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Introduction To Cops and Robbers

Two teams (k cops and one robber) play on a connected graph G .

Each player occupies vertices of G .

Cops choose their starting positions, then the robber does.

The game is played in rounds:

In a round, a player may move to an adjacent vertex, or stay put.

If some cop occupies the robber’s vertex, then the cops win. The
robber wins if he is able to evade the cops forever.

All players know all information.

The minimum number of cops needed to win on a graph G is the cop
number of G , denoted c(G ).
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Intro To Infinite-Speed Game

What if the robber is allowed to move “faster” than the cops?

In general, robber can be assigned speed s. He is allowed to move
along a cop-free path of length ≤ s on his turn. Cops can still only
move to adjacent vertices.

(The case s = 1 is equivalent to the original model of Cops and
Robbers.)

We focus on variant where s =∞. Robber allowed to move along
any path of arbitrary length (with no cop on internal vertices).

The infinite-speed cop number of G , c∞(G ), is the minimum k
such that k cops can capture a infinite-speed robber on G .
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Let’s Play (Infinite-Speed Game)

Let’s play with two cops against an infinite-speed robber.
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Past work

So what’s been done with this variant?

Characterization of graphs with c∞(G ) = 1 [Mehrabian ’12]

Construction of graphs with c∞(G ) = Θ(V (G )) [Frieze, Krivelevich,
Loh ’12]

Polynomial-time computable on interval graphs [Gavenčiak ’11]

Bounds on c∞...
...for random graphs [Mehrabian ’12; Alon, Mehrabian ’15]

...for interval graphs and chordal graphs [Mehrabian ’15]

...in terms of treewidth [Alon, Mehrabian ’15]

...in terms of edge- and vertex-isoperimetric numbers [Mehrabian ’12]

...for Cartesian products of graphs [Mehrabian ’12]

Our focus: grids (i.e. Cartesian products of paths).
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Two-dimensional grids

Mehrabian’s results give
1

16
n ≤ c∞(Pn�Pn) ≤ n.

Our result:

Theorem (Kinnersley, Townsend ’21+)

If n is even, then n − 1 ≤ c∞(Pn�Pn) ≤ n;
if n is odd and at least 3, then c∞(Pn�Pn) = n − 1.
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Two-dimensional grids: lower bound

n − 1 ≤ c∞(Pn�Pn) ≤ n

What about the lower bound? This is trickier...

We need to explain how the robber can evade n − 2 cops.

The basic idea:

Find a “safe” vertex with very few cops nearby.

After the cops move, there still can’t be many cops nearby, so there’s
a bit of room to maneuver.

Robber works his way to an empty row; from there, he can get almost
anywhere.

Find another “safe” vertex, move there, and repeat.
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How can the robber evade n − 2 cops?

The interesting case: for some k ∈ {2, . . . , n− 2}, either the first k rows or
last k rows contain at most k − 2 cops. (Below, n = 8, k = 5, k − 2 = 3)
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How Can The Robber Evade n − 2 Cops?

Case 1: The robber can now access any empty row or column in the
graph, and repeat the process.
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How Can The Robber Evade n − 2 Cops?

Case 2: If no such 2 ≤ k ≤ n − 2 exists, then there is one cop in each of
the middle n − 2 rows and columns. The robber can stay on the edge.
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For all n, we have c∞(Pn�Pn�Pn) ≤ n2.

Proof. Cops occupy the top level and move down.



Three-dimensional grids

What if we add a third dimension? The obvious upper bound:

Proposition

For all n, we have c∞(Pn�Pn�Pn) ≤ n2.

Proof. Cops occupy the top level and move down.



Three-dimensional grids

What if we add a third dimension? The obvious upper bound:

Proposition

For all n, we have c∞(Pn�Pn�Pn) ≤ n2.

Proof. Cops occupy the top level and move down.



Three-dimensional grids

What if we add a third dimension? The obvious upper bound:

Proposition

For all n, we have c∞(Pn�Pn�Pn) ≤ n2.

Proof. Cops occupy the top level and move down.



Three-dimensional grids

What if we add a third dimension? The obvious upper bound:

Proposition

For all n, we have c∞(Pn�Pn�Pn) ≤ n2.

Proof. Cops occupy the top level and move down.



Three-dimensional grids

What if we add a third dimension? The obvious upper bound:

Proposition

For all n, we have c∞(Pn�Pn�Pn) ≤ n2.

Proof. Cops occupy the top level and move down.



Three-dimensional grids

What if we add a third dimension? The obvious upper bound:

Proposition

For all n, we have c∞(Pn�Pn�Pn) ≤ n2.

Proof. Cops occupy the top level and move down.



Three-dimensional grids

What if we add a third dimension? The obvious upper bound:

Proposition

For all n, we have c∞(Pn�Pn�Pn) ≤ n2.

Proof. Cops occupy the top level and move down.



Three-dimensional grids

What if we add a third dimension? The obvious upper bound:

Proposition

For all n, we have c∞(Pn�Pn�Pn) ≤ n2.

Proof. Cops occupy the top level and move down.



Three-dimensional grids

What if we add a third dimension? The obvious upper bound:

Proposition

For all n, we have c∞(Pn�Pn�Pn) ≤ n2.

Proof. Cops occupy the top level and move down.



Three-dimensional grids

Surprisingly, we can do better.

Theorem (Kinnersley, Townsend ’21+)

c∞(Pn�Pn�Pn) ≤
(

3

4
+ o(1)

)
n2.

Proof sketch. Cops split the grid in half as efficiently as possible. Robber
is “trapped” in one of the two halves.
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Three-dimensional grids

For the lower bound, things are tougher.

Theorem (Kinnersley, Townsend ’21+)

For sufficiently large n, we have c∞(Pn�Pn�Pn) ≥ 0.717n2.

Proof idea.

In upper bound strategy, cops occupy cut set that cuts the graph in
half, contains the robber, and shrink the robber’s territory.

If the robber is to avoid this fate, should be able to reach more than
half of the graph.

If C is the set of all vertices that the cops occupy, then G − C can
have multiple components, but if C is small enough, G − C has a
unique “largest” component.

Robber needs two things:

A locally safe vertex where there aren’t many cops, so that he has
room to maneuver after the cops move.
To make sure he is in the large component after the cops move.
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Minimizing Large Component

If there are
3

4
n2 cops, they can cut graph in half.

With fewer cops, they can’t, but they can come close! Cops want to
make large component as small as possible.

Bollabás, Leader ’91 characterized the sets C which minimize the size
of the large component of G − C . This show how the cops can play
efficiently.

This is done by occupying vertices whose coordinates sum to a fixed
value.
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Finding a safe vertex
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For sufficiently large n, we have c∞(Pn�Pn�Pn) ≥ 0.717n2.

Proof idea. The robber looks for the half of the grid, H, with the fewest
cops, then the quadrant, Q, then the octant, O. He finds a “safe” spot in
O.
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Finding a safe vertex, continued

Zooming in to the octant O, the robber finds a band of five “planes” with
the fewest cops, then a n/2× 5× 5 subgrid (containing at most 8 cops),
and finally a 3× 5× 5 subgrid which will contain no cops.

Placing himself in the “middle” of this subgrid ensures that the robber will
be able to access an empty row in the octant on his next turn.

Then, we use Bollabas and Leader’s results to show that the number of
vertices which the robber can access is necessarily more than the small
components of O − C , Q − C , H − C , and finally G − C . Hence, the
robber has access to the large component of O, Q, H, and G after the
cops move.



Small and large components: evading 0.717n2 cops

After cops move, robber moves:

Large component of O > small component(s) of Q
→ robber has access to large component of Q.

Large component of Q > small component(s) of H
→ robber has access to large component of H.

Bottleneck: Large component of H > small component(s) of G
→ robber has access to large component of G .
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Higher-dimensional grids

Theorem (Kinnersley, Townsend ’21+)

For the d-dimensional grid Pn�Pn� . . .�Pn, we have

c∞(Pn�Pn� . . .�Pn) ≤
bd/2c∑
k=0

(−1)k
(
d

k

)(
b(d/2− k)n − d/2− 1c

d − 1

)
.
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c∞(Pn�Pn� . . .�Pn) ≤
bd/2c∑
k=0

(−1)k
(
d

k

)(
b(d/2− k)n − d/2− 1c

d − 1

)
.

# dimensions Upper bound

4 0.6667 n3

5 0.5990 n4

6 0.5500 n5

10 0.4305 n9

100 0.1380 n99

1000 0.0437 n999

(Mehrabian showed nd−1

d2 ≤ c∞(Pn� . . .�Pn) ≤ nd−1; it looks like our cop

strategy gives c∞(Pn� . . .�Pn) ≤ k · nd−1
√
d

for some k .)



Other Results

Theorem (Kinnersley, Townsend ’21+)

For the discrete torus Cn�Cn, we have 2n − 24 ≤ c∞(Cn�Cn) ≤ 2n.

(The proof is similar to the Pn�Pn proof.)

The hypercube Qn is the n-fold Cartesian product of P2.

Mehrabian showed k1
2n

n3/2
≤ c∞(Qn) ≤ k2

2n

n
for some constants k1, k2.

Theorem (Kinnersley, Townsend ’21+)

For some constants k1 and k2, we have k1
2n

n ln n
≤ c∞(Qn) ≤ k2

2n

n
.

Proof Idea. Upper bound: cops occupy a dominating set.

Lower bound: robber uses a potential function to avoid getting “cut off”
by the cops.
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by the cops.



Hypercube - lower bound

c∞(Qn) ≥ k1
2n

n ln n
for some constant k1.

Proof Idea.

Robber wants to avoid getting “cut off” by cops.

Most efficient cop strategy: cut off all vertices at a fixed distance
from robber.

There are

(
n

d

)
vertices at distance d from a given vertex.

A cop exhibits potential 1 to all of her neighbors.

Each cop exhibits a potential of
1( n

d−1
) to a vertex distance d away

from her.

If a vertex has potential 1, then that vertex is adjacent to a cop, or is
surrounded by cops.

If potential is less than 1, robber is safe (for now), and cops have not
surrounded him → Robber can access most of the cube.
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Thanks!

Thanks to the organizers of this conference.

Thanks to my advisor, Dr. Kinnersley, for working with me on this
project.

Thank you all!



Questions?

Questions???


