Two Graph Products
(Cartesian and Strong)
and the Cops and
Robber Game

Brendan W. Sullivan
Emmanuel College, Boston

sullivanb@emmanuel.edu

W @professorbrenda

mailto:sullivanb@emmanuel.edu
https://twitter.com/professorbrenda

Abstract

This talk will share a few related ideas about graph products and the cops and robber game.
First, | will share some results and conjectures about how the cop numbers of G and H relate to
the cop numbers of G Cl H (Cartesian product) and G g H (Strong product), for both
the ordinary (all cops can move per turn) and lazy (only one cop can move per turn) variants.
Second, | will describe how these two graph products play starring roles in some SageMath code

that student researchers and | have used to calculate cop numbers and test conjectures.

(The code is based on an algorithm described in: N. Clarke and G. MacGillivray,
Characterizations of k-copwin graphs, Discrete Math., 312 (2012) 1421-1425).

Joint work with Sean McGovern and past undergraduate research students: Niko Townsend,
Mikayla Werzanski, Sarai Dancy, Bo McCormack, Osarumen Edosomwan

Introduction: Cops and Robber Game

1. Cop(s) initialize anywhere. Cops may occupy same
vertex. Robber initializes in response.

Everyone knows where everyone is.

Cops get to move. Robber responds.

Legal move: along an edge

Ordinary game: all Cops may move

“Lazy” variant:/only one Cop may move

In both: pass (no move) is a legal option. (Active
game forces both sides to make a move each turn.)

4. |If there exists a strategy whereby a Cop lands on
the Robber, then the Cop squad wins.

5. Otherwise, there exists a strategy whereby the
Robber evades capture forever, so Robber “wins”.

@ N

00T

Graph Parameters: Cop Number and Capture Time

1. The'Cop Number ¢(G) of a graph is the minimum k such that k Cops have a
winning strategy, yet the Robber has a winning strategy against k-7 Cops.

a. Must consider both perspectives. In practice, Robber strategies seem challenging and rarer.
b. Analogously, define theLazy Cop Number ¢, (G) of a graph (only 1 Cop per turn).
c. The Cop Number is the minimum such k. Still reasonable to play with more than that many.

2. Given G and any k 2 ¢(G), the Capture Time capt, (G) is the number of
moves it will take for k Cops to win, assuming optimal play on both sides.

a. Consider both perspectives: Cops want to win quickly, Robber wants to prolong the inevitable.

b. In general, there seem to be fewer results about Capture Times than Cop Numbers, and even
fewer for the overprescribed game (where k is strictly more than the minimum necessary), as
well as for the Lazy variant captkL(G).

Example: Cop Number & Capture Time

Outputs from running code:

True, 2'ordinary Cops win

e Capture Time is 5 moves
List of starting locations for Cops to
achieve that optimal Capture Time:
[(12,27), (16,23), (17,22), (18,21)]

e Stores a strategy dictionary: given Cops’
location and where Robber is about to
move, states optimal move for Cops

e Similarly, given location of all players,
states how many moves from capture

e Can test/Lazy Cops, as well (often faster)

es, 2 ordinary chasers win on G! Capture time is 5
Start the chasers at any of 4 positions to achieve capture time.
Ending elapsed time: 3.5229885578155518

Yes, 2 lazy chasers win on G! Capture time is 9
Start the chasers at any of 12 positions to achieve capture time.
Ending elapsed time: 3.0486719608306885

Known: capture time of mxn grid is LmTJf"J -1
(Mehrabian, Disc. Math. 2010)

Open: Higher dimensional grids?
Conjecture: Capture time for Lazy: m+n-4

Wikipedia: Cartesian product of graphs

Graph Products: Cartesian & Strong

Any graph product G “times” H yields a graph D._.\TO
whose vertex set is ordered pairs (vtx of G, vix of
H). The different products are determined by which
edges get included.

Cartesian Product 1]. (a,_b) (a,d) or. (a,b)-(C,b),
can change only one coordinate at a time

Strong Product : also includes (a,b)~(c,d),
can change any number of coordinates at a time

Playing on graphs of the form ¢ O H or ¢ @ Hcan
be broken down into strategies on the factors G,H

Example: Enacting Strategies on Factors in Graph Product

Consider a /lattice grid" PS Pg

e Optimal strategy for Cop on each path factor:
start in middle and advance toward Robber.

e \With strong product, can enact both strategies
at once: change both coordinates.

Likewise, with a cylindrical grid: Pg m C%

e Two Cops play against Robber’s shadow on
the cycle factor, regardless of where the
Robber really is along the path factor.

Example Result: Cop Number of Strong Product Graph
Theorem: & (G B H)= ¢(G) +¢(H)- 1

Proof. Must exhibit (1) a Cop strategy with ¢(G)+c(H)-1 many Cops, as well as (2)
a Robber strategy against ¢(G)+c(H)-2 many Cops.

1. See: S. Neufeld and R. Nowakowski, A game of cops and robbers played on products
of graphs, Discrete Math., 186 (1998) 253-268. Main idea: play against Robber’s
shadow on G until enough Cops are shadowing that vertex. Thereafter, they keep
shadowing that vertex while enacting the winning strategy on H until capture.

2. See: B. Sullivan, “Lazy Cops and Robbers on Product Graphs”, JMM 2016. Main idea:
Robber divides cops into (¢(G)-1)+(c(H)-1) a priori, simultaneously enacts winning
strategy on G against first squad and winning strategy on H against second squad.

https://www.researchgate.net/publication/304580962_Lazy_Cops_and_Robbers_on_Product_Graphs

Known Results: Cop Numbers of Graph Products

1. Tosic 1987: upper bound for Cartesian product ((GUH){ CCG'\‘FC(H\
2. Maamoun & Meyniel 1987: Cartesian product of trees P“‘-l

| c(t.o0-T;=
3. Neufeld & Nowakowski 1998:
a. Cartesian product of cycles € C U“'UC -
(g K) k¢l

b. Cartesian product of cycles and trees

c({ g (T|U°"n"'j))= kl-[j“-l
. Partlal chargcterization of when G ——~— Y
«(6OH) = ¢+ ([R)-1 -
4. Mehrabian 2011: Capture time of Cartesian
product of two trees

Cap"' (T\ nTz\ :L'; diam (T. ﬂTt\J

New Results: Cop Numbers of Graph Products

With student researchers, have analyzed

some examples of Ordinary & Lazy game: ~— ((&\ & ¢(\4\\ 1—
1. Cylindrical grids: C(PDC) ((Pﬂ(! =2

2. Torus grids: (L‘C“UCAS‘ 2 F\/g-‘ (L(c“ac“\l y & rl\/z.;\

3. “Jungle”: cl.(ka-r__%i__z
4. “Ring portals” c(kuc -(L 3 C(KEC) C

In general, looking for patterns in results
and how to prove winning strategies. C(G\ -\‘((H\

Conjectures: Cop Numbers of Graph Products

Based on those patterns in results and winning strategies, we have (\\)’:&\
. . v
some ideas about graph products, in general: (\/ . ,3
¢ S
1. Strong product theorem: equality could be helpful? D" & v)" p\""

C (G- @ HS - C(GS .‘,C(H)_ (’o%\o L\‘ ""\‘éf\ ,,*\w»-

e
2. Cartesian products: / \Q
3. Recently, a counterexample: C (Pe-l'ersen ﬂCBz?T\‘Z L= 3

Hahaha | love that the smallest example
involves the Petersen graph. GOAT

counterexample Mo‘n.' M\ C .-‘3 (C : CL=WX

Jul 17, 2021, 10:12 PM

Conjectures: Cop Numbers of Graph Products

4. Adapting results/ideas to Lazy game:
CL(GOR) S clG)+a(H)-1 ("ot ¢ (6B H) 709

5. There may be a connection between graph products and

minimal examples of graphs with certain Cop parameters.

a. Smallest c=c,=2: O C‘-l
b. Smallestc,=3. , K3 m| K'S -~

Sullivan, Townsend, Werzanski, The
3x3 rooks graph is the unique smallest
graph with lazy cop number 3, arXiv
preprint, arXiv:1606.08485 (2016)

https://arxiv.org/abs/1606.08485

Graph Products and the Game State Graph

Location of all k cops «—— k-tuple of vertices of G

e Ordinary: each cop may move on a turn:‘each
coordinate of tuple can change —

e ¢ Lazy: only one cop may move per turn: only one
coordinate can change at a time —

/ - o @
Exponential product graph G* represents all possible (\‘ g)\ (b,"‘)

locations (vertices of G¥) and moves (edges of G¥) (O, S)— ‘ >)
that k cops can make while playing on the graph G. (ul S |()6

e «Cartesian product for thestazy. game GCI °e EG- also
e (Strong product for the/Ordinary game
({ lq) u(()6\

CR--
BB (“)"l\;(\\ub\

N. Clarke, G. MacGillivray, Characterizations of
k-copwin graphs, Discr. Math. 312 (2012) 1421-1425.

Clarke & MacGillivray Algorithm

e Given G and k, form G¥

e Goal: each (v,p) gets a label i 20 meaning,
“If Robber is at vertex vin V(G) and Cops’
locations are given by p in V(G¥), then Cops
are at most i moves away from capture.” ®

e Proceed inductively: (0) (03)) - i)

o i=0 labels are capture states: e.g. (0, (0,3))

o i=1labels are “traps”: for each possible Robber (2’ (O,?))ﬂ ‘;’ 1

move, there is a capturing move in response

o In general, (v,p) gets label i iff for all possible (\ . Laz_\]
Robber moves v—w, there exists a Cop response (q) O lg ~> =3
p—q such that (w,q) is labeled /-7 or less. 'L:. z bw\ﬂg

Implementation in Sage

e Subroutine to make exponential

product graph: lots of time & memory!
One speedup: cut out “redundant states”
e O(n?**?), where n=|V(G)| and k Cops
e Loop over game states — relational
(R) and strategy (S) dictionaries.
o Ifanyentry in R is “infinite”, Cops lose

o Else, Cops win and capture time is the
minimax over possible starting locations

e C(Can store these R and S dictionaries
afterwards as huge text files

& sageMath 9.2 Shell
Precomputed all neighborhoods in G

Current elapsed time: 574.4573001861572 & ‘ r
Precomputed all neighborhoods in P Lo ° M‘“‘
Current elapsed time: 576.0285234451294

Entering i loop with i = 1

Current elapsed time: 576.0302438735962

File Options View

Processes Performance App history Startup Users Details Services

42% ~ 8% 25%
Name Status CPU Memory Disk

] python3 27.7% 37371MB 04MB/s

Made sorted product graph P. Current elapsed time: 0.1269831657409668
Prepopulated R (and S). Count of @s (capture positions) in R: 1600 , or 4.88 J
of total

Count of infinities in R: 31200 , or 95.12 % of total

current elapsed time: ©0.17191624641418457

Precomputed all neighborhoods in G. Current elapsed time: ©.17412829399108887

Precomputed all neighborhoods in P. Current elapsed time: ©.18312382698059082
Entering i loop with i = 1 . Current elapsed time: ©.18491244316101074

There are now 56 entries in R that just got labeled i= 1

That amounts to ©.18 % of infinity labels that could have been udpated

Entering i loop with i = 2 . Current elapsed time: ©.6285576820373535

There are now 238 entries in R that just got labeled i= 2

That amounts to ©.76 % of infinity labels that could have been udpated

Entering i loop with i = 3 . Current elapsed time: ©0.9798266887664795

There are now 722 entries in R that just got labeled i= 3

That amounts to 2.34 % of infinity labels that could have been udpated

There are now 1206 entries in R that just got labeled i= 10

That amounts to 88.55 % of infinity labels that could have been udpated
Entering i loop with i = 11 . Current elapsed time: 3.479012966156006
There are now 156 entries in R that just got labeled i= 11

That amounts to 100.0 % of infinity labels that could have been udpated
For loop over i has ended! Current number of infinity labels: @

Current elapsed time: 3.502587080001831

Yes, 2 ordinary chasers win on G! Capture time is 5

Start the chasers at any of 4 positions to achieve capture time.
Ending elapsed time: 3.5229885578155518

Using Code to Test Conjectures

?
e Petersen times cycle broke a longstanding idea about W‘H—

Never would have found that example by hand!
o(PetermanC)=2+2-2=3 {0x4zHOv¥xs, K3
e Knowing c=c, =2 for rectangular and cylindrical grids, can
calculate capture times and analyze code output files to
determine optimal strategies.

L - ~
Capt (P D Pr)= men-t
e Can run code on all graphs of certain size or with certain
properties, hunting for examples.

c:star:le find:c:star:win:éraphs(i&)

All done, tested (11716571 graphs total.
Total runtime (seconds): 202080.8203523159

Future Work

1. Code takes a lot of time & memory! Can we be more efficient about how to
make the exponential product graph, or what to do with it?

2. Use the code to calculate capture times and analyze optimal strategies,
leading to provable results foriOrdinary, Lazy, overprescribed, ... more?

3. Could the strategy dictionary be turned into a playable Al for a game app?!

4. Hopefully make progress on conjectures about Cartesian & Strong products.

a. Possibly characterize C(G— ﬂ\’\) <C (G-)'l' C (H)-— {3} ?

L J

b. Find examples and Improve bounds on Q_(G | H) C E(""G_g H\
)L

c. And what can all of this teach us about the game itself or its applications?

References

1.

N. Clarke and G. MacGillivray, Characterizations
of k-copwin graphs, Discrete Math., 312 (2012)
1421-1425

S. Neufeld and R. Nowakowski, A game of cops
and robbers played on products of graphs.
Discrete Math., 186 (1998) 253-268.

R. ToSic, On cops and robber game, Studia Sci.
Math. Hungar, 23 (1988), 225-229.

M. Maamoun and H. Meyniel, On a game of
policemen and robber, Discr. Appl. Math. 17
(1987) 307-309.

B. Sullivan, N. Townsend, M. Werzanski, The
3x3 rooks graph (KD K,) is the unique smallest
graph with lazy cop number 3, arXiv preprint,
arXiv: 1606.08485.

6.

A. Bonato and R. Nowakowski, The Game
of Cops and Robbers on Graphs, American
Mathematical Society, Providence, RI, 2011.
M. Aigner and M. Fromme, A game of cops
and robbers, Discrete Appl. Math. 8 (1984)
1-12.

B. Sullivan, N. Townsend, M. Werzanski, An
introduction to lazy cops and robbers on
graphs, Coll. Math. J. 48 (2017) 322-333.

PBS Infinite Series: “The Cops and Robbers
Theorem”, youtu.be/9mJEu-j1KTO

B. Sullivan, Talk Math with Your Friends,
May 27, 2021, youtu.be/fWhpjl440ODM

https://arxiv.org/abs/1606.08485
https://youtu.be/9mJEu-j1KT0
http://youtu.be/fWhpjl44ODM

