
BIOINFORMATICS APPLICATIONS NOTE Vol. 25 no. 6 2009, pages 822–823
doi:10.1093/bioinformatics/btp054

Sequence analysis

Fast computation of neighbor seeds
Lucian Ilie1,∗ and Silvana Ilie2
1Department of Computer Science, University of Western Ontario, London N6A 5B7 and
2Department of Mathematics, Ryerson University, Toronto, M5B 2K3, Ontario, Canada
Received on December 01, 2008; revised on January 07, 2009; accepted on January 22, 2009
Advance Access publication January 28, 2009
Associate editor: John Quackenbush

ABSTRACT

Motivation: Alignment of biological sequences is one of the most
frequently performed computer tasks. The current state of the art
involves the use of (multiple) spaced seeds for producing high quality
alignments. A particular important class is that of neighbor seeds
which combine high sensitivity with reduced space requirements.
Current algorithms for computing good neighbor seeds are very slow
(exponential).
Results: We give a polynomial-time heuristic algorithm that
computes better neighbor seeds than previous ones while being
several orders of magnitude faster.
Contact: ilie@csd.uwo.ca

1 ALIGNMENTS AND SPACED SEEDS
Alignment of biological sequences is the most basic operation
in computational biology. With the advances in the sequencing
technologies, it becomes increasingly important to have fast,
accurate alignment algorithms. Dynamic programming technics
(Needleman and Wunsch, 1970; Smith and Waterman, 1981) could
not handle long sequences and heuristic algorithms [FASTA(Lipman
and Pearson, 1985), BLAST (Altschul et al., 1990)] were developed.
BLAST uses a filtration technique in which short consecutive
matches are identified first (hits) and then extended into local
alignments. The next step [PatternHunter, Ma et al. (2002)] was to
consider hits whose matches are no longer consecutive but according
to a spaced seed such as 111*1**1*1**11*111; 1 is a ‘match’,
* a ‘don’t’ care. It is intuitively clear that several spaced seeds have
a higher chance of a hit. As a consequence, multiple spaced seeds
were introduced in PatternHunter II (Li et al., 2004) and shown to
reach almost perfect sensitivity. Their only drawback is high space
requirement. This issue was recently addressed by Csűrös and Ma
(2007) where a set of neighbor seeds were derived from the same
parent seed. The neighbor seeds are ‘close’ to the parent so that their
hits are easily computed from parent’s hash table, thus saving space.

Quite a few papers have been written on (multiple) spaced
seeds, concerning either algorithms for computing seeds with high
sensitivity or adapting seeds for more specific biological tasks; see,
for instance, the references of Ilie and Ilie (2007). We mention here
only a significant application of neighbor seeds, due to Zhang et al.
(2008), to obtain one of the best algorithms for the difficult multiple
sequence alignment problem.

While various ideas have been employed, two aspects are common
to all methods and applications. First, spaced seeds can improve

∗To whom correspondence should be addressed.

significantly both the quality and the speed of alignments. Second,
the algorithms to compute good seeds are slow. To our knowledge,
the only polynomial-time heuristic algorithm to compute good
multiple spaced seeds is due to Ilie and Ilie (2007).

In this note, we extend the approach of Ilie and Ilie (2007) to
neighbor seeds. Similar to general multiple spaced seeds, we are
able to compute better seeds much faster.

2 DEFINITIONS
A spaced seed is a finite string over the alphabet {1,*}; 1 stands for
a ‘match’ and * for a ‘don’t care’ position. For a seed s, the length
of s is �=|s| and the weight, w, of s is the number of 1’s in s. A
multiple spaced seed is a finite set of spaced seeds. The sensitivity
of a seed is measured using the initial model of Ma et al. (2002).
Let R be a Bernoulli random sequence of length n (the probability
of a 1 in R is called similarity) and s a seed. We say that s hits R
(ending) at position k if aligning the end of s with position k of R
causes all 1’s in s to align with 1’s in R. A multiple seed hits when
at least one of its seeds does so. The sensitivity of a (multiple) seed
is the probability that it hits R at or before position n.

In order to define neighbor seeds, we extend the definition of
Hamming distance. Denote the original Hamming distance, between
two strings of the same length, by d. For two strings s1,s2 ∈{0,1}∗,
the generalized Hamming distance, denoted also by d, is defined
as the minimum distance between all possible shifts of the two
strings, which are assumed padded with *’s in order to have the
same length. For instance, assume �1 ��2, for �1 =|s1| and �2 =|s2|.
Then, d(s1,s2)=min0�i��1−�2

d(s1,*is2*
�1−�2−i) .

Given a parent seed p, a seed s is a �-neighbor of p if d(p,s)≤2�.
The idea is to construct a multiple seed consisting of such neighbors
of p which has high sensitivity.

3 THE ALGORITHM
Consider two seeds s1 and s2 and denote by σ [i] the number of pairs
of 1’s aligned together when a copy of s2 shifted by i positions is
aligned against s1. The shift i takes values from 1−|s2| to |s1|−1,
where a negative shift means s2 starts first. For instance, if s1 =
11**1*1 and s2 =1*11, then the possible shifts are −3,−2,...,6
and σ [−3..6]= (1,2,1,1,2,1,1,2,0,1).

The overlap complexity (Ilie and Ilie, 2007) of two seeds

is defined as OC(s1,s2)=∑|s1|−1
i=1−|s2|2

σ [i]. For a multiple
seed S ={s1,s2,...,sk}, the overlap complexity is defined by:
OC(S)=∑

1≤i≤j≤k OC(si,sj). For the example above, we have
OC(11**1*1,1*11) = 25.

822 © The Author 2009. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org



Fast computation of neighbor seeds

Fig. 1. The algorithm for computing k �-neighbors of p.

Table 1. Our eight neighbor seeds of weight
13 whose sensitivities are given in the last
colum of Table 2

Parent 1111*1**11**11*1*111

111*111*1***11*1*111

111**1*1111**1*1*111

ne
ig

hb
or

se
ed

s

11*1*1**11**1*11*1111

1111*1***1*111*1*11*1

1111*1**1***11*111*1*1

1*11*1**11**11***11111

1111*1**11***1*1**11*11

1111***111**1**1*111**1

As shown by (Ilie and Ilie, 2007), low overlap complexity and
high sensitivity are very well correlated. Thus, the exponential-time
computation of sensitivity will be replaced by a polynomial-time
computation of overlap complexity.

We need to eliminate testing exponentially many candidate seeds
as well. We start by introducing the following notation. For a
seed s and two positions i,j, we denote by swaps(i,j) the seed
obtained from s by swapping the letters in positions i and j.
Note that the swap operation preserves the weight of a seed. For
instance, swap1*11*11(3,5)=1**1111. For a multiple seed S =
{s1,...,sk}, we denote by swapS(r,i,j) the multiple seed obtained
from S by replacing sr with swapsr

(i,j).
In order to find good neighbor seeds, for a given weight w and

a number of seeds k, we shall compute first a high sensitivity seed
of weight w using the algorithm of (Ilie and Ilie, 2007). (Note that
exponential-time algorithms are slow but feasible for single spaced
seeds. The situation is completely different for multiple seeds.) The
neighbor seeds are then computed as follows. Initially, they are
all set to be the same as the parent seed. Then we consider all
possible swaps that preserve the condition on the Hamming distance
and choose the one that gives the greatest reduction in overlap
complexity. The algorithm NeighborSeeds is described in Figure 1;
p is the parent seed and k is the number of neighbor seeds within
2� distance from p.

The complexity of the algorithm NeighborSeeds is O(k4w5) [the
lengths of all seeds are �(w)]; this is essentially O(w5) since k can
be assumed to be a constant.

Table 2. Our eight neighbor seeds of weight 13 compared with those of
Csűrös and Ma (2007) (�=2); the length of the random region is 64

Similarity Sensitivity

Csűrös and Ma (2007) our seeds

60% 0.193032 0.193744

65% 0.379192 0.380516

70% 0.615959 0.617515

72.3% 0.630923 0.632470

75% 0.830499 0.831559

80% 0.955390 0.955725

85% 0.994852 0.994875

90% 0.999863 0.999863

Time days (see text) 1.42 s

4 EXPERIMENTAL RESULTS
For eight neighbor seeds of weight 13 and �=2, our seeds are
given in Table 1 and their sensitivity is compared to that of Csűrös
and Ma (2007) in Table 2. We considered also the similarity level
72.3≈47/65 which is considered by Csűrös and Ma (2007). Our
seeds are better at all levels. The time to compute the seeds in Csűrös
and Ma (2007) was not provided. It is mentioned, however, that the
greedy algorithm of Li et al. (2004) was used, which produced 16
seeds in 12 days. We can only infer that the seeds of Csűrös and Ma
(2007) took days to compute, while ours took <2 s. Our algorithm
computes more sensitive neighbor seeds while being many orders
of magnitude faster.

5 CONCLUSION
In this article, as well as in Ilie and Ilie (2007), we gave algorithms
that compute various types of spaced seeds, based on two main ideas:
(i) overlap complexity replaces sensitivity and (ii) all exponential
trials are avoided by swapping 1’s and *’s. The arguments for using
our ideas in computing all multiple spaced seeds, as used by a wide
variety of alignment algorithms, are: (i) very simple implementation,
(ii) improved sensitivity, and (iii) many orders of magnitude faster
than all previous algorithms.

Conflict of Interest: none declared.

REFERENCES
Altschul,S.F. et al. (1990) Basic local alignment search tool. J. Mol. Biol., 215, 403–410.
Csűrös,M. and Ma,B. (2007) Rapid homology search with neighbor seeds. Algorithmica,

48, 187–202.
Ilie,L. and Ilie,S. (2007) Multiple spaced seeds for homology search. Bioinformatics,

23, 2969–2977.
Li,M. et al. (2004) Pattern-HunterII: highly sensitive and fast homology search.

J. Bioinform. Comput. Biol., 2, 417–440.
Lipman,D.J. and Pearson,W.R. (1985) Rapid and sensitive protein similarity searches.

Science 227 1435–1441.
Ma,B. et al. (2002) PatternHunter: faster and more sensitive homology search.

Bioinformatics, 18, 440–445.
Needleman,S.B. and Wunsch,C.D. (1970) A general method applicable to the search for

similarities in the amino acid sequence of two proteins. J. Mol. Biol., 48, 443–453.
Smith,T.F. and Waterman,M.S. (1981) Identification of common molecular

subsequences. J. Mol. Biol., 147, 195–197.
Zhang,Z. et al. (2008) MANGO: multiple alignment with n gapped oligos. J. Bioinform.

Comput. Biol., 6, 521–541.

823


