertices of pairwise distance ≥ 2r − 1 in a graph G ,
then G cannot be burned in less than r rounds.

Example: suppose there are r = 4 vertices of pairwise 2r − 1 = 7 in
a graph G .

It is not possible to cover G with 3 disks of radii 3.
Therefore it is not possible to cover G with 3 disks of radii 0, 1, 2.

5 / 22
Algorithms for Burning Graph Families

N

Approximation Algorithms

If there are r vertices of pairwise distance ≥ 2r − 1 in a graph G ,
then G cannot be burned in less than r rounds.

Example: suppose there are r = 4 vertices of pairwise 2r − 1 = 7 in
a graph G .

It is not possible to cover G with 3 disks of radii 3.

Therefore it is not possible to cover G with 3 disks of radii 0, 1, 2.

5 / 22
Algorithms for Burning Graph Families

N

Approximation Algorithms

If there are r vertices of pairwise distance ≥ 2r − 1 in a graph G ,
then G cannot be burned in less than r rounds.

Example: suppose there are r = 4 vertices of pairwise 2r − 1 = 7 in
a graph G .

It is not possible to cover G with 3 disks of radii 3.
Therefore it is not possible to cover G with 3 disks of radii 0, 1, 2.

5 / 22
Algorithms for Burning Graph Families

N

Approximation Algorithms

If there are r vertices of pairwise distance ≥ 2r − 1 in a graph G ,
then G cannot be burned in less than r rounds.

Example: suppose there are r = 4 vertices of pairwise 2r − 1 = 7 in
a graph G .

It is not possible to cover G with 3 disks of radii 3.
Therefore it is not possible to cover G with 3 disks of radii 0, 1, 2.

5 / 22
Algorithms for Burning Graph Families

N

Constant Approximation Algorithm

Define a procedure Burn-Guess(G ,g) which returns:

Either a schedule that completes burning in at most 3g − 3 rounds.
Or ‘Bad-Guess’, which guarantees burning cannot be complete in
g − 1 rounds.

The smallest value of g∗ for which Burn-Guess returns a schedule
gives a burning scheme that completes in 3g∗ − 3 while the optimal
schedule will require g∗ − 1 rounds to complete.

Approximation ratio of at most 3.

6 / 22
Algorithms for Burning Graph Families

N

Constant Approximation Algorithm

Define a procedure Burn-Guess(G ,g) which returns:

Either a schedule that completes burning in at most 3g − 3 rounds.
Or ‘Bad-Guess’, which guarantees burning cannot be complete in
g − 1 rounds.

The smallest value of g∗ for which Burn-Guess returns a schedule
gives a burning scheme that completes in 3g∗ − 3 while the optimal
schedule will require g∗ − 1 rounds to complete.

Approximation ratio of at most 3.

6 / 22
Algorithms for Burning Graph Families

N

Burn-Guess Process

Initially empty sets S of “centers” and L of “labeled vertices”.

Take an arbitrary unlabeled vertex u, add it to S and add all
unlabeled vertices within distance 2g − 2 of u to L.

If the number of centers becomes g , then return Bad-Guess.
If all vertices are added to L, return an arbitrary ordering of centers
as the burning scheme (which completes in at most
(g − 1) + (2g − 2) = 3g − 3 rounds).

E.g., here g = 4 and later we look at g = 5.

7 / 22
Algorithms for Burning Graph Families

N

Burn-Guess Process

Initially empty sets S of “centers” and L of “labeled vertices”.

Take an arbitrary unlabeled vertex u, add it to S and add all
unlabeled vertices within distance 2g − 2 of u to L.

If the number of centers becomes g , then return Bad-Guess.
If all vertices are added to L, return an arbitrary ordering of centers
as the burning scheme (which completes in at most
(g − 1) + (2g − 2) = 3g − 3 rounds).

E.g., here g = 4 and later we look at g = 5.

7 / 22
Algorithms for Burning Graph Families

N

Burn-Guess Process

Initially empty sets S of “centers” and L of “labeled vertices”.

Take an arbitrary unlabeled vertex u, add it to S and add all
unlabeled vertices within distance 2g − 2 of u to L.

If the number of centers becomes g , then return Bad-Guess.
If all vertices are added to L, return an arbitrary ordering of centers
as the burning scheme (which completes in at most
(g − 1) + (2g − 2) = 3g − 3 rounds).

E.g., here g = 4 and later we look at g = 5.

7 / 22
Algorithms for Burning Graph Families

N

Burn-Guess Process

Initially empty sets S of “centers” and L of “labeled vertices”.

Take an arbitrary unlabeled vertex u, add it to S and add all
unlabeled vertices within distance 2g − 2 of u to L.

If the number of centers becomes g , then return Bad-Guess.
If all vertices are added to L, return an arbitrary ordering of centers
as the burning scheme (which completes in at most
(g − 1) + (2g − 2) = 3g − 3 rounds).

E.g., here g = 4 and later we look at g = 5.

7 / 22
Algorithms for Burning Graph Families

N

Burn-Guess Process

Initially empty sets S of “centers” and L of “labeled vertices”.

Take an arbitrary unlabeled vertex u, add it to S and add all
unlabeled vertices within distance 2g − 2 of u to L.

If the number of centers becomes g , then return Bad-Guess.
If all vertices are added to L, return an arbitrary ordering of centers
as the burning scheme (which completes in at most
(g − 1) + (2g − 2) = 3g − 3 rounds).

E.g., here g = 4 and later we look at g = 5.

7 / 22
Algorithms for Burning Graph Families

N

Burn-Guess Process

Initially empty sets S of “centers” and L of “labeled vertices”.

Take an arbitrary unlabeled vertex u, add it to S and add all
unlabeled vertices within distance 2g − 2 of u to L.

If the number of centers becomes g , then return Bad-Guess.
If all vertices are added to L, return an arbitrary ordering of centers
as the burning scheme (which completes in at most
(g − 1) + (2g − 2) = 3g − 3 rounds).

E.g., here g = 4 and later we look at g = 5.

7 / 22
Algorithms for Burning Graph Families

N

Burn-Guess Process

Initially empty sets S of “centers” and L of “labeled vertices”.

Take an arbitrary unlabeled vertex u, add it to S and add all
unlabeled vertices within distance 2g − 2 of u to L.

If the number of centers becomes g , then return Bad-Guess.
If all vertices are added to L, return an arbitrary ordering of centers
as the burning scheme (which completes in at most
(g − 1) + (2g − 2) = 3g − 3 rounds).

E.g., here g = 4 and later we look at g = 5.

7 / 22
Algorithms for Burning Graph Families

N

Burn-Guess Process

Initially empty sets S of “centers” and L of “labeled vertices”.

Take an arbitrary unlabeled vertex u, add it to S and add all
unlabeled vertices within distance 2g − 2 of u to L.

If the number of centers becomes g , then return Bad-Guess.
If all vertices are added to L, return an arbitrary ordering of centers
as the burning scheme (which completes in at most
(g − 1) + (2g − 2) = 3g − 3 rounds).

E.g., here g = 4 and later we look at g = 5.

7 / 22
Algorithms for Burning Graph Families

N

Burn-Guess Process

Initially empty sets S of “centers” and L of “labeled vertices”.

Take an arbitrary unlabeled vertex u, add it to S and add all
unlabeled vertices within distance 2g − 2 of u to L.

If the number of centers becomes g , then return Bad-Guess.
If all vertices are added to L, return an arbitrary ordering of centers
as the burning scheme (which completes in at most
(g − 1) + (2g − 2) = 3g − 3 rounds).

E.g., here g = 4 and later we look at g = 5.

7 / 22
Algorithms for Burning Graph Families

N

Burn-Guess Process

Initially empty sets S of “centers” and L of “labeled vertices”.

Take an arbitrary unlabeled vertex u, add it to S and add all
unlabeled vertices within distance 2g − 2 of u to L.

If the number of centers becomes g , then return Bad-Guess.
If all vertices are added to L, return an arbitrary ordering of centers
as the burning scheme (which completes in at most
(g − 1) + (2g − 2) = 3g − 3 rounds).

E.g., here g = 4 and later we look at g = 5.

7 / 22
Algorithms for Burning Graph Families

N

Burn-Guess Process

Initially empty sets S of “centers” and L of “labeled vertices”.

Take an arbitrary unlabeled vertex u, add it to S and add all
unlabeled vertices within distance 2g − 2 of u to L.

If the number of centers becomes g , then return Bad-Guess.

If all vertices are added to L, return an arbitrary ordering of centers
as the burning scheme (which completes in at most
(g − 1) + (2g − 2) = 3g − 3 rounds).

E.g., here g = 4 and later we look at g = 5.

7 / 22
Algorithms for Burning Graph Families

N

Burn-Guess Process

Initially empty sets S of “centers” and L of “labeled vertices”.

Take an arbitrary unlabeled vertex u, add it to S and add all
unlabeled vertices within distance 2g − 2 of u to L.

If the number of centers becomes g , then return Bad-Guess.

If all vertices are added to L, return an arbitrary ordering of centers
as the burning scheme (which completes in at most
(g − 1) + (2g − 2) = 3g − 3 rounds).

E.g., here g = 4 and later we look at g = 5.

7 / 22
Algorithms for Burning Graph Families

N

Burn-Guess Process

Initially empty sets S of “centers” and L of “labeled vertices”.

Take an arbitrary unlabeled vertex u, add it to S and add all
unlabeled vertices within distance 2g − 2 of u to L.

If the number of centers becomes g , then return Bad-Guess.

If all vertices are added to L, return an arbitrary ordering of centers
as the burning scheme (which completes in at most
(g − 1) + (2g − 2) = 3g − 3 rounds).

E.g., here g = 4 and later we look at g = 5.

7 / 22
Algorithms for Burning Graph Families

N

Burn-Guess Process

Initially empty sets S of “centers” and L of “labeled vertices”.

Take an arbitrary unlabeled vertex u, add it to S and add all
unlabeled vertices within distance 2g − 2 of u to L.

If the number of centers becomes g , then return Bad-Guess.

If all vertices are added to L, return an arbitrary ordering of centers
as the burning scheme (which completes in at most
(g − 1) + (2g − 2) = 3g − 3 rounds).

E.g., here g = 4 and later we look at g = 5.

7 / 22
Algorithms for Burning Graph Families

N

Burn-Guess Process

Initially empty sets S of “centers” and L of “labeled vertices”.

Take an arbitrary unlabeled vertex u, add it to S and add all
unlabeled vertices within distance 2g − 2 of u to L.

If the number of centers becomes g , then return Bad-Guess.

If all vertices are added to L, return an arbitrary ordering of centers
as the burning scheme (which completes in at most
(g − 1) + (2g − 2) = 3g − 3 rounds).

E.g., here g = 4 and later we look at g = 5.

7 / 22
Algorithms for Burning Graph Families

N

Burn-Guess Process

Initially empty sets S of “centers” and L of “labeled vertices”.

Take an arbitrary unlabeled vertex u, add it to S and add all
unlabeled vertices within distance 2g − 2 of u to L.

If the number of centers becomes g , then return Bad-Guess.

If all vertices are added to L, return an arbitrary ordering of centers
as the burning scheme (which completes in at most
(g − 1) + (2g − 2) = 3g − 3 rounds).

E.g., here g = 4 and later we look at g = 5.

7 / 22
Algorithms for Burning Graph Families

N

Burn-Guess Process

Initially empty sets S of “centers” and L of “labeled vertices”.

Take an arbitrary unlabeled vertex u, add it to S and add all
unlabeled vertices within distance 2g − 2 of u to L.

If the number of centers becomes g , then return Bad-Guess.

If all vertices are added to L, return an arbitrary ordering of centers
as the burning scheme (which completes in at most
(g − 1) + (2g − 2) = 3g − 3 rounds).

E.g., here g = 4 and later we look at g = 5.

7 / 22
Algorithms for Burning Graph Families

N

Burn-Guess Process

Initially empty sets S of “centers” and L of “labeled vertices”.

Take an arbitrary unlabeled vertex u, add it to S and add all
unlabeled vertices within distance 2g − 2 of u to L.

If the number of centers becomes g , then return Bad-Guess.
If all vertices are added to L, return an arbitrary ordering of centers
as the burning scheme (which completes in at most
(g − 1) + (2g − 2) = 3g − 3 rounds).

E.g., here g = 4 and later we look at g = 5.

7 / 22
Algorithms for Burning Graph Families

N

General Graph Summary

Theorem

There is a polynomial algorithm with approximation ratio of 3
for burning any graph G = (V ,E) [Bonato & S.K., 2019].

What about graph families? can we get better approximation ratio
for families of graphs?

8 / 22
Algorithms for Burning Graph Families

N

Burning Trees

Finding the optimal schedule is NP-hard [Bessy et al., 2017].

It is possible to achieve an approximation factor of 2.

Burn-Guess-Tree (τ, g) returns either a schedule that completes in
at most 2g − 2 rounds or ‘Bad-Guess’, which means burning cannot
complete in g − 1 rounds.

An approximation factor of at most 2 is guaranteed:

The schedule returned by the smallest value of g = g∗ completes in
2g∗ − 2 rounds.
For g∗ − 1, Bad-Guess is returned, which implies that the optimal
scheme requires at least g∗ − 1 rounds.

9 / 22
Algorithms for Burning Graph Families

N

Burning Trees

Finding the optimal schedule is NP-hard [Bessy et al., 2017].

It is possible to achieve an approximation factor of 2.

Burn-Guess-Tree (τ, g) returns either a schedule that completes in
at most 2g − 2 rounds or ‘Bad-Guess’, which means burning cannot
complete in g − 1 rounds.

An approximation factor of at most 2 is guaranteed:

The schedule returned by the smallest value of g = g∗ completes in
2g∗ − 2 rounds.
For g∗ − 1, Bad-Guess is returned, which implies that the optimal
scheme requires at least g∗ − 1 rounds.

9 / 22
Algorithms for Burning Graph Families

N

Burning Trees

Finding the optimal schedule is NP-hard [Bessy et al., 2017].

It is possible to achieve an approximation factor of 2.

Burn-Guess-Tree (τ, g) returns either a schedule that completes in
at most 2g − 2 rounds or ‘Bad-Guess’, which means burning cannot
complete in g − 1 rounds.

An approximation factor of at most 2 is guaranteed:

The schedule returned by the smallest value of g = g∗ completes in
2g∗ − 2 rounds.
For g∗ − 1, Bad-Guess is returned, which implies that the optimal
scheme requires at least g∗ − 1 rounds.

9 / 22
Algorithms for Burning Graph Families

N

Burning Trees

Finding the optimal schedule is NP-hard [Bessy et al., 2017].

It is possible to achieve an approximation factor of 2.

Burn-Guess-Tree (τ, g) returns either a schedule that completes in
at most 2g − 2 rounds or ‘Bad-Guess’, which means burning cannot
complete in g − 1 rounds.

An approximation factor of at most 2 is guaranteed:

The schedule returned by the smallest value of g = g∗ completes in
2g∗ − 2 rounds.
For g∗ − 1, Bad-Guess is returned, which implies that the optimal
scheme requires at least g∗ − 1 rounds.

9 / 22
Algorithms for Burning Graph Families

N

Trees

Burn-Guess-Tree treats τ as a rooted tree:

Maintain sets T of “terminals”, C of centers, and L of labeled
vertices.
Take the deepest unlabeled node x , add x to T .
let p be the (g − 1)-ancestor of x ; add p to C and add all nodes
within distance g − 1 of p to L.
When |T | = g , return Bad-Guess.
When all vertices are labeled, return any ordering of C as the
burning schedule. All nodes are within distance g − 1 of g centers.
Here, g = 4 returns Bad-Guess and g = 5 returns a schedule.

10 / 22
Algorithms for Burning Graph Families

N

Trees

Burn-Guess-Tree treats τ as a rooted tree:

Maintain sets T of “terminals”, C of centers, and L of labeled
vertices.

Take the deepest unlabeled node x , add x to T .
let p be the (g − 1)-ancestor of x ; add p to C and add all nodes
within distance g − 1 of p to L.
When |T | = g , return Bad-Guess.
When all vertices are labeled, return any ordering of C as the
burning schedule. All nodes are within distance g − 1 of g centers.
Here, g = 4 returns Bad-Guess and g = 5 returns a schedule.

10 / 22
Algorithms for Burning Graph Families

N

Trees

Burn-Guess-Tree treats τ as a rooted tree:

Maintain sets T of “terminals”, C of centers, and L of labeled
vertices.
Take the deepest unlabeled node x , add x to T .
let p be the (g − 1)-ancestor of x ; add p to C and add all nodes
within distance g − 1 of p to L.

When |T | = g , return Bad-Guess.
When all vertices are labeled, return any ordering of C as the
burning schedule. All nodes are within distance g − 1 of g centers.
Here, g = 4 returns Bad-Guess and g = 5 returns a schedule.

10 / 22
Algorithms for Burning Graph Families

N

Trees

Burn-Guess-Tree treats τ as a rooted tree:

Maintain sets T of “terminals”, C of centers, and L of labeled
vertices.
Take the deepest unlabeled node x , add x to T .
let p be the (g − 1)-ancestor of x ; add p to C and add all nodes
within distance g − 1 of p to L.

When |T | = g , return Bad-Guess.
When all vertices are labeled, return any ordering of C as the
burning schedule. All nodes are within distance g − 1 of g centers.

Here, g = 4 returns Bad-Guess and g = 5 returns a schedule.

10 / 22
Algorithms for Burning Graph Families

N

Trees

Burn-Guess-Tree treats τ as a rooted tree:

Maintain sets T of “terminals”, C of centers, and L of labeled
vertices.
Take the deepest unlabeled node x , add x to T .
let p be the (g − 1)-ancestor of x ; add p to C and add all nodes
within distance g − 1 of p to L.

When |T | = g , return Bad-Guess.
When all vertices are labeled, return any ordering of C as the
burning schedule. All nodes are within distance g − 1 of g centers.

Here, g = 4 returns Bad-Guess and g = 5 returns a schedule.

10 / 22
Algorithms for Burning Graph Families

N

Trees

Burn-Guess-Tree treats τ as a rooted tree:

Maintain sets T of “terminals”, C of centers, and L of labeled
vertices.
Take the deepest unlabeled node x , add x to T .
let p be the (g − 1)-ancestor of x ; add p to C and add all nodes
within distance g − 1 of p to L.

When |T | = g , return Bad-Guess.
When all vertices are labeled, return any ordering of C as the
burning schedule. All nodes are within distance g − 1 of g centers.

Here, g = 4 returns Bad-Guess and g = 5 returns a schedule.

10 / 22
Algorithms for Burning Graph Families

N

Trees

Burn-Guess-Tree treats τ as a rooted tree:

Maintain sets T of “terminals”, C of centers, and L of labeled
vertices.
Take the deepest unlabeled node x , add x to T .
let p be the (g − 1)-ancestor of x ; add p to C and add all nodes
within distance g − 1 of p to L.

When |T | = g , return Bad-Guess.
When all vertices are labeled, return any ordering of C as the
burning schedule. All nodes are within distance g − 1 of g centers.

Here, g = 4 returns Bad-Guess and g = 5 returns a schedule.

10 / 22
Algorithms for Burning Graph Families

N

Trees

Burn-Guess-Tree treats τ as a rooted tree:

Maintain sets T of “terminals”, C of centers, and L of labeled
vertices.
Take the deepest unlabeled node x , add x to T .
let p be the (g − 1)-ancestor of x ; add p to C and add all nodes
within distance g − 1 of p to L.

When |T | = g , return Bad-Guess.
When all vertices are labeled, return any ordering of C as the
burning schedule. All nodes are within distance g − 1 of g centers.

Here, g = 4 returns Bad-Guess and g = 5 returns a schedule.

10 / 22
Algorithms for Burning Graph Families

N

Trees

Burn-Guess-Tree treats τ as a rooted tree:

Maintain sets T of “terminals”, C of centers, and L of labeled
vertices.
Take the deepest unlabeled node x , add x to T .
let p be the (g − 1)-ancestor of x ; add p to C and add all nodes
within distance g − 1 of p to L.

When |T | = g , return Bad-Guess.
When all vertices are labeled, return any ordering of C as the
burning schedule. All nodes are within distance g − 1 of g centers.

Here, g = 4 returns Bad-Guess and g = 5 returns a schedule.

10 / 22
Algorithms for Burning Graph Families

N

Trees

Burn-Guess-Tree treats τ as a rooted tree:

Maintain sets T of “terminals”, C of centers, and L of labeled
vertices.
Take the deepest unlabeled node x , add x to T .
let p be the (g − 1)-ancestor of x ; add p to C and add all nodes
within distance g − 1 of p to L.

When |T | = g , return Bad-Guess.
When all vertices are labeled, return any ordering of C as the
burning schedule. All nodes are within distance g − 1 of g centers.

Here, g = 4 returns Bad-Guess and g = 5 returns a schedule.

10 / 22
Algorithms for Burning Graph Families

N

Trees

Burn-Guess-Tree treats τ as a rooted tree:

Maintain sets T of “terminals”, C of centers, and L of labeled
vertices.
Take the deepest unlabeled node x , add x to T .
let p be the (g − 1)-ancestor of x ; add p to C and add all nodes
within distance g − 1 of p to L.
When |T | = g , return Bad-Guess.

When all vertices are labeled, return any ordering of C as the
burning schedule. All nodes are within distance g − 1 of g centers.

Here, g = 4 returns Bad-Guess and g = 5 returns a schedule.

10 / 22
Algorithms for Burning Graph Families

N

Trees

Burn-Guess-Tree treats τ as a rooted tree:

Maintain sets T of “terminals”, C of centers, and L of labeled
vertices.
Take the deepest unlabeled node x , add x to T .
let p be the (g − 1)-ancestor of x ; add p to C and add all nodes
within distance g − 1 of p to L.
When |T | = g , return Bad-Guess.
When all vertices are labeled, return any ordering of C as the
burning schedule. All nodes are within distance g − 1 of g centers.
Here, g = 4 returns Bad-Guess and g = 5 returns a schedule.

10 / 22
Algorithms for Burning Graph Families

N

Burning Trees Summary

Theorem

There is a polynomial algorithm with approximation ratio of 2
for burning any tree [Bonato & S.K., 2019].

Open question: what is the best approximation factor attainable for
trees? is it possible to get an PTAS (with approximation factor
1 + ε)?

11 / 22
Algorithms for Burning Graph Families

N

Burning Cacti

It is possible to achieve an approximation factor of 2.75.

Burn-Guess-Cactus(C ,g) returns either a schedule that completes in
at most 2.75g − 2 rounds or ‘Bad-Guess’, which means burning
cannot complete in g − 1 rounds.

Therefore, an approximation factor of at most 2.75 is guaranteed.

The schedule returned by the smallest value of g = g∗ completes in
2.75g∗ − 2 rounds.
For g∗ − 1, Bad-Guess is returned, which implies that the optimal
scheme requires at least g∗ − 1 rounds.

12 / 22
Algorithms for Burning Graph Families

N

Burning Cacti

It is possible to achieve an approximation factor of 2.75.

Burn-Guess-Cactus(C ,g) returns either a schedule that completes in
at most 2.75g − 2 rounds or ‘Bad-Guess’, which means burning
cannot complete in g − 1 rounds.

Therefore, an approximation factor of at most 2.75 is guaranteed.

The schedule returned by the smallest value of g = g∗ completes in
2.75g∗ − 2 rounds.
For g∗ − 1, Bad-Guess is returned, which implies that the optimal
scheme requires at least g∗ − 1 rounds.

12 / 22
Algorithms for Burning Graph Families

N

Burning Cacti

It is possible to achieve an approximation factor of 2.75.

Burn-Guess-Cactus(C ,g) returns either a schedule that completes in
at most 2.75g − 2 rounds or ‘Bad-Guess’, which means burning
cannot complete in g − 1 rounds.

Therefore, an approximation factor of at most 2.75 is guaranteed.

The schedule returned by the smallest value of g = g∗ completes in
2.75g∗ − 2 rounds.
For g∗ − 1, Bad-Guess is returned, which implies that the optimal
scheme requires at least g∗ − 1 rounds.

12 / 22
Algorithms for Burning Graph Families

N

Burning Cacti

Burn-Guess-Cactus(C ,g) treats C as a rooted cactus:

Maintain sets T of terminals T , C paths, and L of labeled vertices.
Add the deepest unlabeled node x to to T .

There is either one or two vertices at distance g − 1 of x which are
a part of a simple path between x and the root.

If there is one vertex p1, add p to C .
if there are two vertices p1, p2, add the path between them to C .

Add all nodes within distance g − 1 of the path to L.
When |T | = g , return Bad-Guess.
When all vertices are marked, proceed to the next phase.
Here, we first look at g = 4 and then g = 5.

13 / 22
Algorithms for Burning Graph Families

N

Burning Cacti

Burn-Guess-Cactus(C ,g) treats C as a rooted cactus:

Maintain sets T of terminals T , C paths, and L of labeled vertices.
Add the deepest unlabeled node x to to T .
There is either one or two vertices at distance g − 1 of x which are
a part of a simple path between x and the root.

If there is one vertex p1, add p to C .
if there are two vertices p1, p2, add the path between them to C .

Add all nodes within distance g − 1 of the path to L.
When |T | = g , return Bad-Guess.
When all vertices are marked, proceed to the next phase.
Here, we first look at g = 4 and then g = 5.

13 / 22
Algorithms for Burning Graph Families

N

Burning Cacti

Burn-Guess-Cactus(C ,g) treats C as a rooted cactus:

Maintain sets T of terminals T , C paths, and L of labeled vertices.
Add the deepest unlabeled node x to to T .
There is either one or two vertices at distance g − 1 of x which are
a part of a simple path between x and the root.

If there is one vertex p1, add p to C .
if there are two vertices p1, p2, add the path between them to C .

Add all nodes within distance g − 1 of the path to L.

When |T | = g , return Bad-Guess.
When all vertices are marked, proceed to the next phase.
Here, we first look at g = 4 and then g = 5.

13 / 22
Algorithms for Burning Graph Families

N

Burning Cacti

Burn-Guess-Cactus(C ,g) treats C as a rooted cactus:

Maintain sets T of terminals T , C paths, and L of labeled vertices.
Add the deepest unlabeled node x to to T .
There is either one or two vertices at distance g − 1 of x which are
a part of a simple path between x and the root.

If there is one vertex p1, add p to C .
if there are two vertices p1, p2, add the path between them to C .

Add all nodes within distance g − 1 of the path to L.

When |T | = g , return Bad-Guess.
When all vertices are marked, proceed to the next phase.

Here, we first look at g = 4 and then g = 5.

13 / 22
Algorithms for Burning Graph Families

N

Burning Cacti

Burn-Guess-Cactus(C ,g) treats C as a rooted cactus:

Maintain sets T of terminals T , C paths, and L of labeled vertices.
Add the deepest unlabeled node x to to T .
There is either one or two vertices at distance g − 1 of x which are
a part of a simple path between x and the root.

If there is one vertex p1, add p to C .
if there are two vertices p1, p2, add the path between them to C .

Add all nodes within distance g − 1 of the path to L.

When |T | = g , return Bad-Guess.
When all vertices are marked, proceed to the next phase.

Here, we first look at g = 4 and then g = 5.

13 / 22
Algorithms for Burning Graph Families

N

Burning Cacti

Burn-Guess-Cactus(C ,g) treats C as a rooted cactus:

Maintain sets T of terminals T , C paths, and L of labeled vertices.
Add the deepest unlabeled node x to to T .
There is either one or two vertices at distance g − 1 of x which are
a part of a simple path between x and the root.

If there is one vertex p1, add p to C .
if there are two vertices p1, p2, add the path between them to C .

Add all nodes within distance g − 1 of the path to L.

When |T | = g , return Bad-Guess.
When all vertices are marked, proceed to the next phase.

Here, we first look at g = 4 and then g = 5.

13 / 22
Algorithms for Burning Graph Families

N

Burning Cacti

Burn-Guess-Cactus(C ,g) treats C as a rooted cactus:

Maintain sets T of terminals T , C paths, and L of labeled vertices.
Add the deepest unlabeled node x to to T .
There is either one or two vertices at distance g − 1 of x which are
a part of a simple path between x and the root.

If there is one vertex p1, add p to C .
if there are two vertices p1, p2, add the path between them to C .

Add all nodes within distance g − 1 of the path to L.

When |T | = g , return Bad-Guess.
When all vertices are marked, proceed to the next phase.

Here, we first look at g = 4 and then g = 5.

13 / 22
Algorithms for Burning Graph Families

N

Burning Cacti

Burn-Guess-Cactus(C ,g) treats C as a rooted cactus:

Maintain sets T of terminals T , C paths, and L of labeled vertices.
Add the deepest unlabeled node x to to T .
There is either one or two vertices at distance g − 1 of x which are
a part of a simple path between x and the root.

If there is one vertex p1, add p to C .
if there are two vertices p1, p2, add the path between them to C .

Add all nodes within distance g − 1 of the path to L.

When |T | = g , return Bad-Guess.
When all vertices are marked, proceed to the next phase.

Here, we first look at g = 4 and then g = 5.

13 / 22
Algorithms for Burning Graph Families

N

Burning Cacti

Burn-Guess-Cactus(C ,g) treats C as a rooted cactus:

Maintain sets T of terminals T , C paths, and L of labeled vertices.
Add the deepest unlabeled node x to to T .
There is either one or two vertices at distance g − 1 of x which are
a part of a simple path between x and the root.

If there is one vertex p1, add p to C .
if there are two vertices p1, p2, add the path between them to C .

Add all nodes within distance g − 1 of the path to L.

When |T | = g , return Bad-Guess.
When all vertices are marked, proceed to the next phase.

Here, we first look at g = 4 and then g = 5.

13 / 22
Algorithms for Burning Graph Families

N

Burning Cacti

Burn-Guess-Cactus(C ,g) treats C as a rooted cactus:

Maintain sets T of terminals T , C paths, and L of labeled vertices.
Add the deepest unlabeled node x to to T .
There is either one or two vertices at distance g − 1 of x which are
a part of a simple path between x and the root.

If there is one vertex p1, add p to C .
if there are two vertices p1, p2, add the path between them to C .

Add all nodes within distance g − 1 of the path to L.

When |T | = g , return Bad-Guess.
When all vertices are marked, proceed to the next phase.

Here, we first look at g = 4 and then g = 5.

13 / 22
Algorithms for Burning Graph Families

N

Burning Cacti

Burn-Guess-Cactus(C ,g) treats C as a rooted cactus:

Maintain sets T of terminals T , C paths, and L of labeled vertices.
Add the deepest unlabeled node x to to T .
There is either one or two vertices at distance g − 1 of x which are
a part of a simple path between x and the root.

If there is one vertex p1, add p to C .
if there are two vertices p1, p2, add the path between them to C .

Add all nodes within distance g − 1 of the path to L.

When |T | = g , return Bad-Guess.
When all vertices are marked, proceed to the next phase.

Here, we first look at g = 4 and then g = 5.

13 / 22
Algorithms for Burning Graph Families

N

Burning Cacti

Burn-Guess-Cactus(C ,g) treats C as a rooted cactus:

Maintain sets T of terminals T , C paths, and L of labeled vertices.
Add the deepest unlabeled node x to to T .
There is either one or two vertices at distance g − 1 of x which are
a part of a simple path between x and the root.

If there is one vertex p1, add p to C .
if there are two vertices p1, p2, add the path between them to C .

Add all nodes within distance g − 1 of the path to L.

When |T | = g , return Bad-Guess.
When all vertices are marked, proceed to the next phase.

Here, we first look at g = 4 and then g = 5.

13 / 22
Algorithms for Burning Graph Families

N

Burning Cacti

Burn-Guess-Cactus(C ,g) treats C as a rooted cactus:

Maintain sets T of terminals T , C paths, and L of labeled vertices.
Add the deepest unlabeled node x to to T .
There is either one or two vertices at distance g − 1 of x which are
a part of a simple path between x and the root.

If there is one vertex p1, add p to C .
if there are two vertices p1, p2, add the path between them to C .

Add all nodes within distance g − 1 of the path to L.

When |T | = g , return Bad-Guess.
When all vertices are marked, proceed to the next phase.

Here, we first look at g = 4 and then g = 5.

13 / 22
Algorithms for Burning Graph Families

N

Burning Cacti

Burn-Guess-Cactus(C ,g) treats C as a rooted cactus:

Maintain sets T of terminals T , C paths, and L of labeled vertices.
Add the deepest unlabeled node x to to T .
There is either one or two vertices at distance g − 1 of x which are
a part of a simple path between x and the root.

If there is one vertex p1, add p to C .
if there are two vertices p1, p2, add the path between them to C .

Add all nodes within distance g − 1 of the path to L.
When |T | = g , return Bad-Guess.

When all vertices are marked, proceed to the next phase.

Here, we first look at g = 4 and then g = 5.

return
Bad-Guess.

13 / 22
Algorithms for Burning Graph Families

N

Burning Cacti

Burn-Guess-Cactus(C ,g) treats C as a rooted cactus:

Maintain sets T of terminals T , C paths, and L of labeled vertices.
Add the deepest unlabeled node x to to T .
There is either one or two vertices at distance g − 1 of x which are
a part of a simple path between x and the root.

If there is one vertex p1, add p to C .
if there are two vertices p1, p2, add the path between them to C .

Add all nodes within distance g − 1 of the path to L.
When |T | = g , return Bad-Guess.
When all vertices are marked, proceed to the next phase.
Here, we first look at g = 4 and then g = 5.

13 / 22
Algorithms for Burning Graph Families

N

Burning Cacti

It is possible to burn a forest C of g
disjoint paths, each of length at most 2g
nodes in at most 1.75g rounds.

It is possible to burn all vertices in C in
1.75g .

All nodes are within distance g of one of
the centers, so all vertices are burned in
1.75g + g = 2.75g rounds.

14 / 22
Algorithms for Burning Graph Families

N

Burning Cacti

It is possible to burn a forest C of g
disjoint paths, each of length at most 2g
nodes in at most 1.75g rounds.

It is possible to burn all vertices in C in
1.75g .

All nodes are within distance g of one of
the centers, so all vertices are burned in
1.75g + g = 2.75g rounds.

14 / 22
Algorithms for Burning Graph Families

N

Burning Cacti

It is possible to burn a forest C of g
disjoint paths, each of length at most 2g
nodes in at most 1.75g rounds.

It is possible to burn all vertices in C in
1.75g .

All nodes are within distance g of one of
the centers, so all vertices are burned in
1.75g + g = 2.75g rounds.

14 / 22
Algorithms for Burning Graph Families

N

Burning Cacti Summary

Theorem

There is a polynomial algorithm with approximation ratio of 2.75
for burning any cactus graph [S.K. and Shabani, 2021].

The main idea was to burn paths of centers instead of singular
centers.

The same idea might be applied burning other graph families (e.g.,
Series-Parallel graphs).

15 / 22
Algorithms for Burning Graph Families

N

Forests of Disjoint Paths

The burning problem is NP-hard when the input graph is a forest of
disjoint paths [Bessy et al., 2017].

Given disks of radii 0, 1, . . . , k − 1, it is not clear which disk should
be assigned to which path.

If there are Θ(1) disjoint paths, there is a polynomial-time algorithm
that generates an optimal burning scheme [Bonato and S.K., 2019].

Apply a dynamic programming approach!

16 / 22
Algorithms for Burning Graph Families

N

Forests of Disjoint Paths

Given any positive value ε, there is a fully polynomial-time
approximation algorithm (FPTAS) that generates a burning scheme
that completes within a factor 1 + ε of an optimal
scheme [Bonato and S.K., 2019].

Reduce the burning problem to the bin covering problem, and use
an existing FPTAS of [Jansen and Solis-Oba, 2003] for the bin
covering to get an FPTAS for the burning problem.
Bin covering: “cover” a maximum number of bins of unit size with
a given multi-set of items with sizes in (0, 1].

17 / 22
Algorithms for Burning Graph Families

N

Forests of Disjoint Paths

Given any positive value ε, there is a fully polynomial-time
approximation algorithm (FPTAS) that generates a burning scheme
that completes within a factor 1 + ε of an optimal
scheme [Bonato and S.K., 2019].

Reduce the burning problem to the bin covering problem, and use
an existing FPTAS of [Jansen and Solis-Oba, 2003] for the bin
covering to get an FPTAS for the burning problem.

Bin covering: “cover” a maximum number of bins of unit size with
a given multi-set of items with sizes in (0, 1].

17 / 22
Algorithms for Burning Graph Families

N

Forests of Disjoint Paths

Given any positive value ε, there is a fully polynomial-time
approximation algorithm (FPTAS) that generates a burning scheme
that completes within a factor 1 + ε of an optimal
scheme [Bonato and S.K., 2019].

Reduce the burning problem to the bin covering problem, and use
an existing FPTAS of [Jansen and Solis-Oba, 2003] for the bin
covering to get an FPTAS for the burning problem.
Bin covering: “cover” a maximum number of bins of unit size with
a given multi-set of items with sizes in (0, 1].

17 / 22
Algorithms for Burning Graph Families

N

Forests of Disjoint Paths

Reduction: Given a path forest G with b paths generate an instance
of the bin covering problem such that G can be burned in k rounds
iff it is possible to cover b bins.

Think of paths as uniform “bins” that need to be “covered” by
items (disks) of radii 0, 1, . . . , k − 1.

Items q1, q2, . . . , qk project disks (fires) of various radii to items of
various sizes.
Items p1, p2, . . . , pb project paths of various lengths into bins of
unit size.

18 / 22
Algorithms for Burning Graph Families

N

Forests of Disjoint Paths

Reduction: Given a path forest G with b paths generate an instance
of the bin covering problem such that G can be burned in k rounds
iff it is possible to cover b bins.

Think of paths as uniform “bins” that need to be “covered” by
items (disks) of radii 0, 1, . . . , k − 1.

Items q1, q2, . . . , qk project disks (fires) of various radii to items of
various sizes.
Items p1, p2, . . . , pb project paths of various lengths into bins of
unit size.

18 / 22
Algorithms for Burning Graph Families

N

Forests of Disjoint Paths

Reduction: Given a path forest G with b paths generate an instance
of the bin covering problem such that G can be burned in k rounds
iff it is possible to cover b bins.

Think of paths as uniform “bins” that need to be “covered” by
items (disks) of radii 0, 1, . . . , k − 1.

Items q1, q2, . . . , qk project disks (fires) of various radii to items of
various sizes.
Items p1, p2, . . . , pb project paths of various lengths into bins of
unit size.

18 / 22
Algorithms for Burning Graph Families

N

Forests of Disjoint Paths

Reduction: Given a path forest G with b paths generate an instance
of the bin covering problem such that G can be burned in k rounds
iff it is possible to cover b bins.

Think of paths as uniform “bins” that need to be “covered” by
items (disks) of radii 0, 1, . . . , k − 1.

Items q1, q2, . . . , qk project disks (fires) of various radii to items of
various sizes.
Items p1, p2, . . . , pb project paths of various lengths into bins of
unit size.

18 / 22
Algorithms for Burning Graph Families

N

Forests of Disjoint Paths

Reduction: Given a path forest G with b paths generate an instance
of the bin covering problem such that G can be burned in k rounds
iff it is possible to cover b bins.

Think of paths as uniform “bins” that need to be “covered” by
items (disks) of radii 0, 1, . . . , k − 1.

Items q1, q2, . . . , qk project disks (fires) of various radii to items of
various sizes.

Items p1, p2, . . . , pb project paths of various lengths into bins of
unit size.

18 / 22
Algorithms for Burning Graph Families

N

Forests of Disjoint Paths

Reduction: Given a path forest G with b paths generate an instance
of the bin covering problem such that G can be burned in k rounds
iff it is possible to cover b bins.

Think of paths as uniform “bins” that need to be “covered” by
items (disks) of radii 0, 1, . . . , k − 1.

Items q1, q2, . . . , qk project disks (fires) of various radii to items of
various sizes.
Items p1, p2, . . . , pb project paths of various lengths into bins of
unit size.

18 / 22
Algorithms for Burning Graph Families

N

Burning Forests of Disjoint Paths Sum-
mary

Theorem

There is a fully polynomial-time approximation scheme (FPTAS)
for burning any forest of disjoint paths [Bonato and S.K., 2019].

The complexity of the problem is settled for forests of disjoint paths.

For what other graph families an FPTAS might be developed?

19 / 22
Algorithms for Burning Graph Families

N

Tree Decomposition & Burning

In a Robertson-Seymour path decomposition:

Path-length [Dourisboure and Gavoille, 2007] is the max distance
of vertices in any bag.
The graph below has path-width 2 and path-length 3.

A graph has path-length 1 if and only if

The burning number of a graph with path-length pl and diameter
d is at most d

√
de+ pl [S.K. et al., 2020].

a

b

c

e f

g

h i k

d j

a, b, c c, d, e d, e, f d, f, g d, f, h h,i i, j, k

20 / 22
Algorithms for Burning Graph Families

N

Tree Decomposition & Burning

In a Robertson-Seymour path decomposition:

Path-length [Dourisboure and Gavoille, 2007] is the max distance
of vertices in any bag.
The graph below has path-width 2 and path-length 3.

A graph has path-length 1 if and only if

The burning number of a graph with path-length pl and diameter
d is at most d

√
de+ pl [S.K. et al., 2020].

a

b

c

e f

g

h i k

d j

a, b, c c, d, e d, e, f d, f, g d, f, h h,i i, j, k

20 / 22
Algorithms for Burning Graph Families

N

Tree Decomposition & Burning

In a Robertson-Seymour path decomposition:

Path-length [Dourisboure and Gavoille, 2007] is the max distance
of vertices in any bag.
The graph below has path-width 2 and path-length 3.
A graph has path-length 1 if and only if ??

The burning number of a graph with path-length pl and diameter
d is at most d

√
de+ pl [S.K. et al., 2020].

a

b

c

e f

g

h i k

d j

a, b, c c, d, e d, e, f d, f, g d, f, h h,i i, j, k

20 / 22
Algorithms for Burning Graph Families

N

Tree Decomposition & Burning

In a Robertson-Seymour path decomposition:

Path-length [Dourisboure and Gavoille, 2007] is the max distance
of vertices in any bag.
The graph below has path-width 2 and path-length 3.
A graph has path-length 1 if and only if it is an interval graph.

The burning number of a graph with path-length pl and diameter
d is at most d

√
de+ pl [S.K. et al., 2020].

a

b

c

e f

g

h i k

d j

a, b, c c, d, e d, e, f d, f, g d, f, h h,i i, j, k

20 / 22
Algorithms for Burning Graph Families

N

Burning of Graph Families

There is an approximation algorithm with factor 1 + o(1) for
burning any graph G of constant path-length [S.K. et al., 2020].

If the diameter of G is constant, we can optimally solve the problem.
Otherwise, burn the graph in

√
d + pl rounds, getting an

approximation factor at most
√
d+pl√
d

= 2 + o(1).

There is an approximation algorithm with factor 1 + o(1) for
burning any graph G of constant path-length [S.K. et al., 2020].

21 / 22
Algorithms for Burning Graph Families

N

Burning of Graph Families

There is an approximation algorithm with factor 1 + o(1) for
burning any graph G of constant path-length [S.K. et al., 2020].

If the diameter of G is constant, we can optimally solve the problem.

Otherwise, burn the graph in
√
d + pl rounds, getting an

approximation factor at most
√
d+pl√
d

= 2 + o(1).

There is an approximation algorithm with factor 1 + o(1) for
burning any graph G of constant path-length [S.K. et al., 2020].

21 / 22
Algorithms for Burning Graph Families

N

Burning of Graph Families

There is an approximation algorithm with factor 1 + o(1) for
burning any graph G of constant path-length [S.K. et al., 2020].

If the diameter of G is constant, we can optimally solve the problem.
Otherwise, burn the graph in

√
d + pl rounds, getting an

approximation factor at most
√
d+pl√
d

= 2 + o(1).

There is an approximation algorithm with factor 1 + o(1) for
burning any graph G of constant path-length [S.K. et al., 2020].

21 / 22
Algorithms for Burning Graph Families

N

Burning of Graph Families

There is an approximation algorithm with factor 1 + o(1) for
burning any graph G of constant path-length [S.K. et al., 2020].

If the diameter of G is constant, we can optimally solve the problem.
Otherwise, burn the graph in

√
d + pl rounds, getting an

approximation factor at most
√
d+pl√
d

= 2 + o(1).

There is an approximation algorithm with factor 1 + o(1) for
burning any graph G of constant path-length [S.K. et al., 2020].

21 / 22
Algorithms for Burning Graph Families

N

Summary

Graph family Apx. Factor Details

general graphs 3 [Bonato and S.K., 2019]

trees 2 [Bonato and S.K., 2019]

cacti 2.75 [S.K. and Shabani, 2021]

forests of disjoint paths 1 + ε (FPTAS) [Bonato and S.K., 2019]

graphs of bounded path-length 1 + o(1) [S.K. et al., 2020]

graphs of bounded tree-length 2 + o(1) [S.K. et al., 2020]

22 / 22
Algorithms for Burning Graph Families

N

References

References

Bessy, S.; Bonato, A.; Janssen, J.
C. M.; Rautenbach, D.; and
Roshanbin, E. (2017).
”Burning a graph is hard”.
Discrete Applied Mathematics, 232, pp. 73–87.

Bonato, A.; Janssen, J. C. M.; and
Roshanbin, E. (2014).
”Burning a Graph as a Model of Social
Contagion”.
In Workshop of Workshop on Algorithms and
Models for the Web Graph, pages 13–22.

Bonato, A. and S.K. (2019).
”Approximation Algorithms for Graph
Burning”.
In Proc. Theory and Applications of Models of
Computation TAMC, volume 11436 of Lecture
Notes in Computer Science, pages 74–92.
Springer.

Dourisboure, Y. and Gavoille, C.
(2007).
”Tree-decompositions with bags of small
diameter”.

Discrete Mathematics, 307(16), pp.
2008–2029.

Jansen, K. and Solis-Oba, R.
(2003).
”An asymptotic fully polynomial time
approximation scheme for bin covering”.
Theoretical Computer Science, 306(1-3), pp.
543–551.

Land, M. R. and Lu, L. (2016).
”An Upper Bound on the Burning Number of
Graphs”.
In Proceedings of Workshop on Algorithms
and Models for the Web Graph, pages 1–8.

Mondal, D.; Parthiban, N.;
Kavitha, V.; and Rajasingh, I.
(2021).
”APX-Hardness and Approximation for the
k-Burning Number Problem”.
In Uehara, R.; Hong, S.; and Nandy, S. C.,
editors, Proc. Algorithms and Computation -
15th International Conference, volume 12635
of Lecture Notes in Computer Science, pages
272–283. Springer.

S.K.; Miller, A.; and Zhang, K.
(2020).
”Burning Two Worlds”.

22 / 22
Algorithms for Burning Graph Families

N

In Proc. SOFSEM 2020, volume 12011 of
Lecture Notes in Computer Science, pages
113–124. Springer.

S.K. and Shabani, M. (2021).
”Burning Cacti”.
Ongoing work.

22 / 22
Algorithms for Burning Graph Families

N

	References

