Courses Offered

AM8000 – Master's Seminar
The course consists of regular research seminars in the general area of applied mathematics, given by graduate student, faculty members, visiting scholars, and guest speakers. In order to pass this course, each student is normally expected to attend all seminars during each term in the program, and to give one presentation. Pass/Fail
Group A: Foundation Courses
AM8001 – Analysis and Probability
Topics to be covered will be taken from the following list: metric spaces, Banach and Hilbert Spaces, measure spaces, integration, functional spaces and operators, random variables and conditional expectation; modes of convergence, discrete time martingales and filtrations; Brownian motion, continuous time stochastic processes and martingales; stochastic calculus. 1 Credit
AM8002 – Discrete Mathematics and its Applications
Selected topics from discrete mathematics: graph isomorphisms and homomorphisms; Ramsey theory, random graphs; infinite graphs; automorphism groups; graph searching games (such as Cops and Robbers); Steiner triple systems; graph decompositions; Latin squares; finite fields; polynomial rings; finite projective and affine planes.1 Credit
Group B: Core Courses
AM8101 – Principles and Techniques in Applied Mathematics
Asymptotic Expansions; Perturbation Methods; Eigenfunction Expansions; Integral Transforms; Discrete Fourier Transforms. 1 Credit
AM8102 – Advanced Numerical Analysis
Numerical methods; numerical linear algebra; numerical methods for ODEs; numerical methods for PDEs. 1 Credit
Group C: Elective Courses
AM8201 – Financial Mathematics
This course covers the fundamentals of mathematical methods in finance. After providing a background in Stochastic Calculus, it considers the study of financial derivatives. Fixed income instruments, derivative pricing in discrete and continuous time, including Black-Scholes formulation, American and Exotic options are considered. Elements of Portfolio Management and Capital Asset Pricing Model are also taken into account. 1 Credit
AM8204 – Topics in Discrete Mathematics
Selected advanced topics from discrete mathematics: random graphs; models of complex networks; homomorphisms and constraint satisfaction; adjacency properties; Ramsey theory; graph searching games; Latin squares; designs, coverings, arrays, and their applications. 1 Credit
AM8207 – Topics in Biomathematics
Discrete and Continuous time processes applied to biology and chemistry. Deterministic and stochastic descriptions for birth/death processes in chemical kinetics. Numerical methods for spatially distributed systems including multi-species reaction-diffusion equations. Applications will include some or all of: chemical waves, traveling wave fronts in excitable media, spiral waves, pattern formation, blood flow and flow in chemical reactors. 1 Credit
AM8209 – Directed Studies in Math
This course is for students who wish to gain knowledge in a specific area for which no graduate level classes are available. Students who are approved to take the course are assigned a suitable class advisor most familiar with the proposed content. Students are required to present the work of one term (not less than 90 hours in the form of directed research, tutorials and individual study) in an organized format. 1 Credit
Nonlinear Programming, Decision Making, Inventory Models, Markov Chains, Queuing Theory, Dynamic Programming, Simulation. Antirequisite: MTH603 1 Credit
The course covers fixed income derivatives and the quantitative aspects of risk and portfolio management in modern finance. It introduces single factor interest rate models and pricing and covers analysis of risk measures and their properties, market, credit risk and an overview of other types of risks. The course also develops portfolio optimization techniques. Case studies and preparation for financial certification programs (FRM and PRM) are also included. Antirequisite: MTH800 1 Credit

Note: Students will also be able to use other "approved graduate courses" offered at Ryerson as electives and would require the approval from the Graduate Program Director.