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Abstract. We present a new stochastic model for complex net-
works, based on a spatial embedding of the nodes, called the Spatial
Preferred Attachment (SPA) model. In the SPA model, nodes have
influence regions of varying size, and new nodes may only link to
a node if they fall within its influence region. The spatial embed-
ding of the nodes models the background knowledge or identity of
the node, which will influence its link environment. In our model,
nodes can determine their link environment based only on local
knowledge of the network. We prove that our model gives a power
law in-degree distribution, with exponent in [2,∞) depending on
the parameters, and with concentration for a wide range of in-
degree values. We show that the model allows for edges that span
a large distance in the underlying space, modelling a feature often
observed in real-world complex networks.

1. Introduction

Current stochastic models for complex networks, such as those de-
scribed in [2, 3], aim to reproduce a number of graph properties ob-
served in real-world networks such as the web graph. On the other
hand, experimental and heuristic treatments of real-life networks op-
erate under the tacit assumption that the network is a visible mani-
festation of an underlying hidden reality. For example, it is commonly
assumed that communities in a social network can be recognized as
densely linked subgraphs, or that web pages with many common neigh-
bours contain related topics. Such assumptions imply that there is an a
priori community structure or relatedness measure of the nodes, which
is reflected by the link structure of the graph.

A common method to represent relatedness of objects is by an em-
bedding in a metric space, so that related objects are placed close to-
gether, and communities are represented by clusters of points. Follow-
ing a common text mining technique, web pages are often represented
as vectors in a word-document space. Using Latent Sematic Indexing,
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these vectors can then be embedded in a Euclidean topic space, so that
pages on similar topics are located close together. Experimental stud-
ies [8] have confirmed that similar pages are more likely to link to each
other. On the other hand, experiments also confirm a large amount of
topic drift : it is possible to move to a completely different topic in a rel-
atively short number of hops. This points to a model where nodes are
embedded in a metric space, and the edge probability between nodes
is influenced by their proximity, but edges that span a larger distance
in the space are not uncommon.

The Spatial Preferred Attachment (SPA) model proposed in this pa-
per combines the above considerations with the often-used preferential
attachment principle: pages with high in-degree are more likely to re-
ceive new links. In the SPA model, each node is placed in space and
surrounded by an influence region. The volume of the influence region
is determined by the in-degree of the node. The volume of each region
is scaled by time, so the influence regions of nodes that do not gain
new links will steadily decrease in size. The decrease in the volume of
influence regions is motivated by the fact that the topic space grows
over time. A new node v can only link to an existing node u if v falls
within the influence region of u. If v falls within the influence region of
u, then v will link to u with probability p. Thus, the model is based on
the preferential attachment principle, but only implicitly: nodes with
high in-degree have a large influence region, and therefore are more
likely to attract new links.

A random graph model with certain similarities to the SPA model
is the geometric random graph; see [9]. In that model, all influence
regions have the same size, and the link probability is p = 1. Flaxman,
Frieze, and Vera [6] supply an interesting geometric model where nodes
are embedded on a sphere, and the link probability is influenced by
the relative positions of the nodes. This model is a generalization
of a geometric preferential attachment models presented by the same
authors in [5], which influenced our model. Other geometric models for
complex models are now emerging, such as the inner product model;
see for example, [12].

There are at least three features that distinguish the SPA model
from previous models. First, a new node can choose its links purely
based on local information. Namely, the influence region of a node can
be seen as the region where the associated entity (such as a web page
or scholarly paper) is visible: only entities that are close enough (in
topic) to fall within the influence region will be aware of its existence,
and thus have a possibility to link to it. Moreover, a new node links
independently to each node visible to it. Consequently, the new node
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needs no knowledge of the invisible part of the graph (such as in-
degree of other nodes, or total number of nodes or links) to determine
its neighbourhood. Second, since a new node links to each visible node
independently, the out-degree is not a constant nor chosen according
to a pre-determined distribution, but arises naturally from the model.
Third, the varying size of the influence regions allows for the occasional
long links : edges between nodes that are spaced far apart. This implies
a certain “small world” property.

1.1. The SPA model. We formally define the SPA model as follows.
Fix parameters m ∈ N, the dimension, and p ∈ [0, 1], the link proba-
bility. In addition, fix three positive constants A1, A2 and A3 so that
pA1 ≤ 1. Let S be the unit hypercube in Rm, with the torus metric
d(·, ·) derived from the L∞ metric. In particular, for any two points x
and y in Rm,

d(x, y) = min{||x− y + u||∞ : u ∈ {−1, 0, 1}n}.
The torus metric is chosen so that there are no boundary effects, and
altering the metric will not significantly affect the main results of the
paper. The L∞ norm is chosen so that every point on the boundary of
the unit cube has equal distance 1/2 to the centre of the hypercube.
However, the norm could be easily replaced by any of the Lp norms,
with changes only to some of the constants in our main results.

For each positive real number α ≤ 1, and u ∈ S, define the ball
around u with volume α as

Bα(u) = {x ∈ S : d(u, x) ≤ rα},
where rα = α1/m/2, so rα is chosen such that Bα has volume α.

The SPA model generates stochastic sequences of graphs (Gt : t ≥ 0),
where Gt = (Vt, Et), and Vt ⊆ S. Let d−(v, t) be the in-degree of node
v in Gt, and d+(v, t) its out-degree. We define the influence region of
node v at time t ≥ 1, written R(v, t), to be the ball around v with
volume

|R(v, t)| = A1d
−(v, t) + A2

t + A3

,

or R(v, t) = S if the right-hand-side is greater than 1.
The process begins at t = 0, with G0 being the empty graph. Time-

step t, for t ≥ 1, is defined to be the transition between Gt−1 and
Gt. At the beginning of each time-step t, a new node vt is chosen
uniformly at random (uar) from S, and added to Vt−1 to create Vt.
Next, independently, for each node u ∈ Vt−1 such that vt ∈ R(u, t−1), a
directed edge (vt, u) is created with probability p. Thus, the probability
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that a link (vt, u) is added in time-step t equals p|R(u, t − 1)|. See
Figure 1.1 for a drawing of a simulation of the SPA model.

Figure 1. A simulation of the SPA model on the unit
square with t = 5, 000, p = 1, and A1 = 1, A2 = 0.

Because new nodes choose independently whether to link to each
visible node, and the size of the influence region of a node depends
only on the edges from younger nodes, the distribution of the random
graph Gn produced by the SPA model with parameters A1, A2, A3, p, m
is equivalent to the graph Gn+A3 produced by the SPA model with the
same values for A1, A2, p, m, but with A3 = 0, where the first A3 nodes
have been removed. Since the results presented in this paper do not
depend on the first nodes, we will assume throughout that A3 = 0.
In the rest of the paper, (Gt : t ≥ 0) refers to a sequence of random
graphs generated by the SPA model with parameters A1, A2, p, and m,
and we assume A3 = 0. We use the notation [n] for {0, 1, . . . , n}. All
logarithms are in base e.

1.2. Main Results. We now state our main results on the SPA model,
with proofs deferred to the next section. We first prove that with high
probability a graph Gn generated by the SPA model has an in-degree
distribution that follows a power law. See Figure ?? for the in-degree
distribution of a simulation of the SPA model. We say that an event
holds asymptotically almost surely (aas) if it holds with probability
tending to one as n → ∞. An event holds with extreme probability
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(wep) if it holds with probability at least 1−exp(−Θ(log2 n)) as n →∞.
We will often use the stronger notion of wep in favour of the more
commonly used aas, since it simplifies some of our proofs. If we consider
a polynomial number of events that each holds wep, then wep all events
hold. Let Ni,t denote the number of nodes of in-degree i in Gt. For an
integer n ≥ 0, define

if = if (n) =

(
n

log8 n

) pA1
4pA1+2

.

Theorem 1.1. Fix p ∈ (0, 1]. Then for any i ≥ 0,

E(Ni,n) = (1 + o(1))cin,

where

c0 =
1

1 + pA2

, (1)

and for 1 ≤ i ≤ n,

ci =
pi

1 + pA2 + ipA1

i−1∏
j=0

jA1 + A2

1 + pA2 + jpA1

. (2)

For i = 0, . . . , if , wep

Ni,n = (1 + o(1))cin.

Since ci = (1 + o(1))ci
−(1+ 1

pA1
)

for some constant c, this shows that
for large i, the expected proportion Ni,n/n follows a power law with
exponent 1 + 1

pA1
, with concentration for all values of i up to if . If

pA1 = 10/11, then the power law in-degree exponent is 2.1, the same
as observed in the web graph (see [2, 3]).

The previous result characterizes the distribution of in-degrees in the
graph. The total number of nodes of a given in-degree (smaller than
if ) is tightly concentrated around its mean. In the next result, we give
a precise expression for the probability distribution of the in-degree
of the individual node vi born at time i, in the case that pA1 < 1.
No concentration result can be obtained here, but part (c) does give
a bound on the maximum value that the in-degree of any particular
vertex can reach.

For vj the node added at time-step j, let d−(vj, n) be the in-degree
of this node at the end of time-step n.

Theorem 1.2. If 0 < pA1 < 1, then the following hold.
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(a) For 1 ≤ j ≤ n(1 − log−1 n) and 0 ≤ l ≤ √
j log−1 n or for

n(1− log−1 n) < j < n and l = 0, 1,

P(d−(vj, n) = l) = (1 + O(log−1 n))

(
l + (A2/A1)− 1

l

)(
j

n

)pA2

×
(

1−
(

j

n

)pA1

(1 + O(log−1 n))

)l

.

(b) For n(1− log−1 n) < j < n and l ≥ 2,

P(d−(vj, n) = l) = O(l(A2/A1)−1/(log n)l).

(c) For all K > 0,

P(There exists j ≤ n : d−(vj, n) ≥ K(log n)2(n/j)pA1) = O
(
n−Ke−18

)
.

Theorem 1.2(c) implies (taking K = log2 n) that wep every node vj

has in-degree at most (n/j)pA1 log4 n. If we are interested in an event
that holds aas, then every node vj has in-degree O((n/j)pA1 log2 n).
Conditional on this, items (a) and (b) characterize the distribution of
d−(vj, n) for all j ≥ log8 n when pA1 ≤ 1/2, and for j ≥ npA1−1/2 log8 n
when pA1 > 1/2.

Let Mt = |Et|, the number of edges in Gt, and let mt = E(Mt). Then
we have that

E(Mt+1 | Mt) = Mt +
t∑

j=1

p
A1d

−(vj, t) + A2

t
= Mt +

pA1Mt

t
+ pA2,

and so m1 = 0, and for t ≥ 1,

mt+1 = mt

(
1 +

pA1

t

)
+ pA2.

The (first-order) solutions of this recurrence are

mn ∼




pA2

1−pA1
n, pA1 < 1

n log n, pA1 = 1.

Theorem 1.3. If pA1 < 1, then aas the number of edges is concen-
trated around its expected value:

Mn = (1 + o(1))mn.

An important difference between the SPA model and many other
models is that the out-degree is not a parameter of the model, but is
the result of a stochastic process. Using the expression for mn above, we
can easily derive the expected out-degree of a vertex vj. For example,
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this out-degree equals pA2/(1 − pA1) + o(1) if pA1 < 1. Since the
expected out-degree is small, we do not expect concentration. The
next result gives bounds for the maximum out-degree in the graph.

Theorem 1.4. Aas

max
0≤i≤n

deg+(vi, n) ≥ (1 + o(1))p
log n

log log n
.

However, aas all nodes have out-degree O(log2 n).

Theorem 1.5. Aas deg+(vn, n) = O(log2 n).

From Theorem 1.2, the number of nodes of in-degree zero in a graph
generated by the SPA model in Gn is linear in n. In addition, with
positive probability a new node will land in a part of S not covered by
any influence regions, and thus, have out-degree zero. Therefore, the
underlying undirected graph of Gn is not connected. In fact, we expect
that for the majority of distinct pairs u, v, there will not be a directed
path from u to v. Since this is a property also observed in the web
graph, it does not detract from the SPA model, but rather suggests that
we should consider another variable rather than diameter to indicate a
“small world” property. Hence, we focus on the (geometric) distance,
in S, spanned by the links.

For a pair of points u, v ∈ S, let L(u, v) be the length of the shortest
curve embedded in the surface of S that connects u and v. Define

Lt =
∑

(vt,vi)∈Et

L(vt, vi);

that is, Lt is the sum of the lengths of new edges added at time t in
the SPA model. Note that Lt is a continuous random variable.

Theorem 1.6. For the expectation of Lt, we have that

E(Lt) =





Θ(t−1/m) if 1/m < 1/(pA1)− 1
Θ(t−1/m log t) if 1/m = 1/(pA1)− 1
Θ(t1−1/(pA1)) if 1/m > 1/(pA1)− 1.

Theorem 1.6 contrasts with the analogous result for graphs generated
with a similar process to the SPA model, but where all influence regions
have volume d/t for d > 0 a constant. We call this the egalitarian
model. In the egalitarian model, E(Lt) decreases much faster with t
than for the SPA model if pA1 is large, specifically when pA1 > m

m+1
.

For example, if pA1 = 1, then E(Lt) = Θ(1) for the SPA model, while
E(Lt) = Θ(t−1/m) for the egalitarian model.
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Theorem 1.7. In the egalitarian model with influence regions of vol-
ume d/t for d > 0 a constant, we have that

E(Lt) = Θ(t−1/m).

2. Proofs of results

This section is devoted to the proofs of the theorems outlined in the
previous section.

2.1. Proof of Theorem 1.1. The equations relating the random vari-
ables Ni,t are described as follows. As G1 consist of one isolated node,
N0,1 = 1, and Ni,1 = 0 for i > 0. For all t > 0, we derive that

E(N0,t+1 −N0,t | Gt) = 1−N0,tp
A2

t
, (3)

E(Ni,t+1 −Ni,t | Gt) = Ni−1,tp
A1(i− 1) + A2

t
− pNi,t

A1i + A2

t
.(4)

Recurrence relations for the expected values of Ni,t can be derived by
taking the expectation of the above equations. To solve these relations,
we use the following lemma on real sequences, which is Lemma 3.1
from [3].

Lemma 2.1. If (αt), (βt) and (γt) are real sequences satisfying the
relation

αt+1 =

(
1− βt

t

)
αt + γt,

and limt→∞ βt = β > 0 and limt→∞ γt = γ, then limt→∞ αt

t
exists and

equals γ
1+β

.

Applying this lemma with αt = E(N0,t), βt = pA2, and γt = 1 gives
that E(N0,t) = c0t + o(t) with c0 as in (1). For i > 0, the lemma
can be inductively applied with αt = E(Ni,t), βt = p(A1i + A2), and

γt = E(Ni−1,t)
A1(i−1)+A2

t
to show that E(Ni,t) = cit + o(t), where

ci = ci−1p
A1(i− 1) + A2

1 + p(A1i + A2)
.

It is straightforward to verify that the expression for ci as defined in (1)
and (2) satisfies this recurrence relation.

We prove concentration for Ni,t when i ≤ if by using a relaxation of
Azuma-Hoeffding martingale techniques. The random variables Ni,t do
not a priori satisfy the c-Lipschitz condition: it is possible that a new
node may fall into many overlapping regions of influence. Nevertheless,
we will prove that deviation from the c-Lipschitz condition occurs with
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exponentially small probability. The following lemma gives a bound
for |Ni,t+1 −Ni,t| which holds with extreme probability.

Lemma 2.2. Wep the following inequality holds for all 0 ≤ t ≤ n− 1.

|Ni,t+1 −Ni,t| ≤ 2(A1i + A2) log2 n, for 0 ≤ i ≤ t.

Proof. Fix t, let i, j ≤ t, and let Xj(i, t) denote the indicator variable
for the event that vj has degree i at time t and vt+1 links to vj. It
follows that

Ni,t+1 −Ni,t =
t∑

j=1

Xj(i− 1, t)−
t∑

j=1

Xj(i, t),

and so

|Ni,t+1 −Ni,t| ≤ max

(
t∑

j=1

Xj(i− 1, t),
t∑

j=1

Xj(i, t)

)
. (5)

Let Zj(i, t) denote the indicator variable for the event that vt+1 is
chosen in the ball of volume (A1i + A2)/t around node vj. Clearly, if
Xj(i, t) = 1, then Zj(i, t) = 1 as well, so Xj(i, t) ≤ Zj(i, t). Thus, to
bound |Ni,t+1 −Ni,t| it suffices to bound the values of Z(i, t), where

Z(i, t) =
t∑

j=1

Zj(i, t).

The variables Zj(i, t) for j = 1, . . . , t are pairwise independent. To
see this, we can assume the position of vt+1 to be fixed. Then, the value
of Zj(i, t) depends only on the position of vj. Since the position of each
node is chosen independently and uniformly, the value of Zj(i, t) is in-
dependent from the value of any other Zj′(i, t) where j 6= j′. Therefore,
Z(i, t) is the sum of independent Bernouilli variables with probability
of success equal to

P(Zj(i, t) = 1) =
A1i + A2

t
.

Using Chernoff’s inequalities (see, for instance Theorem 2.1 in [7]),
we can show that wep Z(i, t) < A1i + A2 + (A1i + A2) log2 n < 2(A1i +
A2) log2 n. Using these bounds, the proof now follows since by (5),

|Ni,t+1 −Ni,t| ≤ max(Z(i− 1, t), Z(i, t)). ¤
We mention that Theorem 1.5 can be used to improve the upper

bound for |Ni,n−Ni,n−1| to O(log2 n) since the maximum change cannot
be greater than the out-degree of vertex vn.
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To sketch the technique of the proof of Theorem 1.1, we consider N0,t,
the number of nodes of in-degree zero. We use the supermartingale
method of Pittel et al. [10], as described in [11].

Lemma 2.3. Let G0, G1, . . . , Gn be a random graph process and Xt a
random variable determined by G0, G1, . . . , Gt, 0 ≤ t ≤ n. Suppose
that for some real β and constants γi,

E(Xt −Xt−1|G0, G1, . . . , Gt−1) < β

and

|Xt −Xt−1 − β| ≤ γi

for 1 ≤ t ≤ n. Then for all α > 0,

P
(
For some t with 0 ≤ t ≤ n : Xt−X0 ≥ tβ + α

) ≤ exp
(
− α2

2
∑

γ2
j

)
.

Theorem 2.4. Wep for every 1 ≤ t ≤ n, we have that

N0,t =
t

1 + A2p
+ O(n1/2 log3 n) = c0t + O(n1/2 log3 n) .

Proof. We first transform N0,t into something close to a martingale.
It provides some insight if we define real function f(x) to model the
behaviour of the scaled random variable 1

n
N0,xn. If we presume that

the changes in the function correspond to the expected changes of the
random variable (see (3)), we obtain the following differential equation

f ′(x) = 1− f(x)
pA2

x

with the initial condition f(0) = 0. The general solution of this equa-
tion can be put in the form

f(x)xpA2 − x1+pA2

1 + pA2

= C.

Consider the following real-valued function

H(x, y) = xpA2y − x1+pA2

1 + pA2

(6)

(note that we expect H(t, N0,t) to be close to zero). Let wt = (t, N0,t),
and consider the sequence of random variables (H(wt) : 1 ≤ i ≤
n). The second-order partial derivatives of H evaluated at wt are all
O(tpA2−1). Therefore, we have

H(wt+1)−H(wt) = (wt+1 −wt) · grad H(wt) + O(tpA2−1), (7)

where “·” denotes the inner product and grad H(wt) = (Hx(wt), Hy(wt)).
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Observe that from our choice of H, we have that

E(wt+1 −wt | Gt) · grad H(wt) = 0.

Hence, taking the expectation of (7) conditional on Gt, we obtain that

E(H(wt+1)−H(wt) | Gt) = O(tpA2−1).

From (7), noting that

grad H(wt) =
(
pA2t

pA2−1N0,t − tpA2 , tpA2
)
,

and using Lemma 2.2 (and the comment after the lemma) to bound
the change in N0,t, we have that wep

|H(wt+1)−H(wt)| ≤ tpA2O(log2 n) + O(tpA2) = O(tpA2 log2 n).

Now we may apply Lemma 2.3 to the sequence (H(wt) : 1 ≤ i ≤ n),
and symmetrically to (−H(wt) : 1 ≤ i ≤ n), with α = n1/2+pA2 log3 n,
β = O(tpA2−1) and γt = O(tpA2 log2 n), to obtain that wep

|H(wt)−H(w0)| = O(n1/2+pA2 log3 n)

for 1 ≤ t ≤ n. As H(w0) = 0, this implies from the definition (6) of
the function H, that wep

N0,t =
t

1 + pA2

+ O(n1/2 log3 n)

for 1 ≤ t ≤ n which finishes the proof of the theorem. ¤

We may repeat (recursively) the argument as in the proof of The-
orem 2.4 for Ni,t with i ≥ 1. Since the expected change for Ni,t is
slightly different now (see (4)), we obtain our result by considering the
following function:

H(x, y) = xp(A1i+A2)y − ci−1
p(A1(i− 1) + A2)

1 + p(A1i + A2)
x1+p(A1i+A2).

Using this function, we may show by similar arguments as in the case
i = 0 that wep

Ni,n = cin + O(in1/2 log3 n).

We therefore obtain concentration for all degrees i up to

if =

(
n

log8 n

) pA1
4pA1+2

,
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since

ifn
1/2 log3 n = n

3pA1+1
4pA1+2 log

4pA1+6
4pA1+2 n

= o(n
3pA1+1
4pA1+2 log

4pA1+6
4pA1+2

+1
n)

= o

(
i
−(1+ 1

pA1
)

f n

)
= o(cif n).

2.2. Proof of Theorems 1.2 and 1.3. We present the proofs of the
results on the in-degrees of individual nodes and the number of edges.

Proof of Theorem 1.2. To simplify notation let η = A1p, ν =
A2p, ξ = A2/A1. Let the node added at time-step v be denoted v, and
treat the current time-step (given as n above) as t. Let P(d−(v, t) = l)
denote the distribution of in-degree of node v at the end of time-step
t.

The indicator variable X(t + 1) for an increase in d−(v, t) by re-
ceiving a link from vt+1 is a Bernoulli random variable with parameter
p(A1d

−(v, t) + A2)/t. Thus,

P(X(t + 1) = 0 | d−(v, t) = j) = 1− ηj + ν

t
, (8)

P(X(t + 1) = 1 | d−(v, t) = j) =
ηj + ν

t
. (9)

Let v, t be fixed, suppose d−(v, t) = l and let T = (Tj, j = 1, . . . , l)
denote the time-steps Tj (if any) at which the degree of v changed.
Let τ = (τ1, . . . , τl) denote a particular value of T, so that τj is the
time-step at which d−(v, τj) changed from j− 1 to j. For v < τ ≤ t let

J = {τ : τ1 < τ2 < · · · < τl}
be the sequences of possible transitions. Hence,

P(d−(v, t) = l) =
∑
τ∈J

P(T = τ ).

Let

Ψj = P(X(T ) = 0, for all τj < T < τj+1),

with τl < T ≤ τl+1 = t when j = l. If τj+1 = τj + 1 let Ψj = 1. If
τj+1 ≥ τj + 2, then from (8) we have that

Ψj =
∏

τj<T<τj+1

(
1− ηj + ν

T

)
.
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Define ω = log t. As l ≤ √
v/ω, then (ηj + ν)/t ≤ (ηl + ν)/v = o(1) so

that

1− ηj + ν

t
= e

− ηj+ν
t
−O

(
j2

t2

)

.

Let

δ(τ, j) = j2/τ, (10)

then

Ψj = exp





−(ηj + ν)

∑
τj<T<τj+1

1

T


−O(δ(τj, j))




=

(
τj

τj+1

)ηj+ν

(1 + O(δ(τj, j))).

For 0 ≤ j ≤ l− 1, let Φj(t + 1) = P(X(t + 1) = 1 | d−(v, t) = j). Thus,
from (9)

Φj(t + 1) =
ηj + ν

t
.

Let Φj = Φ(τj+1), and let Φl = 1. Let F (τ ) denote P(d−(v, t) =
l and τ ). Let P(T j = τj | T j−1 = τj−1) be the probability that the
transition to j occurs at τj given the transition to j−1 at τj−1. Hence,

F (τ ) = Ψl

l∏
j=1

P(T j = τj | T j−1 = τj−1) =
l∏

j=0

Ψj Φj.

Ignoring for the moment the multiplicative error terms, we see that
F (τ ) is given by

(
v

τ1

)ν
ν

τ1

(
τ1

τ2

)η+ν
η+ν

τ2
· · ·

(
τl−1

τl

)η(l−1)+ν
η(l−1)+ν

τl

(
τl

t

)ηl+ν

.

Recall that ξ = ν/η. We cancel repeated values of τj to give

F (τ ) = (1 + O(δ(t, l)))
Γ(l + ξ)

Γ(ξ)

(v

t

)ν
l∏

j=1

η τ η−1
j

tη
(1 + O(δ(τj, j))) .

Thus,

P(d−(v, t) = l) = (1 + O(δ(t, l)))
Γ(l + ξ)

Γ(ξ)

(v

t

)ν

P1, (11)

where

P1 =
∑
τ∈J

l∏
j=1

η τ η−1
j

tη
(1 + O(δ(τj, j))) .
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For bj ≥ 0 we have that

(bv + · · ·+ bt)
k − (bv

2 + · · ·+ bt
2)

(
k

2

)
(bv + · · ·+ bt)

k−2

≤ k!
∑

i1<···<ik

bi1 · · · bik ≤ (bv + · · ·+ bt)
k.

Replace the term δ(τj, j) in F (τ ) with δ(τj, l) and let

bτ = (1 + O(δ(τ, l)))
ητ η−1

tη
,

so that

P1 =
1

l!

{
(bv + · · ·+ bt)

l −O(l2)(bv
2 + · · ·+ bt

2)(bv + · · ·+ bt)
l−2

}
.

Using (10) and recalling that l ≤ √
v/ω,

bv + · · ·+ bt =
∑

v≤τ≤t

ητ η−1

tη
(1 + O(δ(τ, l)))

= 1−
(v

t

)η
(

1−
(v

t

)η

O

(
l2

v

))

= 1−
(v

t

)η (
1 + O

(
1
ω

))
.

An upper bound for P1, and hence P(d−(v, t) = l) follows.
For 1 ≤ v ≤ t(1− 1/ω) and l ≤ √

v/ω we prove below that

t∑
τ=v

b2
τ = O

(
1

ωl2

) (
t∑

τ=v

bτ

)2

. (12)

We therefore have that

P1 =
(
1 + O

(
1
ω

)) 1

l!

(
1−

(v

t

)η (
1 + O

(
1
ω

)))l

. (13)

Inserting this estimate for P1 into (11) completes the proof of Theo-
rem 1.2 (a). As remarked in the previous paragraph, (13) is an upper
bound for P1 for any l ≤ √

v/ω, which completes the proof of Theo-
rem 1.2 (b).

Returning to the proof of (12), let

g(v, t) =





η2

1−2η

(
1
v

(
v
t

)2η − 1
t

)
η < 1/2

1
4t

log(t/v) η = 1/2

η2

2η−1

(
1
t
− 1

v

(
v
t

)2η
)

η > 1/2.
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Using δ = O(1/ω) we have that

bv
2 + · · ·+ bt

2 =
(
1 + O

(
1
ω

))
g(v, t).

It follows by direct examination that vg(v, t) = O(1). As l ≤ √
v/ω, we

have l2g(v, t) = O(1/ω2). However,
∑

i bi ≥ Θ(1/ω) for v ≤ t(1−1/ω),
and the result follows.

We now prove Theorem 1.2 (c). Let Xt = d−(v, t). By Markov’s
inequality, for h > 0,

P(Xt ≥ α) = P(ehXt ≥ ehα) ≤ e−hαEehXt . (14)

Let Yt be an indicator variable for the increase of in-degree of v at
time-step t + 1, then Xt+1 = Xt + Yt, where

P(Yt = 1) =
p(Xt + 1)

t + 1
,

and

E
(
ehYt | Xt

)
= 1 +

p(Xt + 1)

t + 1

(
eh − 1

)
.

Assume that 0 < h ≤ 1 (proved below in (16)) so that eh ≤ h + h2,
then

E
(
ehXt+1

)
= E

(
ehXtehYt

)

≤ E
(
ehXte

p(Xt+1)
t+1 (eh−1)

)

≤ e
ph
t+1

(1+h)E
(
ehXt(1+ p

t+1
(1+h))

)
. (15)

Let ε = 9/ω, and let

h =
1

ω

(v

t

)p(1+2ε)

.

Let ht = h and for v + 1 ≤ s ≤ t define hs−1 by

hs−1 = hs

(
1 +

p

s
(1 + hs)

)
,

so that

hs = h

t∏
τ=s+1

(
1 +

p

τ
(1 + hτ )

)
.

Let ετ = max(hτ : τ = v, . . . , h) and assume (proved below in (16))
that ετ < ε < 1.

Iterating expression (15) and noting that EehvXv = 1 as Xv = 0, we
have

EehXt ≤ exp

(
p

t∑
s=v

hs(1 + hs)

s

)
≤ exp

(
p(1 + ε)

∑ hs

s

)
.
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However, as 1/s + · · ·+ 1/t ≤ 1/s + log t/s, we have

hs ≤ h exp

(
t∑

τ=s+1

p(1 + ε)

τ

)
≤ he2

(
t

s

)p(1+ε)

≤ e2

ω
< 1, (16)

for t ≥ 9.
We therefore have that

EehXt ≤ exp

(
hp(1 + ε)e2tp(1+ε)

t∑
s=v

1

s1+p(1+ε)

)

≤ exp

(
h

(
t

v

)p(1+ε)

e2

(
1 +

p(1 + ε)

v

))

≤ exp

(
e4

ω

(v

t

)εp
)

= 1 + O

(
1

ω

)
.

Let α = Kω2(t/v)p. By (14) and (16) we have that

P(Xt ≥ α) = (1 + o(1))e−hα

= O(1) exp

(
−Kω

(v

t

)2pε
)

= O
(
t−Ke−18

)
.

This completes the proof of item (c), and completes the proof of The-
orem 1.2. ¤

Proof of Theorem 1.3. We count the number of edges by counting
the in-degree of nodes. Our approach is as follows: by Theorem 1.1
wep for i ≤ if the number of nodes Ni,n of in-degree i at time n is
concentrated.

Let a be the solution of (n/a)pA1 = if and let ω′ = (K log2 n)1/(pA1)

be the solution of
( n

aω′

)pA1

K log2 n =
(n

a

)pA1

,

where K ≥ 4e18. From Theorem 1.2 (c), with probability 1 − O(n−3)
no node v ≥ aω′ has degree exceeding if . Let

µ(n) =
∑
i≤if

ENi,n = (1 + o(1))
∑
i≤if

Ni,n,
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and let

λ(n) =
aω′∑
j=1

d−(vj, n).

We prove, conditional on Theorem 1.2 (c), that λ(n) = o(mn) and
thus, the number of edges is concentrated around mn. We have that
for pA1 < 1

λ(n) =
aω′∑
j=1

d−(vj, n)

≤ Kω2

aω′∑
j=1

(
n

j

)pA1

= O

(
ω2

( n

aω′

)pA1

aω′
)

= O

(
n

(n

a

)pA1−1

log2/(pA1) n

)

= O

(
n

(
n

log8 n

)(pA1−1)/(4pA1+2)

log2/(pA1) n

)

= O
(
n(5pA1+1)/(4pA1+2) log2/(pA1) n

)

= o(n).

However, µ(n) ≥ cn for some constant c > 0 so λ(n) = o(µ(n)), and
the assertion follows. ¤

2.3. Proof of Theorems 1.4 and 1.5. We now give the proofs of the
results on out-degrees in the SPA model.

Proof of Theorem 1.4. Partition the interval [0, 1] into d2(n/A2)
1/me

subintervals of the equal length. Hence, the unit hypercube is parti-
tioned into

h = 2mn/A2 + O(n(m−1)/m) = (1 + o(1))2mn/A2

identical hypercubes. (We expect each hypercube to contain a con-
stant number of nodes.) We will show that aas there is a hypercube
containing log n

log log n
nodes.
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Fix c ∈ R and suppose that

k = k(n) =
log n

log log n
(1 + cn)

such that

lim
n→∞

(k + 1/2)(log k + m log 2− log A2 − 1) = log n + c.

Note that k = log n
log log n

(1+O(log log log n/ log log n)) = (1+o(1)) log n
log log n

.

The probability q that any fixed hypercube contains exactly k nodes
is equal to

q =

(
n

k

)(
1

h

)k (
1− 1

h

)n−k

= (1 + o(1))
nk

k!

(
A2

2mn

)k

exp

(
−A2

2m

)

= (1 + o(1))
1

k!

(
A2

2m

)k

exp

(
−A2

2m

)
.

Using Stirling’s formula k! = (1 + o(1))
√

2πk(k/e)k, we obtain that

q = (1 + o(1))

√
2m

2πA2

(
eA2

2mk

)k+1/2

exp

(
−A2

2m
− 1

2

)

= (1 + o(1))

√
2m

2πA2

exp

(
−(k + 1/2)(log k + m log 2− log A2 − 1)− A2

2m
− 1

2

)

= (1 + o(1))

√
2m

2πA2

exp

(
− log n− c− A2

2m
− 1

2

)

= (1 + o(1))
1

n

√
2m

2πA2

exp

(
−c− A2

2m
− 1

2

)
.

It follows that the expected number of hypercubes with exactly k nodes
is tending to

λ = hq =
1√
2π

(
2m

A2

)3/2

exp

(
−c− A2

2m
− 1

2

)
.

Now, let Ai (1 ≤ i ≤ h) denote an event that ith hypercube contains

exactly k nodes, and let Sh =
∑h

i=1 IAi
be the number of events which

actually occur (Sh is a random variable). Finally, let

Bh
l =

∑

1≤j1<···<jl≤h

P

(
l⋂

i=1

Aji

)
.
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We already showed that limh→∞ Bh
1 = λ. It is also not difficult to see

that for a fixed value of l that

lim
h→∞

Bh
l =

λl

l!
.

Therefore, Sh is tending to a random variable with Poisson distribution;
that is,

lim
h→∞

P(Sh = l) =
λl

l!
e−λ.

In particular,

lim
h→∞

P(Sh = 0) = e−λ.

Since c → −∞ for k = k0 = log n
log log n

, aas there is a hypercube K with

k0 points.
Since all nodes have the volume of the ball of influence at least A2/n

during the whole process up to time n (deterministically), the last node
v added to K falls into balls of influence of all other nodes inside K
(observe that the volume of K is at most 2−mA2/n so this holds even
if v lies on the boundary of K). Thus, E deg+(v, n) ≥ pk0.

To finish the proof, we use the fact that a sum of independent random
variables with large enough expected value is not too far from its mean
(see, for example, Theorem 2.8 in [7]). It follows that if ε ≤ 3/2, then

P
(| deg+(v, n)− E deg+(v, n)| ≥ εE deg+(v, n)

)
(17)

≤ 2 exp

(
−ε2

3
E deg+(v, n)

)
.

Setting

ε = 1/ 3

√
E deg+(vi, n),

we obtain that aas

deg+(vi, n) =
(
1 + O(ε)

)
E deg+(vi, n),

and the assertion follows. ¤
Proof of Theorem 1.5. Since the node vn is chosen uar from the

unit hypercube (note that the history of the process does not affect
this distribution) with the torus metric, without loss of generality, we
may assume that vn lies in the centre of the hypercube. For 1 ≤ i < n,
let Xi denote the indicator random variable of the event that vi lies in
the ball around vn (or vice versa) with volume

α = 2i−pA1npA1−1 log2 n.
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By Theorem 1.2 (c), we have that aas

d−(vi, n) ≤ (n/i)pA1 log2 n,

for all i ∈ [n]. Hence, aas for all i ∈ [n− 1], Xi = 0 implies that vn is
not in the influence region of vi and there is no directed edge from vn

to vi. Therefore, aas we have that

deg+(vn, n) ≤
n−1∑
i=1

Xi.

Since

E

(
n−1∑
i=1

Xi

)
=

n−1∑
i=1

O(i−pA1npA1−1 log2 n)

= O

(
npA1−1 log2 n

n−1∑
i=1

i−pA1

)

= O(log2 n),

the assertion follows from the Chernoff bound (see (17)). ¤

2.4. Proof of Theorems 1.6 and 1.7. To prove Theorem 1.6 we
need the following lemma whose (straightforward) proof is omitted.

Lemma 2.5. Let u be chosen uar from a ball with centre v and volume
α. If X is the distance between u and v, according to the torus metric
as defined in the introduction, then

E(X) =

(
m

2(m + 1)

)
α1/m.

Proof of Theorem 1.6. Define

Zj,t =

{
L(vt, vj) if (vt, vj) ∈ Et

0 else.

Then Lt =
∑t−1

j=1 Zj,t. Let Bt,j be the event that (vt, vj) ∈ Et. Then
using Lemma 2.5 we have that

E(Zj,t+1 | Gt) = P(Bt+1,j)E(Zj,t+1 | Gt, Bt+1,j) + P(Bt+1,j)E(Zj,t+1 | Gt, Bt+1,j)

= P(Bt+1,j)E(L((vt+1, vj) | Gt)

=

(
p
A1d

−(vj, t) + A2

t

)(
m

2(m + 1)

) (
A1d

−(vj, t) + A2

t

)1/m

=
pm

2(m + 1)

(
A1d

−(vj, t) + A2

t

)1+1/m

,
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where the second last equality follows by Lemma 2.5 and the definition
of the model, and the second equality follows from the definition of
Zj,t+1. We therefore have that

E(Lt+1 | Gt) =
t∑

k=0

∑

{j | d−(vj ,t)=k}
E(Zj,t+1|Gt)

=
pm

2(m + 1)

t∑

k=0

(
A1k + A2

t

)1+1/m

Nk,t.

Taking expectations on both sides, and using that

E(Nk,t) = (1 + o(1))ck
−(1+ 1

pA1
)
t

(see Theorem 1.1), we have that

E(Lt+1) =
pm

2(m + 1)

t∑

k=0

(
A1k + A2

t

)1+1/m

E(Nk,t)

= (1 + o(1))
pm

2(m + 1)t1/m

t∑

k=0

(A1k + A2)
1+1/mck−(1+1/(pA1))

= Θ(t−1/m)

∫ t

0

x1/m−1/(pA1)dx

=





Θ(t−1/m) if 1/m < 1/(pA1)− 1
Θ(t−1/m log t) if 1/m = 1/(pA1)− 1
Θ(t1−1/(pA1)) if 1/m > 1/(pA1)− 1. ¤
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Proof of Theorem 1.7. With the same notation as in the proof of
Theorem 1.6 and using Lemma 2.5, we have that

E(Zj,t+1 | Gt) = P(Bj,t+1)E(L(vt+1, vj) | Bj,t+1)

=
pm

2(m + 1)

(
d

t

)1+1/m

.

Taking the expectation, we see that the terms E(Zj,t+1) are equal for
all j, and thus,

E(Lt+1) = tE(Zj,t+1) = Θ(t−1/m). ¤

3. Generalizations

Several variants of the SPA model may be proposed, and for each
variant, it would be interesting to pursue a rigorous analysis of the
degree distributions and small world property. One such variation is
the Generalized SPA (or GSPA) model, which allows more control of
the out-degree. In the GSPA model, nodes are distributed on the hy-
percube as in the SPA model, but now receive two regions of influence.
Each node v at time-step t is assigned both an in-degree influence re-
gion with volume

Ai + Bid
−(v, t)

t
,

where Ai and Bi are non-negative constants and d−(v, t) is the in-degree
of v at time t, and an out-degree influence region with volume

Ao + Bod
+(v, t)

t
,

where Ao and Bo are non-negative constants and d+(v, t) is the out-
degree of v at time t.

Edges are now added with probability p between any pair of nodes
whose regions interact by a pre-determined rule. An important dif-
ference with the SPA model is that at every time step all nodes can
potentially receive out- and in-edges. This implies that graphs gen-
erated by the GSPA model can have cycles, and edges that go from
younger to older nodes.

We describe three rules for the generation of edges.

Intersection rule. If the in-degree influence region of node v has a
nonempty intersection with the out-degree influence region of node u,
then the directed edge (u, v) is added.
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Disjunction rule. If node u is contained in the in-degree influence
region of v, or node v is contained in the out-degree influence region of
u, then the directed edge (u, v) is added.

Conjunction rule. If node u is contained in the in-degree influence
region of v, and node v is contained in the out-degree influence region
of u, then the directed edge (u, v) is added.

One of the rules is chosen (or some combination of them, depending
on the motivating application), and edges are added according to the
rules. Observe that the disjunction rule is the closest to the SPA model
with Ao = Bo = 0. Note that edges may well be added between pairs
of older nodes in a given time-step, not just between the new node
and the older nodes. The SPA model also has a fairly small bound
B on the out-degree with high probability (see Theorem 1.5). This
implies that the graphs so generated have treewidth at most B with
high probability, which does not accurately model the large treewidth
observed in the web graph (see [1]). The GSPA model may be converted
into an undirected model. In this model, there is an influence region
based on degree. An edge is added between two nodes according to
an overlap rule. The overlap rules above are easily modified to the
undirected case.
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